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Transfer of Bose-Einstein condensates through discrete breathers in an optical lattice
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We study the effect of discrete breathers (DBs) on the transfer of a Bose-Einstein condensate (BEC) in an
optical lattice using the discrete nonlinear Schrödinger equation. In previous theoretical (primarily numerical)
investigations of the dynamics of BECs in leaking optical lattices, collisions between a DB and a lattice excitation,
e.g., a moving breather (MB) or phonon, were studied. These collisions led to the transmission of a fraction
of the incident (atomic) norm of the MB through the DB, while the DB can be shifted in the direction of the
incident lattice excitation. Here we develop an analytic understanding of this phenomenon, based on the study of
a highly localized system—namely, a nonlinear trimer—which predicts that there exists a total energy threshold
of the trimer, above which the lattice excitation can trigger the destabilization of the DB and that this is the
mechanism leading to the movement of the DB. Furthermore, we give an analytic estimate of upper bound to the
norm that is transmitted through the DB. We then show numerically that a qualitatively similar threshold exists
in extended lattices. Our analysis explains the results of the earlier numerical studies and may help to clarify
functional operations with BECs in optical lattices such as blocking and filtering coherent (atomic) beams.
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I. INTRODUCTION

Since the experimental realization of Bose-Einstein con-
densation (BEC) of ultracold atoms in optical lattices (OLs)
[1], many researchers have achieved an extraordinary level
of control over BECs in optical traps [2–5]. Among other
important applications, this control has allowed for the inves-
tigation of analogs of complex solid-state phenomena [6–10].
Technologically, the emerging field of “atomtronics” promises
a new generation of nanoscale devices.

An important generic feature of nonlinear lattices is
the existence of discrete breathers (DBs), which are spa-
tially localized, time-periodic, stable (or at least long-lived)
excitations in spatially extended, perfectly periodic, discrete
systems [11–13]. DBs arise intrinsically from the combi-
nation of nonlinearity and the discreteness of the system.
DBs have been observed in a variety of systems, including
Josephson-junction arrays [14,15], micromechanical systems
[16], nonlinear waveguide arrays [17,18], α helix proteins [19],
spins in antiferromagnetic solids [20,21], and BECs [6]. The
existence, stability, and other properties of DBs have been
studied theoretically throughout the last decade [13,22–24].
Among other results, it has been demonstrated that DBs act as
virtual bottlenecks which slow down the relaxation processes
in generic nonlinear lattices [25–28].

Many theoretical studies of the dynamics of a BEC trapped
in an OL use the discrete nonlinear Schrödinger equation
(DNLS) to model the system. Several recent studies based on
the DNLS have observed the collision of a stationary DB with a
lattice excitation, e.g., a moving breather or phonon [27–29]. If
the amplitude of the lattice excitation is too small, it is reflected
entirely from the DB. Above a specific threshold amplitude,
part of the incident atomic norm is transmitted through the
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DB while the DB is destabilized and shifted by one or few
lattice sites toward the incoming moving breather (MB).1 This
transmission process plays a central role in the occurrence of
scale-free atomic avalanches observed for a whole range of
nonlinearities in leaking optical lattices [28]. However, this
process has heretofore not been understood analytically.

In this article we analyze, analytically and numerically, the
collision process of a stationary DB with a lattice excitation.
To this end, we study the nonlinear trimer, i.e., the DNLS
with M = 3 lattice sites (see, e.g., [5] for an experimental
realization of a similar system). We calculate analytically the
threshold for the destabilization of the DB as well as an upper
bound to the atomic norm that can be transmitted through the
DB. The threshold and the transmission process are described
by introducing a Peierls-Nabarro energy landscape which
restricts the accessible region of the phase excitations on the
trimer. The ‘local Ansatz’, [31,32], an approach applied suc-
cessfully to studies of DBs on nonlinear lattices, suggests that
the results we find for the trimer will apply to extended lattices.
For the rather large nonlinearity we shall consider in the sequel,
DBs are well localized, and the most basic and important DBs
occupy only three sites. Within the local Ansatz we consider
only the central site and the two neighboring sites of a DB.
This allows us to reduce the high dimensional dynamical
problem involving M sites to the nonlinear trimer. A detailed
analysis of the reduced problem [31,32] shows that (i) the DB
corresponds to a trajectory in the phase space of the full system
which is practically embedded on a two-dimensional toroidal
manifold, thus being quasiperiodic in time, and (ii) the full
DB can be reproduced accurately within the nonlinear trimer

1Indications for the migration of a DB by one or a few sites toward
a lattice excitation can be found as well in a φ4 nonlinear lattice; see
Ref. [30].

1050-2947/2010/82(5)/053604(9) 053604-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.053604


H. HENNIG, J. DORIGNAC, AND D. K. CAMPBELL PHYSICAL REVIEW A 82, 053604 (2010)

approximation. Finally, after having used the trimer to analyze
the nature of the transmission process, we establish that the
transfer mechanism applies in extended lattices in Sec. VII.

Although we focus here on BECs, our results are also
relevant in a wide range of other contexts in which the
DNLS applies, most prominently coupled nonlinear optical
waveguides [17,18,33–36].

II. MODEL HAMILTONIAN

The Bose-Hubbard Hamiltonian is arguably the simplest
model that captures the dynamics of a dilute gas of bosonic
atoms in a deep optical lattice, with chemical potential small
compared to the vibrational level spacing (see, e.g., [3]
for a review). In the case of weak interatomic interactions
(superfluid limit) and/or a large number of atoms per well
(so that the total number of atoms N ∼ O(104–105) is much
larger than the number of wells M), a further simplification
is available since the BECs dynamics admits a quasiclassical
(mean-field) description. The resulting Hamiltonian describ-
ing the dynamics is

H =
M∑

n=1

[U |ψn|4 + µn|ψn|2] − J

2

M−1∑
n=1

(ψ∗
nψn+1 + c.c.) ,

(1)

where n = 1, . . . ,M is the index of the lattice site, |ψn(t)|2 ≡
Nn(t) is the mean number of bosons at site n [also referred to as
the norm Nn(t)], U = 4πh̄2asVeff/m describes the interaction
between two atoms at a single site (Veff is the effective mode
volume of each site, m is the atomic mass, and as is the s-wave
atomic scattering length), µn is the onsite chemical potential,
and J is the tunneling amplitude. The “wave functions” ψn

and iψ∗
n form conjugate variables leading to a set of canonical

equations

i
∂ψn

∂τ
= ∂H

∂ψ∗
n

, i
∂ψ∗

n

∂τ
= − ∂H

∂ψn

, (2)

which upon evaluation yields the discrete nonlinear
Schrödinger equation

i
∂ψn

∂t
= λ|ψn|2ψn − 1

2
[ψn−1 + ψn+1] . (3)

Here, λ = 2U/J is the nonlinearity and t = Jτ is the normal-
ized dimensionless time. In Eq. (3) we have set µn = 0 ∀n.

The DNLS can be applied to a remarkably large variety of
systems, in particular this mathematical model describes (in
the mean-field limit) the dynamics of a BEC in an OL of size
M [37]. Experimentally, the tunneling rate J can be adjusted
by the intensity of the standing laser wave field. A powerful
tool to modify the onsite interaction U is via a Feshbach
resonance, where the atomic interactions can be controlled
over a large range simply by changing a magnetic field. A
Feshbach resonance involves the coupling of free unbound
atoms to a molecular state in which the atoms are tightly
bound. When the energy levels of the molecular state and the
state of free atoms come closer, the interaction between the
free atoms increases. Thus, the nonlinearity λ can be varied
experimentally. Here we will treat the repulsive case explicitly
(λ > 0); however, the attractive case can be obtained via the

“staggering” transformation ψn → (−1n)ψn followed by time
reversal t → −t [13].

III. EQUATIONS FOR THE NONLINEAR TRIMER AND
ASYMPTOTIC SOLUTIONS

To analyze the transfer of norm through a DB (and the
related stability of the DB) during a collision using the
nonlinear trimer (M = 3), we begin with the equations

i∂tψ1 = λ|ψ1|2ψ1 − 1
2ψ2,

i∂tψ2 = λ|ψ2|2ψ2 − 1
2 (ψ1 + ψ3), (4)

i∂tψ3 = λ|ψ3|2ψ3 − 1
2ψ2 .

We normalize the wave functions such that the total atomic
population reads

N =
M∑

n=1

|ψn|2 = 1 .

To find single frequency breather solutions in Eq. (4) for the
symmetric case ψ1 = ψ3, we assume

ψn(t) = Ane
iwt , (5)

with amplitudes An and frequency w. This ansatz, together
with the conservation of particle number, leads to the set of
equations

−wA1 = λA3
1 − 1

2A2,

−wA2 = λA3
2 − A1, (6)

1 = 2A2
1 + A2

2 .

Let us first calculate the relation between the (atomic) norm
N2 = A2

2 at the central site and the nonlinearity λ. From Eq. (6),
we find

λ(N2) = ±
√

2(2N2 − 1)√
N2(1 − N2)(3N2 − 1)

. (7)

We have four solutions above the bifurcation point at λ ≈
5.04 and two solutions for 0 � λ < 5.04 (see Fig. 1). To gain
further insight into the nature of the symmetric solutions in the
trimer, we will revisit Eq. (6), which we convert into a quartic
equation

x4 + λ√
2
x3 −

√
2λx − 1 = 0 , (8)

where

A2 = cos[arctan(x)] = sgn(x)√
1 + x2

. (9)

Expansion of the exact real solutions of Eq. (8) in λ for the
limiting case λ → 0 gives

x1 = 1 + λ

4
√

2
− 5

64
λ2 + O(λ3),

(10)

x2 = −1 + λ

4
√

2
+ 5

64
λ2 + O(λ3) .

At λ=0 the solution �ψ(t)= [ψ1(t),ψ2(t),ψ3(t)] of Eq. (6) at
time t =0 reads �ψ(x1,x2)(0)= (1/2, ± 1/

√
2,1/2). The anti-

symmetric breather configuration �ψ(0) = (−1/
√

2,0,1/
√

2)
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FIG. 1. DB solutions for the symmetric case ψ1 = ψ3 [Eq. (7)].
For a nonlinearity λ > 5.04, four symmetric solutions exist. The
solution for N2 > 1/2 is termed a bright breather, while the solution
for N2 → 0 corresponds to a dark breather [see Eq. (12)]. The dashed
vertical line at N2 = 1/3 marks the asymptote for the phase-wise and
antiphase-wise time-periodic solutions for λ → ∞.

is not included in our ansatz, as we restrict ourselves to
symmetric solutions.

Expansion around the limit λ → ∞ leads to four real
solutions:

x3 = − 1√
2

1

λ
− 1

4
√

2

1

λ3
+ O(λ−5),

x4 = − 1√
2
λ + 2

√
2

1

λ
+ 14

√
2

1

λ3
+ O(λ−5),

(11)

x5 = −
√

2 − 3

2
√

2

1

λ
− 69

16
√

2

1

λ2
+ O(λ−3),

x6 =
√

2 − 3

2
√

2

1

λ
+ 69

16
√

2

1

λ2
+ O(λ−3).

For infinite λ the solutions of Eq. (6) at time t = 0 are

�ψ(x3)(0) = (0,1,0),

�ψ(x4)(0) = (
√

1/2,0,
√

1/2), (12)

�ψ(x5,x6)(0) = (1/
√

3, ∓ 1/
√

3,1/
√

3) ,

where the solution �ψ(x3) is called a bright breather, �ψ(x4) is
named a dark breather (due to lack of norm at the central site),
and �ψ(x5,x6) are phase-wise and antiphase-wise time-periodic
solutions.

IV. PEIERLS-NABARRO ENERGY LANDSCAPE

Having found the symmetric DB solutions, we next focus
on the transfer of norm through a bright breather, where the
stability of the breather will play a crucial role. We start by
introducing the concept of a Peierls-Nabarro (PN) energy
landscape. It is related to the PN potential, which reflects
the fact that discreteness breaks the continuous translational
invariance of a continuum model [38,39]. The amplitude of
the PN potential may be seen as the minimum barrier which
must be overcome to translate an object by one lattice site.
Regarding DBs, the Peierls-Nabarro barrier is given by the
energy difference |Ec − Eb|, where Ec and Eb are the energies

of a DB centered at a lattice site and between two lattice
sites.

We define the Peierls-Nabarro energy landscape as follows:
for a given configuration of amplitudes, An, the PN energy
landscape is obtained by extremizing H with respect to the
phase differences δφij = φi − φj :

Hl
PN = min

δφij

(−H ), Hu
pn = max

δφij

(−H ) , (13)

where ψn = An exp(iφn) and Hl
PN and Hu

PN are the lower and
upper part of the PN landscape. As we will see later, the bright
breather solution �ψ(x3) is located at an extremum of Hl

PN. The
minus sign in the definition (13) was added for convenience
to ensure that the bright breather is found in a minimum (and
not in a maximum) of the lower PN landscape. The phase
differences extremizing the Hamiltonian

H = λ

2

(
A4

1 + A4
2 + A4

3

)

− [A1A2 cos(φ1−φ2) + A2A3 cos(φ2−φ3)] (14)

are δφ12 = δφ23 ∈ {0,π}. Hence, the upper and the lower PN
energy landscapes read

Hu
PN = −λ

2

(
A4

1 + A4
2 + A4

3

) + (A1 + A3)A2, (15)

and

Hl
PN = −λ

2

(
A4

1 + A4
2 + A4

3

) − (A1 + A3)A2 . (16)

In Fig. 2 the PN landscape is visualized for λ = 3. The
PN “shell,” consisting of the upper and lower landscapes,
bounds the phase space of the trimer. Since the DB whose

FIG. 2. (Color online) (a) The lower part of the PN energy
landscape exhibits three minima separated by saddle points. (b) The
phase space of the trimer is restricted to lie between the two parts of
the PN shell, which consists of the lower and upper parts of the PN
landscape, which are shown in this panel. (c) Contour plot of (a), the
lower part of the PN energy landscape. The three minima and saddle
points are clearly visible. The minimum at A1 = A3 = 0.17 in (c)
corresponds to the bright breather. The figure is plotted for λ = 3.
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FIG. 3. (Color online) Dynamics on the PN landscape for increasing total energy of the trimer. (a) (left) A contour plot of the lower PN
energy landscape Hl

PN is shown for total energy below the rim (Et = −1.32 < Ethrs = −1.311). A projection of the orbit onto the A1–A3 plane
is over-plotted (black curve). (a) (middle) the corresponding amplitudes Ai(t) indicate that the maximum amplitude remains at the central site.
The dashed vertical line marks the time interval [0,25] for which the orbits in the left picture are plotted. (a) (right) A sketch of the initial
condition shows that the excitation at site 1 is slightly below threshold. (b) Destabilization of the DB for Et = −1.310 > Ethrs just above the
rim. We see that the rim of the PN landscape clearly restricts the dynamics and governs the destabilization process of the DB (left panel).
The norm migrates from site 2 to site 1, see the crossing of amplitudes A2(t) (green/light-gray line) and A1(t) (blue thick line) for short times
t < 10 (middle panel). (c) For higher total energy Et = −1.28 the bottleneck at the rim widens and the maximum norm transmitted to site 3
is increased. (d) For even higher total energy Et = −1.04 the orbit explores large parts of the phase space and visits all three sites. The grey
shaded area (left panel) is forbidden by the upper PN landscape Hu

PN. In all cases λ = 3, δφ = π . For other values of δφ the same qualitative
behavior is found.

properties we are studying corresponds to a minimum on Hl
PN,

we shall focus on this landscape. As shown in Fig. 2 (c), the
projection onto the A1-A3 plane exhibits three minima which

are separated by saddle points (called rims in the following).
For λ → ∞ the saddle points are located at A1 = A2 = √

1/2
(which in the following will be the saddle point of interest)
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and A2 = A3 = √
1/2. The energy threshold Ethrs at the rim

[obtained from Eq. (16)] reads

Ethrs = −λ

4
− 1

2
− 1

4λ
+ 1

4λ2
− 1

4λ3
+ 9

16λ4
+ O(λ−5) .

(17)

The following investigation holds for an effective non-
linearity in a range around 	 = λ/M � 1,2 which is in the
critical regime where scale-free avalanches of BECs were
found in [28].

V. THRESHOLD FOR TRANSFER OF NORM

To study the influence of the PN landscape on the stability
and the transfer of atoms through the DB, we first consider
the fixed point corresponding to the bright breather. The initial
amplitudes Ab

i are obtained by inverting Eq. (7) for N2 > 1/2;
hence an initial condition for the bright breather reads �ψb(0)=
(−Ab

1,A
b
2, − Ab

1). Then perturbations are added to site 1. In
dynamical systems terminology, the phase space of the trimer
is “mixed,” consisting of regular islands surrounded by the
chaotic sea [28,40]. DBs are located inside the regular islands
of the phase space, provided that their frequency (and multiples
of their frequency) lie outside the phonon spectrum [31,32]. If
a perturbation is large enough, it can push the orbit out of the
regular island into the chaotic sea, destabilizing the DB.

We now use the following initial condition:

�ψ(0) = [−(
Ab

1 + δA

)
eiδφ ,A2, − Ab

1

]
, (18)

where A2 = (1 − |ψ1|2 − |ψ3|2)1/2 ensures total norm N = 1.
Compared to the bright breather, we have added an amplitude
δA to site 1 and the phase φ1 is rotated by δφ . The initial
condition (18) is visualized in Fig. 3 (right panels), where we
have fixed δφ = π and increased δA in Figs. 3(a)–3(d). Note
that although the phase rotation does not alter the norms |ψi |2,
it drastically changes the total energy of the trimer which we
define as Et = −H [see Eq. (14)].

In Fig. 3 (left) we show the dynamics for increasing total
energy Et , where the arrows on the orbits (black curves) mark
the direction of time. For Et < Ethrs the areas in phase space
are disconnected, leading to subthreshold dynamics depicted
in Fig. 3(a).

In contrast, for Et > Ethrs the orbit is allowed to pass the
rim [left panel of Fig. 3(b)]. The majority of the norm migrates
from site 2 to site 1 while norm is transferred to site 3. The
larger Et [Fig. 3(c)], the larger is the size of the bubble (by
the term “bubble” we denote the accessible region of the PN
landscape for A1 > 1/

√
2). Hence, as we see from Figs. 3(b)

and 3(c) (left), an upper limit to the norm that can possibly be
transmitted through the DB can be read from the maximum
value of A3 inside the bubble:

A∗
3 = max

A1>1/
√

2
A3 (19)

for fixed total energy Et .

2For nonlinearities 	  1, no such saddle points in the PN
landscape are found.

Finally, for even larger Et , the orbit visits large parts of
the phase space and large amplitudes Ai(t) are found at all
three sites, as depicted in Fig. 3(d), where the orbit resides in
the chaotic regime [Fig. 3(d)]. In this case, no controlled shift
of the DB from site 2 to 1 is observed and the DB becomes
dynamically unstable. These dynamical instabilities can be
associated with a (partial) depletion of the BEC [41,42]; a
detailed study of these effects is beyond the scope of our
present investigation.

The upper bound A∗
3 can be calculated analytically noting

that for the projection onto the A1-A3 plane, condition
dA3/dA1 = 0 holds. Implicit derivation of Eq. (16) leads to

0 = 1 − 2A2
1 − A1A3 − A2

3

+ 2λA1

√
1 − A2

1 − A2
3

( − 1 + 2A2
1 + A2

3

)
, (20)

which determines the maximum value of A3 in the bubble of
the PN landscape as

A∗
3(δ,λ) = 1√

2
−

√
(1 − 2δ)

2
√

λ
− (1 − 2δ)

4
√

2λ

+ 1 + 2(δ − δ2)

4
√

1 − 2δλ3/2
− 25 − 20(δ − δ2)

64λ2

+ 11/8 − 3δ − δ2 + 7(δ3 − 7δ4)

2(1 − 2δ)3/2λ5/2
+ O(λ−3) ,

(21)

where δ = Et − Ethrs > 0 is the energy relative to the desta-
bilization threshold. Without the λ−5/2 term the exact value is

FIG. 4. (Color online) Norm transfer through a bright breather.
The maximum (atomic) norm at site 3 detected after the collision of
the DB with a lattice excitation is shown as a function of the total
energy of the trimer. The discrete symbols indicate three different
values of the initial phases. For Et < Ethrs the DB is stable and
practically no transfer of norm takes place on short time scales. For
Et > Ethrs we observe instability of the DB centered at site 2: the
breather migrates to site 1 and norm is transferred to site 3. An
upper bound to max[N3(t)] is calculated from the PN landscape, both
analytically [dotted dashed line, cf. Eq. (21)] and umerically (solid
line). The analytical calculation is performed in the limit for large λ

and therefore deviates slightly from the exact numerical result. We
used δφ23 = π which is the typical case observed in [28] for DBs in
an extended leaking optical lattice and λ = 3.
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FIG. 5. (Color online) The destabilization of the DB in the trimer (solid lines) is compared to the trimer with a third linear site (dashed
lines). On the time scale, where the destabilization takes place, the dynamics is qualitatively very similar—see enlargements in upper pictures
showing a crossing of A2(t) (green/light-gray line) and A1(t) (blue thick line) at t ≈ 2.5. Total energy is Et = −1.31 > Ethrs and λ = 3.
(a) The initial condition (18) is given by δA = 0.016, δφ = π , which is the same as in Fig. 3(b). (b) The initial condition is determined by the
parameters δA = 0.152, δφ = π/2.

underestimated. If we truncate the expression after the λ−3/2

term, the deviation from the exact result roughly doubles
compared to what is shown in Fig. 4.

How general is the transfer mechanism that we describe?
In Fig. 4, the maximum norm N3 that is found at site 3
after the transfer of atoms through the DB is shown as a
function of the total energy for three initial phase differences
δφ12 = π − δφ = 0, π/4, π/2. The dashed vertical line at
Et = Ethrs = −1.311 marks the total energy at the rim and
is identified with the destabilization threshold of the DB.
Evidently, the transfer mechanism found does not depend on
parameters δA and δφ individually, but rather on the total
energy which determines the accessible region of the PN
landscape. Moreover, the transfer mechanism itself appears
nearly independent of the choice of the initial phase difference
δφ12. The maximum norm detected at site 3 is closely below
the upper bound N∗

3 (δ) = |A∗
3 (δ)|2 given by Eq. (21), which

holds for Et <∼ −1.2. For increasing Et >∼ −1.2 the fluctuations
of max(N3) for different orbits with similar total energy
become larger, because the orbits explore a larger part of the
phase space. As a consequence, maxt<T [N3(t)] depends on
the chosen time interval [0,T ] in which the maximum norm
is detected. (In all cases we set T = 100.) In contrast, for
lower total energy where a nontrivial upper-bound N∗

3 (δ) of
the transferred norm holds, maxt<T [N3(t)] does barely depend

on T already after very few oscillations of A3(t) [cf. Figs. 3(b)
and 3(c) (middle)].

VI. CONNECTION TO PN BARRIER

To gain further insight into the relation between the rim of
the PN energy landscape and the PN barrier, let us consider a
nonlinear trimer where we omit the nonlinear onsite interaction
term at site 3. The equations of motion read

i∂tψ1 = λ|ψ1|2ψ1 − 1
2ψ2,

i∂tψ2 = λ|ψ2|2ψ2 − 1
2 (ψ1 + ψ3), (22)

i∂tψ3 = − 1
2ψ2 .

Using the initial condition (18), we find that on the time
scale where the destabilization process of the DB centered
at site 2 takes place, the dynamics is not changed substantially
compared to the results for the nonlinear trimer (see Fig. 5).
Hence, in order to describe the destabilization of the DB (and
the basic mechanism of the norm transfer through the DB), it is
sufficient to consider only two nonlinear sites with a third linear
site attached. This is a strong indication that the destabilization
threshold during the collision of the two objects can actually
be linked to the Peierls-Nabarro barrier of a single DB.
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FIG. 6. (Color online) Demonstration
that the proposed mechanism for the desta-
bilization and migration of a DB works
in an extended lattice (M = 101 wells).
(a) Unperturbed breather solution from
the trimer centered in the middle of the
lattice at site 51. The color code represents
the (atomic) norm |ψn(t)|2 (left panel). In
the right panel the amplitudes of the
central site of the initial breather, A51

(green/light-gray line), and the two neigh-
bors to the left, A50 (blue thick line) and
A49 (red line), are monitored. (b)–(d) In-
creasing perturbation at the left neighbor-
ing site n = 50. (b) The total energy of the
local trimer (ψc−1,ψc,ψc+1) is just above
Ethrs. The breather is barely stable but no
migration takes place. (c) The breather mi-
grates by one site toward the perturbation
(that is, to the left) after t ≈ 5 time steps.
(d) During the migration process, a mov-
ing breather is initiated to the right. For t >

5 the right panel of (c) and (d) monitors
a local trimer, with the breather having
moved into its center. Initial conditions are
given by Eq. (23) with (a) δA = δφ = 0,
(b) δA = 0.016, δφ = π , (c) δA = 0.03,
δφ = π , and (d) δA = 0.14, δφ = π .

VII. EXTENDED LATTICES

Having analyzed the nature of the transmission process in
the trimer, we now test the general transfer mechanism in
extended lattices (M > 3). As a proof of principle, we use the
same initial conditions as in Figs. 3(b)–3(d) and nonlinearity
λ = 3 to initiate a perturbed trimer above the destabilization
threshold in the middle of an otherwise empty lattice of
M = 101 sites. Denoting the central site of the discrete
breather as c (here: c = 51), the initial condition reads

ψc−1(0) = −(
Ab

1 + δA

)
eiδφ , ψc(0) = A2,

(23)
ψc+1(0) = −Ab

1, ψn(0) = 0, else ,

where A2 = (1 − |ψc−1|2 − |ψc+1|2)1/2 and Ab
1 is obtained

exactly as we did for Eq. (18). Using initial condition (23),
the wave function is normalized to ||ψ ||2 = 1.

In Fig. 6(a) the analytical solution for the bright breather
in the trimer [i.e., initial condition (23) with δa = δφ = 0] is
inserted in an extended lattice. We see that initial oscillations
of the amplitudes Ac(t), Ac−1(t), and Ac+1(t) are damped
(right panel), approaching a fixed point. For convenience, we
have chosen an uneven number of lattice sites M , so that
A50(t) = A52(t) and A49(t) = A53(t), etc., at all times (for this
symmetric initial condition).

When perturbing the breather at site c − 1 (from the left)
just above threshold, in contrast to the dynamics in the trimer,
we find that the breather is not shifted as in Fig. 3(b), but
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remains barely stable, see Fig. 6(b). The reason is that energy
can flow into additional degrees of freedom that are present
in extended lattices [see the population of site A49(t) for short
times t < 10]. For larger perturbations, however, the breather
is destabilized as expected [cf. Figs. 6(c) and (d) and Figs. 3(c)
and (d)]. For large perturbations [Fig. 6(d)], a moving breather
is initiated in the course of the migration process, which travels
to the right toward the boundary.

These results confirm that up to a precise determination of
the destabilization threshold (which is slightly higher on the
extended lattice than on the trimer), the general mechanism
for the destabilization and migration of a DB also applies to
extended lattices.

VIII. POSSIBLE APPLICATIONS

To begin, we should comment on the validity of the
DNLS (3) to describe actual experiments of BECs in OLs.
Experimental realizations have been performed for values
of λ = 2U/J in the range 10−5–10−3, while the number
of atoms is typically N ∼ O(104–105). These estimations
lead to experimentally feasible parameters 	 = λ/M <∼ 1 for
which the DNLS is a good approximation. For example, the
experiment of [8] shows that the BEC dynamics in an OL with
parameters N ≈ 2 × 105, J = 0.14ER , 2UN ≈ 12ER [where
ER = h̄2k2

L/(2m) is the recoil energy and kL is the laser mode
which traps the atoms], and M = 200 wells is described very
well by the DNLS with effective nonlinearity 	 ≈ 0.5.

To estimate the minimum duration of an experiment
with BECs probing the destabilization process, we rewrite
our dimensionless time t = Jτ in terms of real time τ .
Typical values for J are taken from [43]: the Josephson
energy EJ /kB = 378 nK leads to the tunneling rate J/h̄ =
Ej (Nh̄)−1 = 16.5 Hz (for N = 3000 atoms). Hence, with
these parameters, t = 10 (which is a typical time scale
after which the destabilization process took place) relates to
τ ≈ 0.6 s.

The thresholded transfer of norm through a bright breather
that we analyzed may lead to interesting applications for
blocking and filtering atom beams. It could be a powerful
tool for controlling the transmission of matter waves in
interferometry and quantum-information processes [44].

In a similar way, our findings can be related
to the field of optics, because the DNLS is ca-
pable of describing wave motion in nonlinear opti-
cal waveguide arrays. Discrete breathers in such two-
dimensional networks have been investigated in recent years
both theoretically and experimentally [17,18,33–36,45,46]
and can exhibit a rich variety of functional operations such
as blocking, routing, or logic functions [34,35]. Experimental
evidence of the destabilization process of the stationary DB
should be observable in nonlinear waveguide arrays and might
lead to functional operations such as filtering optical beams.
Moreover, in view of a molecular trimer, applications in terms
of targeted energy transfer (introduced in [47,48]) with a
threshold are conceivable, e.g., in the field of biophysics or
biomolecular engineering.

IX. CONCLUSIONS

We have found an analytic description of the destabilization
threshold and the norm transfer through a DB in extended
OL by studying analytically the highly localized case of the
nonlinear trimer. A key element was the definition of the
two-dimensional Peierls-Nabarro energy landscape. The PN
landscape restricts the dynamics of the trimer and the accessi-
ble region of the phase space. This restriction of the dynamics
becomes very pronounced at the destabilization threshold,
which is identified with a rim in the PN landscape. The effect is
found for a broad range of the phase differences δφ12 between
possible colliding objects. Our numerical results confirm that
this mechanism also occurs in extended lattices. We discuss
some potential applications to experimental systems.
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