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Cells perform complex computations
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Cells perform complex computations

Quorum Sensing

Quorum Sensing + Synthetic Biology= Stripes
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Cells perform complex computations

Slime mold (Physarum polycephalum) can design transportation networks!
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Thermodynamics of Computation

Information is physical! (Maxwell, Landauer, Charles Bennett, many others)
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Outline

 Part I: Crash Course in Thermodynamics of Computation

* Part Il: Energetics of the simplest cellular computation (Berg-Purcell)

« Part lll: Landauer’ s principle and the design of synthetic biological memory
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Part I.: Thermodynamics of computation

R. Landauver

Irreversibility and Heat Generation
in the Computing Process

Abstract: It is argued that computing machines inevitably involve devices which perform logical functions
thot do not have @ single-valued inverse. This logical irreversibility is associated with physical irreversibility
and requires a minimal heat generation, per machine cycle, typically of the order of kT for each irreversible
function. This dissipation serves the purpose of standardizing signals and making them independent of their
exact logical history. Two simple, but representative, models of bistable devices are subjected to a more
detailed analysis of switching kinetics to yield the relationship between speed and energy dissipation, and
to estimate the effects of errors induced by thermal fluctuations.

IBM JOURNAL s JULY 1961



Information is physical

Figure | Bistable potential well.

x is a generalized coordinate representing

quantity which is switched. ‘ ‘ ‘

Basic Atomic Message
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Figure 2 Potential well in which zero and one state
are not separated by barrier.
Information is preserved because random
motion is slow.



Entropy of a compressed gas

Compress ideal gas isothermally
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The less information we have about state, the higher the entropy!



Thermodynamic definitions of information

 Define information theoretic (Shannon) entropy H to be proportional to
amount of free energy required to reset the tape to zero!

« If we know position of particle we can reset to zero with no energy costs!
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(two pistons push to the left
to reset 1 state)



Thermodynamic definitions of information

 Define information theoretic (Shannon) entropy H to be proportional to
amount of free energy required to reset the tape to zero!

« Example: Uniform message 00000000000 H = ()
1111111111111

- Random message 100100110101 H o< N log 2

(Compress N squares- each one half configuration space)

I Erasing/resetting memory if we don’ t know state requires energy! I
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What causes energy dissipation?

Reversible computation- computation in principle can be done without energy
dissipation at expense of speed/efficiency/resources

Billiard-ball model of AND gate
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Resetting always requires dissipation!




Potential (kT)
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Landauer’ s Principle

Erasing memory cost energy (1bit = 1K, T of entropy)
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Berut et al Nature 483, 187-189 (2012)
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Experimental verification!

Current devices 1000 times limit

Validity in quantum regime
active area of research!
(many papers in last 3 years)



Part I: Conclusions

* Information is physical!

» Direct relationship between information and dissipation

» Erasing memory causes dissipation and entropy production in environment

« More info: see many reviews by Bennett, Landauer, and Feynman’s
book



Part Il: Thermodynamics of the simplest
cellular computation

Compute (sense) concentration of external chemical or ligand



Sensing external concentrations

Classic paper: Berg and Purcell, Biophysics Journal (1977)
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Use receptor time series to estimate concentration of external ligand

Stochasticity leads to uncertainty!

What computation should cell do? How much does it learn?

Recent work: Setayeshagar and Bialek PNAS (2005), Endres and Wingreen (2009), Mora Wingreen (2011)



Cellular information is physical

* To relate to thermodynamics must think about physical/biological
implementation of calculation

» Can show Berg-Purcell calculation can be carried out by simple network
shown below
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See: Mehta Schwab (2012)



Cellular information is physical
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« Receptor exists in two states: an unbound “off” state and bound “on” state.

» Receptor modifies (i.e. phosphorylates) downstream protein from inactive
form X to anactive form X* in a state-dependent manner

« X" is read out of average receptor occupancy

» Process depends on kinetic parameters shown above

See: Mehta Schwab (2012)



From information to thermodynamics

* Need to relate this circuits computation to thermodynamics

» Thermodynamics hidden in the relationship of the kinetic parameters

 Key insight: can think of circuit dynamics as non-equilibrium Markov
process
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Energy consumption versus uncertainty
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» Can show that detailed balanced implies infinite uncertainty

 Learning requires consumption of energy!!

* Biological manifestation of Landauer’ s principle!



“Erasing Memory” costs energy
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 Notice power consumption tends to zero as k, tends to zero

* This is the rate at which we erase memory stored in X (reversible
computing limit)

 Total energy per measurement still goes up



Is this biologically important?

 This energy is a miniscule part of total energy consumed by cells.

« Still can imagine scenario where this is important: bacterial spore germination

(L002) 6¥96-7196 701 "10S "PEIY ")EN 00.d

» Spores can be dormant for thousands of years- germinate in response
to improved environment

« Experiments suggest work in “reversible” limit where a store of chemical
be degraded



Part IlI: Conclusions

* Biological information is also physical!

« Showed Berg-Purcell task of computing external concentration could
be implemented by a simple network

» Learning about the environment required consuming energy

* Energy consumption is small but may be relevant to extreme
environments such as spore germination.



Part lll: Landauer in the age of synthetic biology

R. Londaver

Irreversibility and Heat Generation
in the Computing Process

Abstract: It is argued that computing machines inevitably involve devices which perform logical functions
that do not have o single-valued inverse. This logical irreversibility is associated with physical irreversibility
and requires a minimal heat generation, per machine cycle, typically of the order of kT for each irreversible
function. This dissipation serves the purpose of standardizing signals and making them independent of their
exact logical history. Two simple, but representative, models of bistable devices are subjected to a more
detailed analysis of switching kinetics to yield the relationship between speed and energy dissipation, and
to estimate the effects of errors induced by thermal fluctuations.

Electronics
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» Concerned with thermodynamic
eand kinetic constraints on memory
devices

* Trade offs between energy
consumption, reliability, and speed

Biology Synthetic biology
Bacteriophage A lysis/lysogeny switch Genetic 1oggle switch
Heat
L
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Khalil and Collins, Nat Rev Genet. 2010 May; 11(5): 367-379.



Landauer’ s memory classification

» Distinguished two kinds of memory in physical computers:
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Barrier-based memories Kinetic memories



Landauer memory- synthetic biology version

Barrier-based memories Kinetic memories
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Resetting memory

Want to make memory that can be reset -> Landauer’ s principle says
must break detailed balance and consume energy
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Resetting memory

« Want to make memory that can be reset -> Landauer’ s principle says
must break detailed balance and consume energy
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« Landauer outlines general thermodynamic
tradeoffs between energy consumption,

) ) 5 . A d
Device Failure Mode Engineering Solution "°°"s:i: ::':s'e
6N
— " “Spontaneous flipping”: Basal integrase expression H ; = ~300
et Generator above flipping threshold level. I Decrease Int translation.
| £ | int 2B; S4
R0040 RBS
- - ~40
“Stoichiometry mismatch”: Low Xis to Int ratio leading to l[r)‘:czfea::exl:fttt:zlr‘\zllaattliz:
Reset Generator | bidirectional DNA inversion. s " | 2c.2D. 2E
Reduce register copy 305 Eh
number. S2, 83.
“Interference”: Spontaneous Xis basal expression corrupts 5
sgT | directionality of the Set Integrase. ) | Increase Xis degradation. =
Set/R i
RAD “Stoichiometry mismatch”: Levels of destabilized Xis are too AXX ~400
low to reach the correct Xis:Int ratio. ATG AAK  GIG (Vi
RESET| Also, following an otherwise successful reset pulse, "back Increase Int degradation.
flipping" can occur if Xis is degraded faster than Int. nt 3B, 3C,
10500 RBS-1 RBS-2 S5, S11.




Conclusions

* Part I: Thinking about information physically highlights relatlonshlp between
information and thermodynamics ,

 Part lI: The simplest cellular computation

« Part lll: Landauer’ s analysis also applicable to memory in synthetic biology
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