Heat Capacity at Constant Pressure

For an ideal gas at constant pressure, it takes more heat to achieve the same temperature change compared to a constant volume process.

Conclusion:   CP > CV.

Defining statement:  dQ = nCP dT

From the 1st Law of Thermodynamics:   dQ = dE - dW

At constant pressure:   dW = - P dV = - nR dT.

For a monatomic ideal gas, where dE =
3
2
nR dT , we get:
dQ =
3
2
nR dT + nR dT =
5
2
nR dT

Thus for a monatomic ideal gas:   CP =
5
2
R = CV + R    (diatomic: CP =
7
2
R)

The specific heat ratio γ ≡ CP / CV

For a monatomic ideal gas:   γ =
CP
CV
=
5R
2
*
2
3R
=
5
3