Gelation of mucin glycoprotein: Protecting the stomach from autodigestion

Rama Bansil
Boston University
Illustration from Peptic Ulcer Disease, ed P.B. Molinoff 1990
Gastric Mucus: Home of *H. Pylori*

Helicobacter Pylori (H. Pylori)
- Causes ulcers
- Spiral shaped
- Multiple flagella
- Swims through gastric mucus
- To survive at low pH it secretes urease to raise pH:
 \[
 (NH_2)_2CO + H_2O \rightarrow CO_2 + 2NH_3
 \]

Matrix (Gastric Mucus)
- contains a polymer Mucin
- Viscoelastic properties: pH dependent

Image Credit: C Montecucco and R Rappuoli LIVING DANGEROUSLY: HOW *HELCOBACTER PYLORI* SURVIVES IN THE HUMAN STOMACH. NATURE REVIEWS: MOLECULAR CELL BIOLOGY 2 JUNE 2001, 457
Gastric Gland

Illustration from Peptic Ulcer Disease, ed P.B. Molinoff 1990
Mucin Glycoprotein

Mucin -- High MW (0.5-20 Million) polymeric glycoprotein
Covalently grafted oligosaccharide brush on STP tandem repeats
Subunits linked via S-S bonds
Multiblock copolymer—alternating polyelectrolytic brush
(hydrophilic) —slightly hydrophobic block
AFM images of mucin molecules at different pH

(b) pH 6

(a) pH 5

(b) pH 4

deglycosylated

Z Hong, B Chasan, R Bansil, B Turner, K R Bhaskar, N H Afdhal, Biomacromolecules, 6, 3458, 2005.
Mucus

Mucus: Water (95%) + Mucin Glycoprotein (gel forming viscoelastic component of mucus, 3%) + other small molecules

Human mucus gel at pH 2. (A) 3 μm scan showing a clear network with well-defined pores. (B) A 1μm x 1μm region of the image shown in A is magnified revealing a “pearl necklace” morphology.

Z Hong et al. Biomacromolecules, 6, 3458, 2005.
What is a gel?

Gel—Crosslinked polymer immersed in a fluid

Increasing extent of crosslinking reaction p, critical transition at p_c

Sol—finite linear and branched molecules
Gel - infinite molecular weight, sample spanning network

$p \rightarrow p_c$ Viscosity diverges $\rightarrow \infty$ at critical extent of reaction,
onset of elasticity at $p \geq p_c$
Microrheology with tracer particles

DLS---Measure Intensity correlation function, obtain diffusion and elastic constant and mesh size

Microscopic particle tracking—Directly measure Brownian motion \(<r^2(t)>\)
Heterogeneity in pH 2 PGM

Most beads are stuck in pores of the gel:

Some beads end up in regions which allow higher local mobility – i.e. a large channel in the gel

Trajectories for stuck beads

Trajectory of a bead moving through a channel
Rheology Experiments

- Stress Sweep – Vary applied oscillatory shear stress: G' and G'' vs σ
- Frequency Sweep – Vary frequency of oscillatory shear: G' and G'' vs ω
- Flow Test – Step increases of steady shear rate (or stress): η vs $\dot{\gamma}$
- Creep Test – Step Stress applied and released
 \[J(t) = \frac{\gamma(t)}{\sigma_0} \text{ vs } t \]
 $G' = \text{elastic (storage) modulus}$
 $G'' = \text{viscous (loss) modulus}$

All experiments on 15 mg/mL PGM buffered with 10mM phosphate-succinate buffer
pH-Dependent Gelation

G' = elastic (storage) modulus

G'' = viscous (loss) modulus

$\tan(\delta) = \frac{G''}{G'}$

$\delta > 45$: sol $\delta < 45$: gel

Celli, Turner, Afdhal, Ewoldt, McKinley, Bansil, Erramilli--Biomacromolecules 8, 1580, 2007
Gelation can protect the stomach from autodigestion

- Acid flows as a jet (viscous finger)
- Mucin surrounding the acid finger gels—forming a viscoelastic “pipe”
- Gland stops firing—pH rises, gel→ sol “pipe disappears”
- Surface layer of mucus stays gelled while stomach is acidic—preventing backflow
TEM images H. pylori

- How does H Pylori affect the structural and mechanical properties of mucus and mucin?

- Are the underlying motility mechanisms fundamentally different in a viscoelastic fluid as compared to swimming in a purely viscous environment?
How does *H. pylori* affect Mucin Rheology

- PGM + 5 mM urea + ATCC strain 43504 *H. pylori*
- pH initially depressed by addition of HCl
- Final PGM conc = 15 mg/mL

H. pylori induces gel to sol transition; directly correlated with pH elevation due to *H. pylori*

Celli et al, PNAS August 25, 2009 vol. 106 no. 34 14321-14326
Background on Swimming of Bacteria

- Swimmer feels drag forces F_{drag} due to the hydrodynamics of the water
- Stokes Law $F_{\text{drag}} = -\gamma v$
- γ is friction coefficient (depends on shape and size of swimmer and viscosity of fluid)
- Einstein--Diffusion Coefficient $D = kT/\gamma$
Low Reynolds number flow

- $\rho =$ fluid density, $\eta =$ viscosity of fluid
- $V =$ speed of fluid flow (far away from obstacle)
- $d =$ diameter (size) of particle
 (cube of fluid volume l^3, area of a face $A \sim l^2$)
- Inertial term $= ma \sim \rho \ l^3 \ v^2/d$
- Friction force on one face $= - \eta \ A (dv/dx)$: net $f \sim \eta l^3 \ v/d^2$
- Inertia/Friction $\sim \rho Vd/\eta = R$ (Reynold’s number)
- Small R – friction dominates—
inertial forces $<<$ viscous forces
Some typical magnitudes of R

- In Water
 - η / ρ (kinematic viscosity) = 0.01 cm2/s
 - *E coli* $d \sim 1.5$ µm, $v = 30$ µm/s $R = 0.5 \times 10^{-4} \ll 1$
 - *Protein* $d \sim 6$ nm, $v = 8$ m/s $R = 0.05$
 - Friction dominates

- *Goldfish* $d \sim 10$ cm, $v = 10$ cm/s, $R = 10^4$
- *Swimmer* $d \sim 2$ m, $v = 1$ m/s, $R = 2 \times 10^6$
 - Inertia dominates

- Goldfish swimming in molasses would feel friction
- A marble pulled through corn syrup, force < 0.03 N friction dominates

- Turbulence

- $R < 2000$ Laminar, $R > 3000$ Turbulent, $2000 < R < 3000$ unstable
- Low R --- no turbulence
Mechanisms of swimming

Moving “arms back and forth without bending can propel forward by pushing water back.

Move at constant speed: force exerted = drag force

drag force is always opposing direction of motion, forward and backward motions along same line.

Since arms move back by same amount to return to original position forward and backward displacements will cancel out.

Possible solutions: bending of arms (cilia)

Corkscrew like motion of tail (flagella)
Bacterial Flagella is a stiff, thin, helical fiber attached to the body at one end—like a phone cord connected at one end—cranking the flagellum counterclockwise will move the bacterium to right

(a) Drag coefficients different along axial and radial directions $\gamma || < \gamma \perp : f || < f \perp$

$f ||$ is opposite $v ||$, $f \perp$ opposite $v \perp$

F_{net} is not directly opposite v_{net}

(b) helical tail cranked counterclockwise—net force along z-direction, needs a left force to spin in place, but one end of helix is not fixed, so cannot apply the leftward force.

So, Net force to the right.

Net motion is like a corkscrew
Bacterium moving in a straight line, all flagella form a bundle—move counterclockwise (viewed from rear of cell)—propel the bacterium forward.

Bundles come apart, bacterium tumbles about.

Bundles reform and bacterium moves off in another direction.
Bacteria Tracking

Above: Hp in culture broth. Darkfield

Some representative trajectories: left, middle, right: Tracks 40, 86, and 37 out of 577.
pH Dependence of Motility

pH 6: Analysis shows that HP swim at velocities $\sim 30\text{um/s}$

pH 2: Motility is severely hindered by the viscoelastic gel
Motility is pH dependent

Figure 2. (Left) A series of frames from the movie of H. pylori moving in pH 6 are stacked to show the trajectories of several bacteria (large curved lines). The scale bar is 50 μm, size of the image is 434 x 331 μm. The average velocity was ~ 30 μm/sec. (Right) Typical image from one frame of a movie showing that H. pylori were stuck in PGM in a PBS buffer at pH 2, magnification 40X. (Several bacteria are visible as small, dark, elongated objects about 2-5 μm in size). Local rotation of the bacteria was seen in the movie (not visible in this single frame).

• HP07_031706-3_CROP_mpeg.avi
Wiggling/ Rotating bug
H. Pylori motility in pre gel solution
Movie of H Pylori flagella rotation at pH 4

- Flagella rotates in pH 4 PGM, but there is no translation

[pH4_031706-3_features1.mpg]

Figure 3. Phase contrast image from a H. pylori bacterium in pH 4 PGM shows flagellar rotation.

Celli et al, PNAS August 25, 2009 vol. 106 no. 34 14321-14326
Flagella motion

\[k = 4.9 \times 10^{-7} \text{N/m} \]

Celli et al, PNAS August 25, 2009 vol. 106 no. 34 14321-14326
Flagella Frequency

1. Count # of flagella cycles as function of time
2. Count body oscillations (from track data, upper part of graph) as a function of time

How do body oscillations correlate with translational motility? Are body movements crucial to motility or incidental?

Also, what causes spikes in frequency? Breaking links in gel? Chemoattractant stimulation? Discrete molecular motors?
Flagella Frequency (2)

Is rotation frequency quantized and driven by discrete molecular motors as observed in *E. Coli* by Berg. et al?

Histogram of flagella rotation frequencies (same bacterium as previous slide)
Motor Torque

\[T_m = \beta_f \omega_f - \gamma_f v_c \]

Hydrodynamic formulae – Marigiyama et al.
A more thorough analysis for this system would correct for shear thinning and elasticity…

\[\beta_f = \frac{2\pi\eta L}{\left[\ln(2p/d) - 1/2 \right] (4\pi^2 r^2 + p^2) \left(4\pi^2 r^2 + 2p^2 \right) r^2} \]

From rheology and microscopy data:
\(\eta \approx 1 \text{ Pa-s} \)
\(p = 2.1 \mu\text{m}, \ L = 3.17 \mu\text{m} \) and \(r = 0.57 \mu\text{m} \)

\[\Rightarrow <T_m> = 3.6 \times 10^{-18} \text{ Nm} \]

Comparisons:

E. Coli (Reid et al.):
\(T_m = 1.3 \times 10^{-18} \text{ Nm} \)

C. Crescentus (Tang et al.):
\(T_m = 3.5 \times 10^{-19} \text{ Nm} \)
(known to have low \(T_m \))

How does this torque relate to a yield stress of 10 Pa?

Swept volume, \(V \sim \pi r^2 L \sim 3 \mu\text{m}^3 \)

Dimensional Analysis: \(\tau \sim T_m / V \sim 1 \text{ Pa} \)

Analysis of motor torque based on cell body rotation, \(T_m = \beta_c \omega_c \)
…less robust, but yields results within factor of 3
Two-Photon Fluorescence

Two-photon fluorescence microscopy of PGM with pH-sensitive dye (BCECF) with 5 mM urea present showing time resolved images after addition of *H pylori*

Increase in fluorescence background (~ pH), is directly correlated with the release of bacteria from confinement in the pores of the gel

In collaboration with Dr. Peter So, Biological Engineering, MIT.
Celli et al PNAS August 25, 2009 vol. 106 no. 34 14321-14326
Gastric Mucus: Home of \textit{H. Pylori}

\textit{Helicobacter Pylori} (\textit{H. Pylori})
- Causes ulcers
- Spiral shaped
- Multiple flagella
- Swims through gastric mucus
- To survive at low pH it secretes urease to raise pH:
 \[(\text{NH}_2)_2\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 2\text{NH}_3\]

Matrix (Gastric Mucus)
- Mucin \rightarrow viscoelasticity
- Viscoelastic properties: η and $G^*(\omega) = G'(\omega) + iG''(\omega)$ are pH dependent
Speed ranging from 0 to 40 micron/sec
WT bacteria have different waveforms
Key Results:

- pH-Dependent rheological properties of gastric mucin: yield stress, shear thinning, effect of ionic strength variation, critical gel transition
- Bacteria swim in pH 7, but stuck in low pH
- Flagella rotation could be observed at pH 4, although there was no translation motion
- Bacterial motility parameters: Velocity, motor torque, spring constant

HCl in stomach lowers pH. Gastric mucin forms gel.

\[\text{H. pylori urease causes:} \quad \text{Urea} \rightarrow \text{NH}_3 + \text{CO}_2 \]

HCl neutralized, pH ↑

Mucin transitions from gel to sol. Elasticity ↓

H. pylori swims freely through mucus and attaches to epithelial cells

Gastric mucin forms gel.

\[\text{HCl in stomach lowers pH.} \]

\[\text{Gastric mucin forms gel.} \]

\[\text{H. pylori urease causes:} \quad \text{Urea} \rightarrow \text{NH}_3 + \text{CO}_2 \]

\[\text{HCl neutralized, pH ↑} \]

\[\text{Mucin transitions from gel to sol. Elasticity ↓} \]

\[\text{H. pylori swims freely through mucus and attaches to epithelial cells} \]
Acknowledgements

• Mucin biochemistry and molecular biology
 – Dr. Nezam H. Afdhal, M.D., (BIDMC, Harvard Medical School)
 – Bradley Turner (BIDMC -- Ph. D BU 2012)

• Rheology
 – Dr. Jon Celli (BU Ph. D, now at U Mass Boston)
 – Prof. Shyam Erramilli (BU)
 – Dr. Randy Ewaldt (MIT, Ph. D now at U. Minnesota)
 – Prof. Gareth McKinley (MIT)

• Discrete Molecular Dynamics
 – Prof. Brigita Urbanc (Drexel University)
 – Dr. Bogdan Barz (Drexel University)

• Atomic Force Microscopy
 – Dr. Zhenning Hong (BU Ph. D, now in Malaysia))
 – Prof. Bernard Chasan (BU Professor Emeritus)

• H pylori motility
 – Joe Hardcastle—BU Physics graduate student
 – Sarah Keates— BIDMC, now at Boston Biomedical
 – Nina Salama— Fred Hutchinson Cancer Center, Seattle, WA
 – Laura Martinez – FHC, graduate student
On a lighter note……

As the Frog in Disney’s “The Princess and the Frog” says

“it’s not slime—it’s mucus”

Thank you!