Example: Thermodynamics

some quantities can be computed using only the magnetization m,=0 sector
* spin-inversion symmetry can be used, smallest blocks

- spin-S state is (2S5+1)-fold degenerate (no magnetic field) — weight factor

- possible spin dependence of expectation value — average over m;=-S,...,S

CAH) 1
¢ = dt _T2(<H>_<H>)
o= B () - ma?)

Compared
with leading
high-T forms
X = (1/4)/T
C = (3/13)/T2




The Lanczos method (review)

If we need only the ground state and a small number of excitations
e can use “Krylov space” methods, which work for much larger matrices
* basis states with 107 states or more can be easily handled (30-40 spins)

The Krylov space and “projecting out” the ground state

Start with an arbitrary state )
* it has an expansion in eigenstates of H; act with a high power A of H

A
HMW) = chEﬁ\m = [ <600> + (g—;) 1) + .. )
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For large A, if the state with largest IEnl dominates the sum
* one may have to subtract a constant, using H-C, to ensure ground state
 even better to use linear combination of states generated for different A

\% Zwa Hm’qj> CL:O,...,A

. diagonahze H in this basis

In the Lanczos basis, H is tridiagonal, convenient to generate and use
* Normally M=50-200 basis states is enough; easy to diagonalize H



Constructing the Lanczos basis

First: construct orthogonal but not normalized basis {fn}. Define

Nm:<fm’fm>7 Hmm:<fm‘H‘fm>

The first state Ifo> is arbitrary, e.g., random. The next one is

f1) = H|fo) — aol fo)

Demand orthogonality

(J1lfo) = (folH|fo) — ao(folfo) = Hoo —aoNo — ao = Hoo/Nog

All subsequent states are constructed according to

‘fm—|-1> — H‘fm> — am‘fm> — bm—l‘fm—1>
Um = mm/Nma bm—l — Nm/Nm—l

Easy to prove orthogonality of all these states (<fm+1lfm>=0 is enough)



The hamiltonian in the Lanczos basis
Rewrite the state generation formula

H|fm) = |fm+1) + am|fm) + bm—1|fm—1)

Because of the orthogonality, the only non-0 matrix elements are

<fm—1 H fm> — bm—le—l — Nm
<fm H fm> = amNm
<fm—|—1 H fm> — Nm+1
But the f-states or not normalized. The normalized states are:
1
|¢m> — —‘fm>

VN,

In this basis the Hamiltonian matrix is
<§bm—1 H ¢m> —  V brm—1
<¢m H (/bm> — O
<¢m—|—1 H ¢m> — 'V b




Operator expectation values

Diagonalizing the tri-diagonal matrix = eigenstates in the Lanczos basis
* eigenvectors vy, energies Ej
e only some number of low-energy states (<< A) are correct eigenstates of H

To compute expectation values we go back to the original basis
A

Un(a) = U (Mm)pm(a), a=1,..., M

m=0

Convergence properties of the Lanczos method
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Ground state converges first, then successively excited states



Explicit re-orthogonalization
- after each Lanczos step (using the
method with normalized states

’qb 1> y ’¢m—|—1> o ZZO q®’§b2>
" 1= 0a;

Break-down of orthogonality

- will eventually happen for large m
- causes artificial degeneracies

- cured by re-orthogonalization

- all states have to be stored

¢ = (Pi|Pm+1)
N=16 k=0, p=1, z=1

no orthogonalization with orthogonalization
@ |7 b
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Spin correlations in the Heisenberg chain

Let’s look at the (staggered) spin correlation function

C(r) = (Si-Siyr)(=1)"

versus the distance r and at r=N/2 versus system size N

Theory (bosonization conformal field theory) predicts (for large r, N)

In'/2(r /1)

r

C'(r) «

Plausible based on N up to 32
 other methods for larger N

Power-law correlations are

a sign of a “critical” state;

at the boundary between

e ordered (antiferromagnetic)
e disordered (spin liquid)

0.25




Excitations of the Heisenberg chain

* the ground state is a singlet (S=0) foreven N  _ , , S—
- the first excited state is a triplet (S=1) : 00 S=0
* can be understood as pair of “spinons” 1.5 ®e 5=]
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Heisenberg chain with frustrated interactions

N A A AT o _
H = Z[J1Sz' +Sit1 + J2S;i - Sito] —

For the special point J2/J1=0.5, this model has an exact solution
Singlet-product states

W) =1(1,2)(3,4)(5,6) - -)
Vp)=(1,N)(3,2)(5,4) )

It is not hard to show that these are - B
eigenstates of H (we will do later) (a,0) = (Taly = laTs)/V2

The system has this kind of order (with fluctuations, no exact solution)

for all J2/J1>0.2411..... This is a quantum phase transition between
e a critical state

 a valence-bond-solid (VBS) state
The symmetry is not broken for finite N
* the ground state is a superposition of the two ordered states

Vo) ~ [Wa) +|¥p), |¥1) ~|Wa)—|¥p)

—alills—«llle—«llle —«llle —ellle—ell

e —«llle—«llls—«llle —«llle—«llle—



The VBS state can be detected in finite systems using “dimer” correlations

D(r) = (BiBiyr) = ((Si - Six1)(Sivr - Siv144))

—allle—«llle —<ellle —ellle —<lle —elll

Results from Lanczos diagonaization; different coupling ratios g=J2/J1
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It is not easy to detect the transition this way

- much larger systems are needed for observing a sharp transition

- other properties can be used to accurately determine the critical point gc
- level crossings [K. Okamoto and K. Nomura, Phys. Lett. A 169, 443 (1992)]



Determining the transition point using level crossings

Lowest excitation for the g=0 Heisenberg chain is a triplet
* this can be expected for all g<gc

The VBS state is 2-fold degenerate for infinite N
- and for any N at g=1/2

k)

- these two states are singlets [Wo) ~ |Wa)+ [Up)
* gap between them closes exponentially as N— (W) ~ | Wy) — |Up)
* the lowest excitation is the second singlet S ——
The two lowest excited states should cross at Jc B Tl Ty Ty T
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Extrapolating point for different N up to 32 gives g.=0.2411674(2)




