“Measuring’ physical observables
Order parameter of ferromagnetic transition: Magnetization

N
M = Z o;y M = Z]\\—{
=1

EXpGCtatiOI_l vanishes for finite system; calculate (|m/|), (m?)
Susceptibility: Linear response of <m> to external field

E = E(‘) — /l]\[, E(‘) =.J Z 0,0
d(m) ]

dh |},
Deriving Monte Carlo estimator
1
(m) = = Z me~ (Bo=hM)/T 7 _ Z —(Eo—hM)/T

X = (we can also consider h>0 here)

S
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1 1 ‘ ‘
X = o ((012) - 1)?)
Extrapolating to infinite size, this gives the correct result only

in the disordered phase (gives infinite susceptibility for T<Tc¢)

L1, .

We can also define the susceptibility estimator as
11

= — — ((M?*) — (|M])?
= w7 ((M?) = (M)
Gives correct infinite-size extrapolation for any T
Specific heat
_ id_E R ~E(C)/T _ i 1 2 2
€= NdT N (]T ZE N ?«E )~ (B )

Correlation function
C(r) = <(7-'i0-j(-f’,"zi)>

Average over all spins 1

N
1

C(F) — NZ<U Oj(7, L)>

1=1



Statistical errors (“‘error bars”)

Calculation based on M “bins”. What 1s the statistical error?
Consider M independent calculations (each based on n configs)

Statistically independent averages A i=1,....M
Full average Standard deviation
1 M M

A = A ! 12 A2
A= M Z 4, o' = \ M Z(*lz— - ‘1-)

=1 =1

But, we want the standard deviation of the average

M

1 12 A2
v \ M(M - 1) 2 (47— A7)

1=1

The bins have to be long enough (# of MC steps, n, large enough)
to be essentially statistically independent
(can be quantified by “autocorrelations” - later)



Simulations with an external magnetic field

here J>0 for ferromagnet
E——lg 0,0 —hga - et

-we added minus sign in front
(1,7) -a matter of taste...

For h>0, the average magnetization <M> > (0

Simple change in the acceptance probability

- W(S)) {

P(S — §;) = min W(s)

W(S,;) 2.J
W(SJ) B A 2_os)

Look at the program 1sing2d.;jl



Squared magnetization for different system sizes
(no external field): development of phase transition
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Finite-size scaling

2D Ising model
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In(L)
T>T,: <M2> — 0 (as 1/L2, trivial from short-range correlations)

T=T,: <M2> — 0 (non-trivial power law)

T <T,: <M2> — constant > () N
Extracting an exponent: A = aL® — In(A) = In(a) + aIn(L)

-Power-law: straight line when plotted on log-log scale
-The 1/L.2 form for T/J=2.5 not yet seen because of cross-over

behavior; close to the critical point, larger L required



Critical behavior and scaling

Correlation length € defined in terms of correlation function
C(Fij) = (oi0j) = (03)* ~ e 7915, 7y = |7 = 7

The correlation length diverges at the critical point

T —1T
E ~ t—l/’ — ’ (“I
| 1
v 1s an example of a critical exponent

(reduced temperature)

Universality

Critical exponents do not depend on microscopic details of

the interactions; only on the dimensionality of the system and

the order parameter:

e Ising, gas/liquid (scalar Z2-symmetric order parameter)

e XY spins, phase of superconductor (2D, O(2) order parameter)
* Heisenberg spins (3D, O(3) order parameter)

Phase transitions fall into universality classes characterized

by different sets of critical exponents



Other critical exponents

Order parameter for T < Tc (e.g., magnetization)

(m) ~ (T, —T)"

In practice, calculate (|m|), (m?) s
Susceptibility corresponding to order
1 1 ¢ ¢ 0 >
Y = —— ((M?) — (|M])? T
X = 57 (M) = ([M])%)
Diverges at the critical point
X~
. 11, 9 >
Specific heat (' = _TQ(<E ) — (E)7)
Singular at Tc
C ~ f—ﬂ

The exponent o. can be positive or negative (no divergence
If negative; O can correspond to log divergence)



Magnetization of 2D Ising ferromagnet

(Im]) ~(T.—T)”, (T'<T.) forinfinite system
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Magnetization squared (m?) ~ (T, — T)%°, (T < T,)
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The exponent 3 can be extracted for large L



Comparison with known 2D Ising model exponent
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It Tc 1s not known, use it as an adjustable
parameter and look for power-law behavior



Finite-size scaling
For a system of length L, the correlation length § < L

Express divergent quantities in terms of correlation length, e.g.,
5 N t—l/’ Y ~ =~ 57/1/

The largest value is obtained by substituting & — L
Xmax ~ L7

At what T does the maximum occur?
E=at™V =L = t~ L

The peak position of a divergent quantity can be taken
as Tc for finite L (different quantities will give different Tc)

Y,V can be extracted by studying peaks in £(7")

Similarly for specific heat;

a/v
Cma.x ~ L /



