COURSE OUTLINE PY541

I. FUNDAMENTALS (9.5 lectures)

- 1) Introduction to Probability (1.5 lectures)
 - (a) Motivation and basic ideas
 - (b) Fundamental laws of probability
 - (c) The one-dimensional random walk

-The binomial distribution, Stirling's approximation, and the Gaussian approximation

- (d) Central limit theorem
- 2) Thermodynamic Equilibrium (3 lectures)
 - (a) The microcanonical ensemble
 - -Equal a priori probability principle; equivalent definitions of entropy
 - -Mathematical interlude: method of steepest descent and application to thermodynamics -Sharpness of thermodynamic equilibrium in the $N \to \infty$ limit
 - (b) Definition of temperature and entropy
 - (c) General conditions of equilibrium
 - -Role of T, p, and μ in determining equilibrium
 - -Extrema principles; basic thermodynamic relations
 - (d) The canonical ensemble
 - –The Boltzmann factor and the Helmholtz free energy
- 3) Connection Between Thermodynamics and Statistical Mechanics (2.0 lectures)
 - (a) Canonical ensemble
 - -Relation between partition function and Helmholtz free energy
 - -Equivalence to the microcanonical ensemble; the distribution of energy
 - -Computation of averages; distribution of energy and energy fluctuations
 - –The equipartition theorem
 - (b) Grand canonical ensemble
 - -Gibbs factor, thermodynamic potential, and equation of state
 - -Computation of averages; distribution of particle number and its fluctuations
 - –Chemical equilibrium
- 4) Illustrative Examples (1.5 lectures)
 - (a) The paramagnet
 - –Basic thermodynamic response functions m, χ, C_H
 - (b) Ideal gas in the canonical ensemble
 - -Classical and quantum limits, the Maxwell-Boltzmann distribution
 - (c) Elementary kinetic theory

–Maxwell-Boltzmann distribution; molecular flux and collisions

- -Linear transport processes: electrical, heat, & particle conductivity, viscosity
- (d) Einstein model for a solid
- (e) The Langmuir adsorption isotherm
- 5) Thermodynamics of Homogeneous Systems and Applications (1.5 lectures)
 - (a) Maxwell relations
 - (b) Heat capacity

-General relation between c_p and c_V and its physical meaning

(c) Heat engines and refrigerators

-Contrast between adiabatic and isothermal processes in an ideal gas

II. STATISTICAL MECHANICS OF IDEAL QUANTUM SYSTEMS (8 lectures)

- 1) Introduction (1.5 lectures)
 - (a) Derivation of the quantum distribution functions
 -Qualitative role of quantum effects
 -Fermi-Dirac, Bose Einstein, Planck distributions, and the Maxwell-Boltzmann limit
 - (b) Statistical mechanics of ideal quantum gases -Equation of state and its consequences
 - (c) Classical limit of the quantum distributions -the effective statistical potential
- 2) Fundamentals and Applications of Fermi Statistics (4 lectures)
 - (a) Screening of Coulomb interactions in condensed systems
 - (b) Thermodynamics
 - -equation of state, mean energy, and heat capacity of a Fermi gas
 - (c) Low-energy excitations
 - –Thermionic emission; photoelectric effect
 - (d) Magnetic properties –Pauli paramagnetism
 - -Landau diamagnetism; de Haas-van Alphen effect
 - (e) White dwarf stars
- 3) Fundamentals and Applications of Bose Statistics (2.5 lectures)
 - (a) Basic thermodynamics and Bose-Einstein condensation
 - (b) Black-body radiation
 - –Thermodynamics of a photon gas
 - -Stefan-Boltzmann law and its applications
 - (c) Phonons in solids

III. STATISTICAL MECHANICS OF INTERACTING SYSTEMS (8 lectures)

- 1) Non-Ideal Gases (2 lectures)
 - (a) Cluster expansion for the partition function
 - (b) The virial expansion
 - -Derivation of leading corrections to ideal behavior and its physical interpretation
 - (c) Basic thermodynamic properties of non-ideal gases –Van der Waals equation of state: isothermal and phase properties
- 2) Phase Transitions and Equilibria (2 lectures)
 - (a) Basic phenomenology and general principles
 - –First-order transitions, critical point, triple point; Lee-Yang theorem
 - (b) The Maxwell construction
 - (c) Clausius-Clapeyron equation
 - (d) Interfacial effects and metastability phenomena
- 3) Phase Transitions in Spin Systems (4 lectures)
 - (a) Introduction and basic phenomenology
 - –Universality and critical exponents; role of spatial dimensionality

(b) Mean-field theory

-Self-consistent approximations and microscopic approaches

- (c) Landau and Landau-Ginzburg theory of phase transitions -Landau expansion of the free energy; the Ginzburg criterion
- (d) Exact solution of the one-dimensional Ising model
- (e) Approximation methods for arbitrary spatial dimension –High-temperature expansion –Low-temperature expansion
- (f) Disordered Spin Systems

-random coupling strengths, random field systems, and spin glasses

IV. BIOPHYSICAL APPLICATIONS (2 lectures)

Topics currently in development.