

PY 451: Quantum Physics I Problem Set 9

This Week: This week will be devoted to spin angular momentum. The two major topics that we’ll cover are the dynamics of an electron in a magnetic field and the addition of angular momenta.

Reading for the week: Section 4.4 in the text.

Problems: due Friday, April 15 by 5:00pm.

1. For the spinor $\frac{1}{\sqrt{5}} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, calculate the probability that a measurement of $(3S_x + 4S_y)/5$ yields the value $-\hbar/2$.

2. Using the algebra of the raising and lowering operators, compute the spin matrices S_x, S_y, and S_z for a spin-$\frac{3}{2}$ particle.

3. Show that any 2×2 matrix M may be written in the form

 $$M = A + B \cdot \sigma,$$

 where σ is the vector whose elements are the Pauli matrices and B is some given vector. Determine the conditions on A and B such that (i) M is unitary, and (ii) M is hermitian.

4. A spin-$\frac{1}{2}$ electron is in an eigenstate of S_x with eigenvalue $\hbar/2$ at time $t = 0$. At this time, the electron is placed in a magnetic field of magnitude B that points in the z-direction for a time T. At time T, the direction of the field is suddenly changed so that it points in the y-direction over the time range $[T, 2T]$. At time $t = 2T$ a measurement of S_x is performed. Calculated the probability that this measurement gives the value $\hbar/2$.