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Numerical studies
of quantum spin systems

Introduction to computational studies of spin systems

Using basis states incorporating conservation laws (symmetries)
* magnetization conservation, momentum states, parity, spin inversion
» discussion without group theory (1D)
- only basic quantum mechanics and common sense needed

Lanczos diagonalization (ground state, low excitations)
Dynamics; quantum annealing
How to characterize different kinds of ground states

- critical ground state of the Heisenberg chain
« guantum phase transition to a valence-bond solid in a J1-J2 chain



Quantum spins
Spin magnitude S; basis states [S71,5%,...,S2n> 8% = -S, ..., S-1, S
Commutation relations:

(SF,57] =ihS?  (weset h=1)
ST, Si 1 =157, 551 = ... =[S, 571 =0 (i #Jj)
Ladder (raising and lowering) operators:

S =57 +iSY, S; =57 —iS!
SPISE) = \/S(S+1)— S7(S7+1)[S7 +1).

S7IS7) = \/S(S+1)— S57(S7 —1)[SF — 1),

Spin (individual) squared operator: S?|S?) = S(S + 1)|S7)
S=1/2 spins; very simple rules

S7=+3)=|1), [S7=-3)=]1)
Sty =431 St =L S|
Silly=—3lla)  STll)=11) Sl
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Quantum spin models

Ising, XY, Heisenberg hamiltonians

- the spins always have three (x,y,z) components

* interactions may contain 1 (Ising), 2

(XY), or 3 (Heisenberg) components
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Quantum statistical mechanics
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Large size M of the Hilbert space; M=2N for S=1/2
- difficult problem to find the eigenstates and energies
- we are also interested in the ground state (T—0)
- for classical systems the ground state is often trivial

n=0




Why study quantum spin systems?

Solid-state physics

* localized electronic spins in Mott insulators (e.g., high-Tc cuprates)

* large variety of lattices, interactions, physical properties

- search for “exotic” quantum states in such systems (e.g., spin liquid)

Ultracold atoms (in optical lattices)
« some spin hamiltonians can be engineered (ongoing efforts)
- some bosonic systems very similar to spins (e.g., “hard-core” bosons)

Quantum information theory / quantum computing

* possible physical realizations of quantum computers using interacting spins
« many concepts developed using spins (e.g., entanglement)

* quantum annealing

Generic quantum many-body physics
- testing grounds for collective quantum behavior, quantum phase transitions
- identify “Ising models” of quantum many-body physics

Particle physics / field theory / quantum gravity

* some quantum-spin phenomena have parallels in high-energy physics
* e.g., spinon confinement-deconfinement transition

 spin foams, string nets: models to describe “emergence” of space-time and
elementary particles



Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)
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Many other quasi-1D and quasi-2D cuprates

CuO:2 planes, localized spins on Cu sites

superexchange mechanism

- Lowest-order spin model: S=1/2 Heisenberg

- Super-exchange coupling, J=~1500K
H=J

e chains, ladders, impurities and dilution, frustrated interactions, ...

Ladder systems
- even/odd effects
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non-magnetic impurities/dilution
- dilution-driven phase transition

S5,
(2,7)



The antiferromagnetic (Néel) state and quantum fluctuations
The ground state of the Heisenberg model (bipartite 2D or 3D lattice)

H = JZS .S _JZSZSZ L(SFST + 575

Does the Iong range “staggered” order survive quantum fluctuations?
- order parameter staggered (sublattice) magnetization; [H,ms] # 0

Z sz 5, ¢ = (—1)%TY (2D square lattice)

e

L 1a 4 s P PN

Mg = N (SA_SB) 1//‘\’ /d — Sy
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If there is order (ms>0), the direction of the vector is fixed (N=c)
- conventionally this is taken as the z direction

1 & ] . \
— N;@@U = [(S7)

* For S— (classical limit) <xms>—S
- what happens for small S (especially S=1/2)7?



Numerical diagonalization of the hamiltonian

To find the ground state (maybe excitations, T>0 properties)
of the Heisenberg S=1/2 chain

N

1=1
_JZSZ z—l—l S_I_Sz—i—l_l_s Sz—i:l—lﬂ

Simplest way computatlonally; enumerate the states
e construct the hamiltonian matrix using bit-representation of integers

0) =] 1,0, 1,.., 1) (=0...000)

D=IT4LL. D) (=0...001) g — b|H|a)

2> — \/7/\7\/7"'7\/> (: 0010) a,bE{O,l,...,QN—l}
N =|11.1,...,1) (=0...011)

bit representation perfect for S=1/2 systems

* use >1 bit/spin for S>1/2, or integer vector
e construct H by examining/flipping bits




spin-state manipulations with bit operations
Let a[i] refer to the i:th bit of an integer a (i.e., not array element)

e In Julia the bit-level function xor(a,2”1) can be used to flip bit i of a

e bits i and j can be flipped using xor(a,2*+2%})
)i

| a O|1]0(1({0]|O|1]|1

2" + 27 0{0]O(1[1][0]0]0

ieor(a,2' +2’) Toltlolol1]ol1]1

Other Julia bit-level functions Translations and reflections of states

T[‘

T'p

r
a<<N,a<<<N 0 27 [OJOJOI]1]0[1]1] 216 [1[1[0]1]1]0][0]0]
e shifts N bits to the “left” 1 34 [O]OJL]1]0]1]1]0] 177 [L[O]1[1]0]0[0]1]
2 108 [0[1[1[0[1[1[0]0] 99 (0[1[1]0]0]0][1]1]
a>>N 3 216 [1]1]0]1]1]0o]o[0] 198 [1]1]o[o]o[1]1]0]
» shifts right 4 177 [1Jo]1]1]o]o]o]1] 141 [1[o[o[o]1[1[0]1]
5 99 [0]1]1]o]0[0[1]1] 27 [0]o]o]1]1]o]1]1]
&, | 6 | 198 [I[L[0[O[O[1[1[0] 54 [O]O[L[L[0]1[1]0]
7

* bit-wise and, or

141 [1]0[0[0[1]1]0]1]

108 [0[1]1]0[1[1[0[0]




The S=1/2 Heisenberg chain hamiltonian
can be constructed according to:

do a = 0, 2N _ 1
do:=0,N —1
j =mod(i+ 1, N)
if (a[i] = a|j]) then
H(a,a) = H(a,a) + %
else
H(a,a) = H(a, a) —%
b = flip(a,i,j); H(a,b) = 3
endif
enddo
enddo

j is the “right” nearest-neighbor of i
e periodic boundary conditions



Diagonalizing the hamiltonian matrix
e on the computer
* gives the eigenvalues and eigenvectors

If U is the matrix whose columns are the eigenvectors of H, then
T
(n|Aln) = U " AU | ,n
IS the expectation value of some operator A in the n:th eigenstate

Problem: Matrix size M=2N becomes too large quickly
« maximum number of spins in practice; N=20
- M2 matrix elements to store, time to diagonalize «M3

Using conservation laws (symmetries) for block-diagonalization
We can choose the basis in such a way that the H becomes block-diagonal

H

* the blocks can be diagonalized individually
* we can reach larger N (but not much larger, N=50 is max)



Simplest example; magnetization conservation

N Example

ms = 2; S N=4, m=0
* blocks correspond to fixed values of m; $1=3 (0011)
* no H matrix elements between states of different m; s2=5  (0101)
* A block contains states with a given m; =6 (0110
* corresponds to ordering the states in a particular way 84=9  (1001)
ss=10 (1010)
Number of states in the largest block (m;=0): N!/[(N/2)!]2 se=12 (1100)

T
we have to store

these numbers
> in a vector

H —

this is now the
state label

Other symmetries (conserved quantum numbers)

e can be used to further split the blocks

* but more complicated
* basis states have to be constructed to obey symmetries
* e.g., momentum states (using translational invariance)



Pseudocode: using magnetization conservation
Constructing the basis in the block of nt spins 1

Store state-integers in ordered list sa, a=1,....,M

do s=0,2% —1

enddo
M = a

if (> . s[t] =nt) then a =a + 1; s, = s endif

How to locate a state (given integer s) in the list?
* stored map s—a may be too big for s=0,...,2N-1

s1=3 (0011

so=5 (0101)
s3=6 (0110)
s4=9 (1001)
s5=10 (1010)
se=12 (1100)

* instead, we search the list sa (here simplest way)

subroutine findstate(s, b)
bmin = L; bmax = M

do
b= bmin + (bmax — bmln)/2
if (s < sp) then
bmax = b — 1
elseif (s > s;) then
bmin =b + 1
else
exit
endif

enddo

Finding the location b
of a state-integer s in the list
* using bisection in the ordered list

Example; N=4, nt=2



Pseudocode; hamiltonian construction
- recall: states labeled a=1,....M

» corresponding state-integers (bit representation) stored as sa

* bit i, s4[i], corresponds to Sz

doa=1M
doi=0N—1
j =mod(:+ 1, N)
if (sq4[i] = sq|j]) then
H(a,a) = H(a,a) +
else
H(a,a) = H(a,a) — 3
S = ﬂip(saa 7/73)
call findstate(s, b)
H(a,b) = H(a,b) + 3
endif
enddo
enddo

1
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loop over states
loop over sites

check bits of state-integers

state with bits i and j flipped



