The full basis and Hamiltonian construction

Random initial state

```
for i=1:n
    psi[i]=rand()-0.5
end
norm=1./dot(psi,psi)^0.5
psi.=psi.*norm
```

Perform niter Lanczos steps and diagonalize

```
f0=copy(psi)
nn[1]=1.
for m=1:niter
    perform code on previous page
end
```

Diagonalize the matrix of size niter*niter made using the diagonal and subdiagonal elements from aa and nn

Calculation of the states

In order to calculate states (wave functions) we have to perform another Lanczos procedure, since we have not saved all the states $|f_n>$

If we want the m-th lowest state, we transform with the m-th eigenvector obtained in the diagonalization. The eigenvectors are in the matrix states; vec=states(:,m)

```
Normalized states |\phi_n\rangle = N_n^{-1/2} |f_n\rangle
f0.=psi
psi.=psi.*vec[1]
hoperation(f0,f1)
f1.=f1.-aa[1].*f0
                                              If the \phi vectors
psi.=psi.+vec[2].*f1./nn[2]
                                              are not too large,
for i:2, niter-1
                                              they can also all
   hoperation(f1, f2)
                                              be stored and
   f2.=f2.-aa[i].*f1.-nn[i].*f0
   psi.=psi.+vec[i+1].*f2/nn[i+1]
                                              this procedure
   f0.=f1
                                              is then simpler
   f1.=f2
end
     We looked at the program "random" on the web site
```