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E. Arcos, G. Báez, P. A. Cuatláyol, M. L. H. Prian, R. A. Méndez-Sánchez,a)

and H. Hernández-Saldaña
Laboratorio de Cuernavaca, Instituto de Fı´sica, University of Mexico (UNAM), A. P. 20-364, C. P. 01000,
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We present an experimental setup based on the normal modes of vibrating soap films which shows
quantum features of integrable and chaotic billiards. In particular, we obtain the so-calledscars—
narrow linear regions with high probability along classical periodic orbits—for the classically
chaotic billiards. We show that these scars are also visible at low frequencies. Finally, we suggest
some applications of our experimental setup in other related two-dimensional wave phenomena.
© 1998 American Association of Physics Teachers.
t
a

m
or
n

th

h

and
ical

an-
the

er

ting
ow
te-
I. INTRODUCTION

In recent years, there has been increasing interest in
properties of quantum systems whose classical analogs
chaotic.1–4 Part of the work in this new field, called quantu
chaos,4 refers to essentially two-dimensional cavities
wells of infinite potential called billiards. These billiards ca
take different forms, such as rectangles, circles, and o
more complicated geometries~see Fig. 1!. The circle and the
rectangle correspond to integrable systems.4 Furthermore, we
include in Fig. 1 the so-called Bunimovich stadium and t
Sinaı̈ billiard, which are completely chaotic.5 However, in-
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termediate situations, i.e., systems with both integrable
chaotic behaviors, are the most common type of dynam
systems.6

The quantum analog of a classical billiard is called a qu
tum billiard and its eigenfunctions are closely related to
classical features of the billiard.7 Quantum billiards obey the
Helmholtz equation with vanishing amplitude on the bord
~homogeneous Dirichlet boundary conditions!. Such systems
can be simulated as a drum or any other membrane vibra
in a frame. The principal purpose of this paper is to sh
that the quantum behavior of classically chaotic and in
s
Fig. 1. Integrable billiards:~a! rectangular and~b! circular. Chaotic billiards:~c! the Bunimovich stadium, formed by two semicircumferences of radiur
joined by two segments of lengthd; ~d! the Sinaı¨ billiard, formed by a square with a circle of radiusR inside.
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Fig. 2. Typical trajectories in billiards:~a! in the rectangle,~b! in the circle~this trajectory shows a caustic!, and~c! in the Bunimovich stadium.
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grable billiards can be modeled in a classroom with an a
log experiment. The experimental setup basically contain
function generator and a mechanical vibrator and is base
the vibrations of a soap film.8 Thus, as Feynman said i
1963, ‘‘the same equations have the same solutions.’’9

In the next section we briefly discuss classical and qu
tum billiards. In Sec. III we introduce our experimental set
and show the analogy with the quantum billiard. Other u
of our experimental setup are discussed in the same sec
Some remarks are given in the conclusion.

II. CLASSICAL AND QUANTUM BILLIARDS

In order to make a more explicit definition of the classic
billiard we take a two-dimensional region denoted byR and
define the potentialV for the particle as

V5 H0
`

in R
otherwise. ~1!

This means that insideR the particle is free and moves i
straight lines. When the particle collides with the bounda
it bounces following the law of reflection. Under this dynam
ics, the rectangle and circle billiards are regular. Typical t
jectories inside are shown in Fig. 2. On the other hand,
dynamics of a particle in the stadium as well as in the Si¨
billiard, are chaotic. Almost all trajectories for these billiar
are ergodic and exponentially divergent. Roughly speak
this is so because in the Sinaı¨ billiard, two very close trajec-
tories are separated when one collides~or both! with the
central circle. After some time, the separation between
trajectories~in phase space! is exponential. In the stadium
two particles with very close initial conditions are focus
602 Am. J. Phys., Vol. 66, No. 7, July 1998
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when they collide with one semicircle. After this focusin
they began to separate until they bounce again but now
the other semicircle. The exponential divergence appears
cause the separation time is greater than the focusing t
Apart from these trajectories there also exist periodic orb
These trajectories are unstable and typically isolated. T

Fig. 3. Periodic orbits in the Bunimovich stadium. Notice that in some ca
more than one orbit is present and that all obey the reflection law.
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Fig. 4. Eigenfunctions of the Bunimovich stadium calculated by the finite element method for a quadrant of stadium with Dirichlet boundary condition
maxima and minima of each normal mode correspond to the darkest zones;~a! a typical state scarred by a short classical orbit connecting the two extrem
of the stadium,~b! a state scarred by an orbit of large period,~c! a typical state scarred by a ‘‘bouncing-ball’’ orbit,~d! a ‘‘whispering gallery’’ state, and~e!
a typical noisy state if one looks only at a quadrant.
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number increases exponentially as a function of their len
but they are of measure zero in phase space. We may
also families of unstable and non-isolated periodic orb
such as the ‘‘bouncing-ball’’ orbits in which the partic
bounces between the two parallel segments of stadium. S
periodic orbits for the Bunimovich stadium are shown
Fig. 3.
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The time-independent Schro¨dinger equation for the poten
tial defined in Eq.~1! is

¹2C1k2C50 in R
~2!

C50 on the boundary ofR,
603Arcos et al.



ob
e
-
he
re

r
ct
nc
ve
ll-
-

nu

Th

n

r
e
te
io

d
n
s,
ul

a

v
li
d

bi
.
io
e

film

n

r

og
al
ed
n
t

th
ra

el

f
it

nd

the
e
ing
with
not
nt
n-
re

h
and
nd-
with

me
ical
-
to
our

the
. We
cor-

ms
om-
yer
a

ico
at

he

the

ent
ical

aos.
y.
with the wave numberk5(2mE/\)1/2. Here,E and m are
the energy and mass of the particle and\ is the Planck con-
stant. The homogeneous Dirichlet boundary condition is
tained because ifV5` the wave function vanishes. Th
Helmholtz equation inR and the Dirichlet boundary condi
tion define the quantum billiard. Note that this is just t
equation for the normal modes of a membrane if we interp
the functions as vibration amplitudes.

For classically integrable billiards, the eigenfunctions a
well-known. For example, the solutions for circular and re
angular billiards are Bessel functions and sinusoidal fu
tions, respectively.10 On the other hand, the features of wa
functions for classically chaotic billiards have been we
studied numerically by Heller.7 Recently, experiments in mi
crowave cavities have been performed.11 In Fig. 4 we show
eigenfunctions of the Bunimovich stadium we calculated
merically using the finite element method.12 However, they
can alternatively be calculated by standard software.
eigenfunctions of Fig. 4~a!–~c! show certain similarities with
the orbits of Fig. 3. Following Heller, we say that the eige
functions are ‘‘scarred’’ by the orbits. Figure 4~d! shows
what is called a ‘‘whispering gallery’’ state, because the
exist certain galleries13 in which the sound travels insid
them, following the border. This kind of state is associa
with orbits also close to the boundary. The eigenfunct
shown in Fig. 4~e! resembles noise4 when we see only a
quarter of stadium.

The appearance of the scars is quite well understoo14

based on the theoretical work by Selberg, Gutzwiller, a
Balian.15 Due to the low density of the short periodic orbit
they may well be seen in quantum experiments and sim
tions either as dominant features in the Fourier spectrum
as scars. While the Fourier analysis of experimental dat
atomic16 and molecular physics17 is quite striking, direct
demonstrations of scars are difficult even in microwave ca
ties. A simple explanation of scarring is based on de Brog
waves. Close to the periodic orbit there exist standing
Broglie waves whose wavelengthl is associated with the
lengthL of the periodic orbit:

2L5nl, n51,2,3,... . ~3!

These de Broglie waves are localized around periodic or
due to the exponential divergence of nearing trajectories
the next section we will show how a simple demonstrat
setup can display the most interesting features of the eig
functions on a soap film.

III. SOAP FILM ANALOGY

The normal modes of a rectangular and circular soap
have been well studied.18–20 A textbook showing these
eigenfunctions is French’s book entitledVibrations and
Waves.21 The governing equation is the time-independe
wave Eq.~2!, but now with a different interpretation:C is
the membrane vibration amplitude and the wave numbe
now k5v/v, with v the angular frequency andv the speed
of the transverse waves on the membrane.

A problem arises for the experimental setup of this anal
At high frequencies~corresponding to the semiclassic
limit !, the damping is large. To solve this problem we fe
energy into the system permanently with an external reso
tor of a well-defined but variable frequency. We chose
feed the external frequency into the system by vibrating
wire that delimits our soap film. We use a mechanical vib
604 Am. J. Phys., Vol. 66, No. 7, July 1998
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tor ~PASCO Scientific model SF-9324, see Fig. 5! connected
to a function generator~we used a generator Wavetek mod
18022! and used wires with different shapes~rectangle, circle,
Bunimovich stadium, Sinaı¨ billiard, and some others o
interest23!. Alternatively a speaker could be used to transm
the frequency through the air.19,20,24 The chemical formula
for a soap film with large duration is given by Walker,24 but
can be made up with soap, water, and glycerin by trial a
error.

We can now start the demonstration. In Fig. 6~a! we show
a normal mode of the rectangle, in agreement with
known result. Figure 6~b! shows a normal mode for a circl
displaying a Bessel function. Roughly speaking, the shin
and dark zones establish a periodic pattern associated
the normal mode. Although the pattern established can
give a quantitative measure of the amplitude, it is sufficie
to give an idea of the form of the normal mode and to ide
tify it. However, the more interesting normal modes a
some of the classically chaotic billiards. In Fig. 6~c! we show
a ‘‘bouncing-ball’’ state at low energies for a Bunimovic
stadium. The alternating dark and shining zones in this
in the following figures make evident the presence of sta
ing waves in the membrane. These waves are associated
de Broglie waves in the quantum billiard and at the sa
time they are associated with periodic orbits in the class
billiard. In Fig. 6~d! and ~e! scarred eigenfunctions are dis
played, the latter in the high-frequency regime. In order
show that they are scars and not some spurious effect of
very simple experimental setup, we calculate numerically
normal modes at frequencies near the experimental ones
observe in Fig. 4 some of these eigenfunctions and the
responding orbits in Fig. 3.

We want to mention that the normal modes in soap fil
can also be used for other two-dimensional wave phen
ena, such as the search for normal modes of the clay la
corresponding to the old Tenochtitlan lake, which plays
crucial role in the earthquake damage patterns of Mex
City.25 The application in this case comes from the fact th
the upper clay layer of the Mexico Valley, as well as t
soap films, are practically two-dimensional.25 A wire may
readily be shaped to the corresponding boundary and
results are shown in Fig. 6~f!.

Moreover, the experimental setup which we pres
may be used to show other related wave phenomena. Typ
examples are scars on liquids,26 Faraday waves—
crystallographic patterns in large-amplitude waves27—
quasicrystalline patterns on liquids,28 sand dynamics,29 or

Fig. 5. Experimental setup used to show the quantum features of ch
Notice that the membrane is excited in a way that breaks the symmetr
604Arcos et al.
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Fig. 6. Normal modes for different shapes.~a! Low mode for the rectangle at a frequency of 22.48 Hz.~The frequency changes slightly for different soa
solutions and different thicknesses of the soap film.! The rectangle is of size 0.215 m30.155 m.~b! Bessel function for a circular-shape wire. The radius
the wire is 0.092 m and the excitation frequency is around 33.5 Hz.~c! A ‘‘bouncing-ball state’’ close to 40 Hz.~d! A scarred state corresponding to th
numerical one shown in Fig. 4~b! at a frequency close to 110 Hz.~e! A scarred state by a short classical orbit connecting the two extremes of the stadiu
a Bunimovich stadium withr 50.035 m andd50.035 m. The corresponding frequency is about 478 Hz.~f! The normal mode for a wire with ‘‘old
Tenochtitlan lake’’ form at frequencyn548.88 Hz.
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normal modes of Chladni’s plates.30 These can be done b
replacing the wire in our experimental setup with water co
tainers or thin plates. If we want to see scars on surf
waves, we must use a stadium-shaped tank filled with wa
Faraday waves can be obtained by adding shampoo to
605 Am. J. Phys., Vol. 66, No. 7, July 1998
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water and increasing the amplitude and frequency but
creasing the level of the liquid to several millimeters. It
not necessary to use tanks with different shapes becaus
patterns do not depend on the boundary. If we want to
serve quasicrystalline patterns with this experimental se
605Arcos et al.
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we must excite the mechanical vibrator with—at least—t
frequencies.28 This is easily obtained by changing the sin
soidal time dependence of the driving force to a triangu
one.31 Another application is the demonstration of the mod
of thin plates. In this case, as well as in the water tanks,
whispering gallery states are easily visible. We may use
lipses, pentagons, or any other shape. All these plates
excited at a point at which the mechanical vibrator loa
them. Figure 7~a! shows a whispering gallery state for
stadium-shaped iron plate. Figure 7~b! shows a scarred pat
tern for the same plate. Finally, if we consider a tank with
layer of sand of variable thickness, we may study seve
topics on dynamics of granular media. As an example we
study ‘‘standing waves’’ on sand.29

IV. CONCLUSIONS

The analog model of soap films for the quantum billia
gives a demonstration of quantum chaos features. For i
grable regions the normal modes correspond to the eig
functions of a two-dimensional square box and a circle.
classically chaotic billiards the normal modes correspond
scarred eigenfunctions in the semiclassical limit. The exp
mental setup presented here is particularly cheap, sim

Fig. 7. Nodal patterns observed on iron plates with stadium shape. The
was of 1 mm thickness and we usedr 50.1 m andd50.1 m. ~a! A whis-
pering gallery at 5.79 kHz. Notice that this pattern is better defined nea
boundary and between the two segments of the stadium. This means
the amplitudes are higher in these regions.~b! A scar which reflects the
orbit connecting the two extremes of the stadium. In this case the patte
better defined on the periodic orbit. The frequency for this case was aro
4.22 kHz.
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and elegant—i.e, the alternative experiments do not sat
the Helmholtz equation and/or boundary condition. Micr
wave cavities are expensive and do not display the scars
directly visible manner. Thus the simplicity of the expe
mental setup and the facility to use any shape makes it v
suitable for the undergraduate laboratory. Furthermore
normal modes of soap films can be used to demonstrate o
two-dimensional analog phenomena. Finally, we want
mention that the proposed experimental setup can be qui
changed to study other related wave phenomena. A w
variety of highly nontrivial wave-like phenomena can be d
played with minimal experimental requirements.
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