1st law of thermodynamics (energy conservation): dE = dQ + dWon system
Step 1: Isothermal expansion at Th:
Step 2: Adiabatic expansion to Tc:
Step 3: Isothermal compression Tc:
Step 4: Adiabatic compression to Th:
After completing one cycle:
Wtot =
W1 + W3 =
NkTh ln(VB/VA) + NkTc
ln(VD/VC) = Qh - Qc
Now use rule for adiabats: TVγ-1 = constant
Dividing gives:
VB/VA = VC/VD
Important notes:
dE = dQ
- dWby system
W1 = ∫ P dV = NkTh
ln(VB/VA) > 0
E1 = 0
Qh =
NkTh ln(VB/VA)
W2 = ∫ P dV = a ∫ V-γ
dV = a/(1-γ)
[VC1-γ - VB1-γ] > 0
=
Nk/(1-γ) [TC - TB]
(use PVγ = a = NkT
Vγ-1)
Q = 0
E2 = - W2 = Nk/(1-γ) [TB -
TC]
W3 = ∫ P dV = NkTc
ln(VD/VC) < 0
E3 = 0
Qc =
| NkTc ln(VD/VC) |
W4 = ∫ P dV = ∫ V-γ
dV = b/(1-γ)
[VA1-γ - VD1-γ] < 0
= Nk/(1-γ)
[TA - TD]
= Nk/(1-γ) [TB - TC]
= - W2
Q = 0
E4 = - W4 = Nk/(1-γ) [TB
- TC] = - E2
The efficiency is: η
= 1 -
Qc
Qh
= 1 -
NkTc ln(VC/VD)
NkTh ln(VB/VA)
Th VBγ-1=
Tc VCγ-1
Th VAγ-1=
Tc VDγ-1
Final result for the efficiency:
η
= 1 -
Tc
Th