
Example: Thermodynamics
some quantities can be computed using only the magnetization mz=0 sector
• spin-inversion symmetry can be used, smallest blocks
• spin-S state is (2S+1)-fold degenerate (no magnetic field) → weight factor
• possible spin dependence of expectation value → average over mz=−S,...,S
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Compared
with leading
high-T forms 
χ = (1/4)/T
C = (3/13)/T2



The Lanczos method (review)

In the Lanczos basis, H is tridiagonal, convenient to generate and use
• Normally M=50-200 basis states is enough; easy to diagonalize H

The Krylov space and “projecting out” the ground state
Start with an arbitrary state |ψ〉 
• it has an expansion in eigenstates of H; act with a high power Λ of H
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If we need only the ground state and a small number of excitations
• can use “Krylov space” methods, which work for much larger matrices
• basis states with 107 states or more can be easily handled (30-40 spins)

For large Λ, if the state with largest |En| dominates the sum 
• one may have to subtract a constant, using H−C, to ensure ground state
• even better to use linear combination of states generated for different Λ

• diagonalize H in this basis
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Constructing the Lanczos basis

|f1⇥ = H|f0⇥ � a0|f0⇥

The first state |f0>  is arbitrary, e.g., random. The next one is

First: construct orthogonal but not normalized basis {fm}. Define

Nm = �fm|fm⇥, Hmm = �fm|H|fm⇥

Demand orthogonality

⇥f1|f0⇤ = ⇥f0|H|f0⇤ � a0⇥f0|f0⇤ = H00 � a0N0 � a0 = H00/N0

All subsequent states are constructed according to

|fm+1⇥ = H|fm⇥ � am|fm⇥ � bm�1|fm�1⇥
am = Hmm/Nm, bm�1 = Nm/Nm�1

Easy to prove orthogonality of all these states (<fm+1|fm>=0 is enough)



 The hamiltonian in the Lanczos basis

H|fm� = |fm+1� + am|fm� + bm�1|fm�1�
Rewrite the state generation formula

�fm�1|H|fm⇥ = bm�1Nm�1 = Nm

�fm|H|fm⇥ = amNm

�fm+1|H|fm⇥ = Nm+1

Because of the orthogonality, the only non-0 matrix elements are
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But the f-states or not normalized. The normalized states are:
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In this basis the Hamiltonian matrix is



Operator expectation values
Diagonalizing the tri-diagonal matrix → eigenstates in the Lanczos basis
• eigenvectors vn, energies En
• only some number of low-energy states (<< Λ) are correct eigenstates of H 

⇥n(a) =
��

m=0

vn(m)�m(a), a = 1, . . . ,M

To compute expectation values we go back to the original basis

Convergence properties of the Lanczos method
Example; 24-site chain
mz = 0, k = 0, p = 1, z= 1 
block size M=28416 

Ground state converges first, then successively excited states

�S2⇥ = S(S + 1)

Total spin S extracted
assuming that



Break-down of orthogonality
- will eventually happen for large m
- causes artificial degeneracies
- cured by re-orthogonalization
- all states have to be stored
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FIGURE 31. (a) The four lowest energies as a function of the Lanczos basis size for a 16-site Heisen-
berg chain with quantum numbers (k = 0, p = 1,z = 1). Multiple copies of the same state appear suc-
cessively due to loss of orthogonality. (b) The five lowest states of the same system obtained with re-
orthogonalization of the basis set.

states have converged to eigenstates of the operator). The energies are seen to converge
monotonically, whereas this is not necessarily the case for other quantities, as seen
clearly for the S= 2 states in this case. The details of the convergence of course depend
on the initial state from which the Lanczos basis is constructed (which in this case was
a random state). In this case all the four levels shown (E as well as S) were converged to
better than 10 decimal places at Λ = 60, with the ground state having converged at that
level already at Λ = 30. Going to larger system sizes, the convergence becomes a little
slower, but for this particular model there are no difficulties in converging several levels
up to the largest system sizes that can feasibly be studied.
One can accelerate the convergence of a Lanczos calculation by starting from a

state which is already close to the ground state. Such states may be constructed in a
number of ways, e.g., based on some approximate analytical method. But if there are no
convergence problems this may not be worth the additional effort. However, if a series
of calculations are carried out as a function of some parameter in the hamiltonian, then
subsequent calculations can be started from the ground state of the preceding parameter
value, which is likely to have a significant overlap with the next ground state. However,
it should be noted that if the initial state is a good approximation to the ground state,
it will have very small overlaps with the first few excited states, and hence only the
ground state is likely to converge rapidly in such a calculation. If excited states are also
needed, this problem can be circumvented by starting the next calculations using a linear
combination of eigenstates from prior calculations.

Loss and recovery of orthogonality. The Lanczos basis vectors should all be com-
pletely orthogonal to each other, but numerical truncation errors build up and eventually
lead to escalating loss of orthogonality for some Λ. This manifests itself as artificial de-
generacies, with excited states “falling down” onto lower states. An example of this is
shown in Fig. 31(a), where the four lowest energies of a 16-site chain in the ground-state
symmetry sector are graphed versus Λ. The higher energies are seen to successively col-
lapse onto the immediately lower energies, with only a few iterations taken for the levels
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with orthogonalizationno orthogonalization

N = 16, k = 0, p = 1, z = 1

Explicit re-orthogonalization
- after each Lanczos step (using the

        method with normalized states
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C(r) = ⇤Si · Si+r⌅(�1)r

Let’s look at the (staggered) spin correlation function

Spin correlations in the Heisenberg chain

versus the distance r and at r=N/2 versus system size N
Theory (bosonization conformal field theory) predicts (for large r, N)

C(r) � ln1/2(r/r0)
r

Plausible based on N up to 32
• other methods for larger N
Power-law correlations are 
a sign of a “critical” state; 
at the boundary between
• ordered (antiferromagnetic) 
• disordered (spin liquid) 



Excitations of the Heisenberg chain

B. Lake et al., Nature Materials 4 329-334 (2005)

Neutron scattering experiments 

• quasi-one-dimensional KCuF3

• the ground state is a singlet (S=0)  for even N

• the first excited state is a triplet (S=1)

• can be understood as pair of “spinons”



= J2

= J1

Heisenberg chain with frustrated interactions

For the special point J2/J1=0.5, this model has an exact solution

H =
N⇤

i=1

�
J1Si · Si+1 + J2Si · Si+2

⇥

 Singlet-product states

|�A⇥ = |(1, 2)(3, 4)(5, 6) · · · ⇥
|�B⇥ = |(1, N)(3, 2)(5, 4) · · · ⇥

(a, b) = (⇥a⇤b � ⇤a⇥b)/
⌅

2It is not hard to show that these are
eigenstates of H (we will do later)
The system has this kind of order (with fluctuations, no exact solution)
for all J2/J1>0.2411..... This is a quantum phase transition between
• a critical state
• a valence-bond-solid (VBS) state
The symmetry is not broken for finite N

• the ground state is a superposition of the two ordered states

|�0⇤ ⇥ |�A⇤+ |�B⇤, |�1⇤ ⇥ |�A⇤ � |�B⇤



The VBS state can be detected in finite systems using “dimer” correlations

D(r) = ⇥BiBi+r⇤ = ⇥(Si · Si+1)(Si+r · Si+1+r)⇤

It is not easy to detect the transition this way 

• much larger systems are needed for observing a sharp transition

• other properties can be used to accurately determine the critical point gc


- level crossings [K. Okamoto and K. Nomura, Phys. Lett. A 169, 443 (1992)]

Results from Lanczos diagonaization; different coupling ratios g=J2/J1



Determining the transition point using level crossings
Lowest excitation for the g=0 Heisenberg chain is a triplet
• this can be expected for all g<gc

The VBS state is 2-fold degenerate for infinite N 

• and for any N at g=1/2

• these two states are singlets

• gap between them closes exponentially as N→∞

• the lowest excitation is the second singlet

|�0⇤ ⇥ |�A⇤+ |�B⇤
|�1⇤ ⇥ |�A⇤ � |�B⇤

The two lowest excited states should cross at gc

Extrapolating point for different N up to 32 gives gc=0.2411674(2)

N = 16


