Vibrating soap films: An analog for quantum chaos on billiards
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We present an experimental setup based on the normal modes of vibrating soap films which shows
quantum features of integrable and chaotic billiards. In particular, we obtain the so-sedles-

narrow linear regions with high probability along classical periodic orbits—for the classically
chaotic billiards. We show that these scars are also visible at low frequencies. Finally, we suggest
some applications of our experimental setup in other related two-dimensional wave phenomena.
© 1998 American Association of Physics Teachers.

[. INTRODUCTION termediate situations, i.e., systems with both integrable and
i o . chaotic behaviors, are the most common type of dynamical
In recent years, there has been increasing interest in thg ¢tem&
properties of quantum systems whose classical analogs ar€ryq q,antum analog of a classical billiard is called a quan-
chaotic. ™" Part of the work in this new field, called quantum -~ L :
tum billiard and its eigenfunctions are closely related to the

chaos! refers to essentially two-dimensional cavities or . - -
wells of infinite potential called billiards. These billiards can classical features of the billiardQuantum billiards obey the
take different forms, such as rectangles, circles, and othdr€lmholtz equation with vanishing amplitude on the border

more complicated geometriésee Fig. 1 The circle and the (homogeneous Dirichlet boundary conditipnSuch systems
rectangle correspond to integrable systérRarthermore, we can be simulated as a drum or any other membrane vibrating

include in Fig. 1 the so-called Bunimovich stadium and thein a frame. The principal purpose of this paper is to show
Sinai billiard, which are completely chaoticHowever, in-  that the quantum behavior of classically chaotic and inte-
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Fig. 1. Integrable billiards(a) rectangular andb) circular. Chaotic billiards{c) the Bunimovich stadium, formed by two semicircumferences of radius
joined by two segments of length (d) the Sinaibilliard, formed by a square with a circle of radiBsinside.

601 Am. J. Phys66 (7), July 1998 © 1998 American Association of Physics Teachers 601



ARy

SN
A
!

i
PaS

\
ez

(©

Fig. 2. Typical trajectories in billiard€a) in the rectangle(b) in the circle(this trajectory shows a causkj@nd(c) in the Bunimovich stadium.

grable billiards can be modeled in a classroom with an anawhen they collide with one semicircle. After this focusing,

log experiment. The experimental setup basically contains they began to separate until they bounce again but now on

function generator and a mechanical vibrator and is based aihe other semicircle. The exponential divergence appears be-

the vibrations of a soap filfi.Thus, as Feynman said in cause the separation time is greater than the focusing time.

1963, “the same equations have the same solutiohs.” Apart from these trajectories there also exist periodic orbits.
In the next section we briefly discuss classical and quanThese trajectories are unstable and typically isolated. Their

tum billiards. In Sec. Il we introduce our experimental setup

and show the analogy with the quantum billiard. Other uses

of our experimental setup are discussed in the same section.

Some remarks are given in the conclusion. / RN

[I. CLASSICAL AND QUANTUM BILLIARDS

In order to make a more explicit definition of the classical

billiard we take a two-dimensional region denotedmynd ’
define the potentiaV/ for the particle as
_]0 inR
V=1 otherwise. (1)

This means that insid® the particle is free and moves in

straight lines. When the particle collides with the boundary, , ‘
it bounces following the law of reflection. Under this dynam-

ics, the rectangle and circle billiards are regular. Typical tra- \ l

jectories inside are shown in Fig. 2. On the other hand, the
dynamics of a particle in the stadium as well as in the Sinal
billiard, are chaotic. Almost all trajectories for these billiards
are ergodic and exponentially divergent. Roughly speaking,
this is so because in the Sinailliard, two very close trajec-

tories are separated when one collides both with the l
central circle. After some time, the separation between the

trajectories(in phase spageis exponential. In the stadium, Fig. 3. Periodic orbits in the Bunimovich stadium. Notice that in some cases
two patrticles with very close initial conditions are focusedmore than one orbit is present and that all obey the reflection law.
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Fig. 4. Eigenfunctions of the Bunimovich stadium calculated by the finite element method for a quadrant of stadium with Dirichlet boundary conditions. The
maxima and minima of each normal mode correspond to the darkest Zahadypical state scarred by a short classical orbit connecting the two extremes

of the stadium(b) a state scarred by an orbit of large peri@gj,a typical state scarred by a “bouncing-ball” orbit) a “whispering gallery” state, ance)

a typical noisy state if one looks only at a quadrant.

number increases exponentially as a function of their length, The time-independent Schiimger equation for the poten-
but they are of measure zero in phase space. We may firtthl defined in Eq(1) is

also families of unstable and non-isolated periodic orbits

such as the “bouncing-ball” orbits in which the particle V2P +K2P=0 in R

bounces between the two parallel segments of stadium. Some 2
periodic orbits for the Bunimovich stadium are shown in

Fig. 3. ¥=0 on the boundary ofR,
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with the wave numbek=(2mE/#%)Y2 Here,E andm are

the energy and mass of the particle d@ni the Planck con-
stant. The homogeneous Dirichlet boundary condition is ob-
tained because i¥/=% the wave function vanishes. The
Helmholtz equation iR and the Dirichlet boundary condi-
tion define the quantum billiard. Note that this is just the
equation for the normal modes of a membrane if we interpret
the functions as vibration amplitudes.

For classically integrable billiards, the eigenfunctions are
well-known. For example, the solutions for circular and rect-
angular billiards are Bessel functions and sinusoidal func-
tions, respectively’ On the other hand, the features of wave
functions for classically chaotic billiards have been well-
studied numerically by HellerRecently, experiments in mi- Fig. 5. Experimental setup used to show the quantum features of chaos.
crowave cavities have been perforn‘}édn Fig. 4 we show Notice that the membrane is excited in a way that breaks the symmetry.
eigenfunctions of the Bunimovich stadium we calculated nu-
merically using the finite element meth&dHowever, they

can alternatively b'e calculated by standa'rd'so.f’gware.. Th?or (PASCO Scientific model SF-9324, see Figcbnnected
eigenfunctions of Fig. @—(c) show certain similarities with to a function generatdwe used a generator Wavetek model

the o.rbits of Fi%?- 3. FoII'(,)wing HeIIer,_ we say that the eigen'18022) and used wires with different shap@sctangle, circle,
functions are “scarred” by the orbits. Figured shows  p,nimovich stadium, Sinabilliard, and some others of

what is called a "whispering gallery” state, because thereinteresf3). Alternatively a speaker could be used to transmit

exist certain gallerié§ in which the sound travels inside o#he frequency through the ai#2°24The chemical formula

them, following the border. This kind of state is associate or a soap film with large duration is given by Wallirbut

with orl:_nts also close to the bogndary. The e|gem‘unct|oncan be made up with soap, water, and glycerin by trial and
shown in Fig. 4e) resembles noiewhen we see only a

. error.
quarter of stadium. : :
The appearance of the scars is quite well underdfood We can now start the demonstration. In Fi¢g)éve show

based on the theoretical work by Selberg, Gutzwiller, an normal mode of the rectangle, in agreement with the
Balian!® Due to the low density of the short periodic orbits, nown result. Figure ®) shows a normal mode for a circle

they may well be seen in quantum experiments and simul displaying a Bessel function. Roughly speaking, the shining

i ith dominant feat in the Fouri M nd dark zones establish a periodic pattern associated with
lons eithér as dominant reatures in the Fourer Specrum Qe ,5rma| mode. Although the pattern established cannot
as scars. While the Fourier analysis of experimental data i

. 172 . L . ive a quantitative measure of the amplitude, it is sufficient
atomic® and molecular physi¢é is quite striking, direct g q P '

. oo SR .to give an idea of the form of the normal mode and to iden-
demonstrations of scars are difficult even in microwave cavix

X X ; L tify it. However, the more interesting normal modes are
ties. A simple explanation of scarring is based on de Brogligs; o of the classically chaotic billiards. In Figchwe show

Wwaves. Close to the periodic orbi'g there e_xist sta_nding d% “bouncing-ball” state at low energies for a Bunimovich
Broglie waves whose wavelengthis associated with the - 4iym The alternating dark and shining zones in this and

lengthL of the periodic orbit: in the following figures make evident the presence of stand-
2L=n\, n=123,.... (3)  ing waves in the membrane. These waves are associated with

. . . . de Broglie waves in the quantum billiard and at the same
These de Broglie waves are localized around periodic orbitgne they are associated with periodic orbits in the classical

due to the ex'ponential_divergence of ngaaring trajectories. IBilliard. In Fig. 6d) and (e) scarred eigenfunctions are dis-
the next section we will show how a simple demonstration layed, the latter in the high-frequency regime. In order to

setup can display the most interesting features of the eigerks,ow that they are scars and not some spurious effect of our

functions on a soap film. very simple experimental setup, we calculate numerically the
normal modes at frequencies near the experimental ones. We
IIl. SOAP FILM ANALOGY observe in Fig. 4 some of these eigenfunctions and the cor-

responding orbits in Fig. 3.

The normal modes of a rectangular and circular soap film We want to mention that the normal modes in soap films
have been well studief?° A textbook showing these can also be used for other two-dimensional wave phenom-
eigenfunctions is French’s book entitledibrations and ena, such as the search for normal modes of the clay layer
Waves’! The governing equation is the time-independentcorresponding to the old Tenochtitlan lake, which plays a
wave Eq.(2), but now with a different interpretation¥ is  crucial role in the earthquake damage patterns of Mexico
the membrane vibration amplitude and the wave number igity.> The application in this case comes from the fact that
now k= w/v, with o the angular frequency andthe speed the upper clay layer of the Mexico Valley, as well as the
of the transverse waves on the membrane. soap films, are practically two-dimensiofalA wire may

A problem arises for the experimental setup of this analogreadily be shaped to the corresponding boundary and the
At high frequencies(corresponding to the semiclassical results are shown in Fig.(8.
limit), the damping is large. To solve this problem we feed Moreover, the experimental setup which we present
energy into the system permanently with an external resonanay be used to show other related wave phenomena. Typical
tor of a well-defined but variable frequency. We chose toexamples are scars on liquitfs, Faraday waves—
feed the external frequency into the system by vibrating therystallographic patterns in large-amplitude waVes
wire that delimits our soap film. We use a mechanical vibra-quasicrystalline patterns on liquids,sand dynamicé® or
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(b)

Fig. 6. Normal modes for different shapéa) Low mode for the rectangle at a frequency of 22.48 Hhe frequency changes slightly for different soap
solutions and different thicknesses of the soap jilithe rectangle is of size 0.215X0.155 m.(b) Bessel function for a circular-shape wire. The radius of
the wire is 0.092 m and the excitation frequency is around 33.5(¢)1ZA “bouncing-ball state” close to 40 Hz(d) A scarred state corresponding to the
numerical one shown in Fig.(d) at a frequency close to 110 H&) A scarred state by a short classical orbit connecting the two extremes of the stadium for
a Bunimovich stadium withr =0.035 m andd=0.035 m. The corresponding frequency is about 478 (flzThe normal mode for a wire with “old
Tenochtitlan lake” form at frequency=48.88 Hz.

normal modes of Chladni's platé®.These can be done by water and increasing the amplitude and frequency but de-
replacing the wire in our experimental setup with water con-creasing the level of the liquid to several millimeters. It is
tainers or thin plates. If we want to see scars on surfac@eot necessary to use tanks with different shapes because the
waves, we must use a stadium-shaped tank filled with watepatterns do not depend on the boundary. If we want to ob-
Faraday waves can be obtained by adding shampoo to thserve quasicrystalline patterns with this experimental setup,
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and elegant—i.e, the alternative experiments do not satisfy
the Helmholtz equation and/or boundary condition. Micro-
wave cavities are expensive and do not display the scars in a
directly visible manner. Thus the simplicity of the experi-
mental setup and the facility to use any shape makes it very
suitable for the undergraduate laboratory. Furthermore the
normal modes of soap films can be used to demonstrate other
two-dimensional analog phenomena. Finally, we want to
mention that the proposed experimental setup can be quickly
changed to study other related wave phenomena. A wide
variety of highly nontrivial wave-like phenomena can be dis-
played with minimal experimental requirements.
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