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v, = O by symmetry.
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At absolute zero, the particles fill all the lowest states so that the distribution f(v) is just
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8.7. This problem is similar to Problem 7.9 of the Bose gas and can be done the same way. At low

temperatures, using formula (E.15), we get
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We now employ eqn. (8.1.35) and get




8.14. In the notation of Sec. 3.9, the potential energy of a magnetic dipole in the presence of a magnetic

field B = (0,0,B) is given by the expression —(git ,m)B, where m=—J,... +J. The total energy £ of the
dipole is then given by &=(p’/2m’)—gu ,mB, m’ being the (effective) mass of the particle; the
momentum of the particle may then be written as
172
p={2m'(e+gu,mB)} " .

At T =0, the number of such particles in the gas will be
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and hence the net magnetic moment of the gas will be given by

drgu,V .,
=S, =B G} ey s

We thus obtain for the low-field susceptibility (per unit volume) of the system
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By eqn. (8.1.24),
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Substituting (2) into (1), we obtain the desired result
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With g=2 and J=1/2, we obtain: ¥, = (3/2)!1;1%, / €, in agreement with eqn. (8.2.6).

The cormresponding result in the limit 7 — oo is given by

X. =%np‘2/kT N

see eqn. (3.9.26). We note that the ratio ¥,/ y_ =3kT /2¢, valid forall J.




8.19. Utilizing the result obtained in Problem 8.13, we have for a Fermi gas at low temperatures
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Now, the density of states for the relativistic gas is given by, see eqn. (8.4.7),
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where p = p(€). Substituting this result into (1) and making use of eqn. (8.4.4), we get
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which leads to the desired result.

In the non-relativistic case (p; <<mc and &, = p;/2m), we obtain the familiar expression

(8.1.39); in the extreme relativistic case (p, >> mc and € = pc), we obtain
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consistent with expression (7) of the solution to Problem 8.13.




