_2_ For this problem, we integrate (9.2.3) by parts and write

6122‘3 = _32k—7;‘ Ou e-—u(r)/kT au(}(rr) r] dr ;

cf. eqn. (3.7.17) and Problem 3.23. With given u(r), we get
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From the first sum we take the (j = 0)-term out and combine the remaining terms with the second sum (in

which the index j is changed to j — 1); after considerabic simplification, we get
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For comparison with other cases, we set A =A’r" and B = B’r (so that A” and B’ become

direct measures of the energy of interaction). Expression (1) then becomes

- 74 -

’ 3__215 s Al)fi/m r(m_3)__3_ oo _l_r(nj—3) —B;(kT)nlm J
ah =33 ro(kT m mg*j! m | kT\ A’ @

Now, to simulate a hard-core repulsive interaction, we let m — oo, with the result that
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With n =6, expression (2a) reduces to the one derived in the preceding problem. Furthermore, if terms

12

with j > 1 are neglected, we recover the van der Waals approximation (9.3.8).
For further comparison, we look at the behavior of the coefficient B,(=a,A’) at high
temperatures. While the hard-core expression (2a) predicts a constant B, as T — oo, the soft-core

expression (2) predicts a B, that ultimately vanishes, as 7™, which agrees qualitatively with the data
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Now, to simulate a hard-core repulsive interagtion, we let m — oo, with the result that
- \J :
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With n =6, expression (2a) reduces to the one derived in the preceding problem. Furthermore, if terms
with j > 1 are neglected, we recover the van der Waals approximation (9.3.8).

For further comparison, we look at the behavior of the coefficient B,(= a,X’) at high
temperatures. While the hard-core expression (2a) predicts a constant B, as T — oo, the soft-core
expression (2) predicts a B, that ultimately vanishes, as T7'" , which agrees qualitatively with the data

shown in Fig. 9.2,




9.7.  To the desired approximation,
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where a, is the second virial coefficient of the gas. It follows that
| z=nA(1+2a,-nA’), whence P=nkT(l+a, nA’) . (2a,b)
Next '
A= NKT tnz—PV = NKT{tn(nX’)~1+a,-n’}
G = NKT tnz = NkT{tn(nX’) +2a, -n2’} ,
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remember that the coefficient a, is a function of T. F‘urthermore.
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For the second part, use the expression for a,A’ derived in Problem 9.5 and examine the

temperature dependence of the various thermodynamic quantities.
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