7.5. (a) We have to evaluate the quantities

$$\kappa_T = \frac{1}{n} \left(\frac{\partial n}{\partial P} \right)_T$$
 and $\kappa_S = \frac{1}{n} \left(\frac{\partial n}{\partial P} \right)_T$

where n = N/V. For $N_0 \ll N$, $n(T,z) = aT^{3/2}g_{3/2}(z)$, where a is a constant; see eqn. (7.1.8). It follows that

$$dn = \frac{3}{2}aT^{1/2}g_{3/2}(z)dT + aT^{3/2}\left\{\frac{1}{z}g_{1/2}(z)\right\}dz.$$

Similarly, since $P = cT^{5/2}g_{5/2}(z)$, where c is a constant,

$$dP = \frac{5}{2}cT^{3/2}g_{5/2}(z)dT + cT^{5/2}\left\{\frac{1}{z}g_{3/2}(z)\right\}dz.$$

The quantities κ_T and κ_S are then given by

$$\kappa_T = \frac{1}{n} \frac{a}{cT} \frac{g_{1/2}(z)}{g_{3/2}(z)} \quad \text{and} \quad \kappa_S = \frac{1}{n} \frac{3a}{5cT} \frac{g_{3/2}(z)}{g_{5/2}(z)}$$

Since c = ak, the desired results follow readily.

Note that, as $z \to 1$, κ_T diverges in the same manner as γ and C_P .

(b) Since P = 2U/3V, $(\partial P/\partial T)_v = 2C_v/3V$. It follows that

$$C_P - C_V = TV \cdot \frac{1}{nkT} \frac{g_{1/2}(z)}{g_{3/2}(z)} \cdot \frac{4C_V^2}{9V^2} = \frac{4C_V^2}{9Nk} \frac{g_{1/2}(z)}{g_{3/2}(z)}$$

in agreement with eqn. (7.1.48a). The other result follows straightforwardly.

7.8. One readily sees that

$$w^2 = \left(\frac{\partial P}{\partial (mn)}\right)_{S} = \frac{1}{mn\kappa_{S}}.$$

where κ_s is the adiabatic compressibility of the fluid. Using a result from Problem 7.5, we get for the ideal Bose gas

$$w^2 = \frac{5kT}{3m} \frac{g_{5/2}(z)}{g_{3/2}(z)} .$$

Next,

52

$$\langle u^2 \rangle = \left\langle \frac{2\varepsilon}{m} \right\rangle = \frac{2}{m} \frac{U}{N} = \frac{3kT}{m} \frac{g_{5/2}(z)}{g_{3/2}(z)};$$

see eqns. (7.1.8) and (7.1.11). Clearly, $w^2 = (5/9) < u^2 > .$

7.12. The relative mean-square fluctuation in N is given by the general formula (4.5.7),

$$\frac{\overline{(\Delta N)^2}}{\overline{N}^2} = \frac{kT}{V} \kappa_T \,, \tag{1}$$

while κ_T for the ideal Bose gas is given in Problem 7.5. As $T \to T_c$ from above, the function $g_{1/2}(z)$ and, along with it, both κ_T and the relative fluctuation in N diverge!

The mean-square fluctuation in E is given by the general formula (4.5.14), viz.

$$\overline{(\Delta E)^2} = kT^2 C_v + \left\{ (\partial U / \partial N)_{T,v} \right\}^2 \overline{(\Delta N)^2} . \tag{2}$$

The first term in (2), for the ideal Bose gas, is determined by eqn. (7.1.37) and stays finite at all T. The second term can be evaluated with the help of eqns. (7.1.8 and 11), whereby

$$\left(\frac{\partial U}{\partial N}\right)_{T,V} = \left(\frac{\partial g_{5/2}(z)}{\partial g_{3/2}(z)}\right)_{T,V} = \frac{g_{3/2}(z)}{g_{1/2}(z)}.$$
(3)

The second term in (2) is, therefore, *inversely* proportional to $g_{1/2}(z)$ and hence vanishes as $T \to T_c$; this happens because the energy associated with the Bose condensate (which is, in fact, the component responsible for the dramatic rise in the fluctuation of N) is zero. Thus, all in all, the relative fluctuation in E is negligible at all T.

Pathtia 7.18.

W= ATT4 = 4x,026 bow

the distance between sun and earth is 1.5x/5/m

at this distance, the energy is spread

over the area A=47.R2 = 3x/323 m2

=>. He radiant intensity I = 2 3 \$x103 W/m

b)
$$I = \frac{1}{4} \frac{U}{V} = \frac{3cP}{V} = P = \frac{4I}{3c}$$

: all photons are obsorbed, there will be $\frac{1}{2}$ factor

=) $P = \frac{21}{30}$ here I we Dahenly got from part a)

P= - 2 X103 = 3 X10-5

C). if easeh is a black bidy.

Work = AUT4 = 42ROTY = Win = I-2R2

$$= \frac{1}{1} = \left(\frac{1}{42R^2 \sigma} \right)^{1/4} = \left(\frac{1}{4\sigma} \right)^{1/4} = \left(\frac{1}{4x(1.61x)^{-1}} \right)^{1/4} = \left(\frac{1}{4x(1.61x)^{-1$$