First excited state of a 100*100 box vs number of iterations (N)

Graphing:

$|\Psi_0(x, y)|^2$

Starting from a random state
Second excited state of a 100*100 box vs number of iterations (N)

Graphing:

$|\Psi_0(x, y)|^2$

Starting from a random state
The first excited state should be doubly-degenerate.

- Lanczos only gives one state out of a degenerate multiplet.

Go back to the Krylov space:

\[H^m |\Psi\rangle = \sum_k C_k E_k^m |\Psi_k\rangle \]

If states \(k, j \) are degenerate, we have a term:

\[E_j^m (C_j |\Psi_j\rangle + C_k |\Psi_k\rangle) \]

For any \(m \), this vector points in the same direction in the subspace spanned by \(|\Psi_j\rangle, |\Psi_k\rangle \).

Acting with \(H \) cannot “separate” degenerate states.

Since the Lanczos basis spans the same Krylov space, we only get one state out of a degenerate multiplet of states. The particular linear combination depends on the initial state.

Numerical round-off errors can lead to apparent degeneracies (multiple copies of the same state). This indicates that the scheme breaks down as the basis becomes non-orthogonal.
Potential problem:
The normalization constants N_m can become very large (think of E_{0m})

Solution:
generate the normalized basis directly

- start with $|\phi_0\rangle$ arbitrary, normalized, and then

$$
|\phi_1\rangle = \frac{1}{N_1} \left(H |\phi_0\rangle - a_0 |\phi_0\rangle \right).
$$

$$
|\phi_{m+1}\rangle = \frac{1}{N_{m+1}} \left(H |\phi_m\rangle - a_m |\phi_m\rangle - N_m |\phi_{m-1}\rangle \right) = \frac{|\gamma_m\rangle}{N_{m+1}}
$$

The definition of N_m is different, and no b_m:

$$
a_m = \langle \phi_m | H | \phi_m \rangle
$$

$$
N_m = \langle \gamma_m | \gamma_m \rangle^{-1/2}
$$

Generate $|\gamma_m\rangle$ first, normalize to get N_{m+1}

The H-matrix is

$$
\langle \phi_{m-1} | H | \phi_m \rangle = N_m
$$

$$
\langle \phi_m | H | \phi_m \rangle = a_m
$$

$$
\langle \phi_{m+1} | H | \phi_m \rangle = N_{m+1}
$$
Example in two dimensions: box with open boundaries

Constructing $H | f_n \rangle$ (open corresponds to hard walls)

State n stored in $f_1(nx*ny)$
State $H | f_n \rangle$ constructed in $f_2(nx*ny)$

$t =$ hopping (kinetic) matrix element

- consider hopping into all boxes j

```
subroutine hoperation(f1,f2)
  f2(:)=vpot(:)*f1(:)
  do j=1,nx*ny
    x=1+mod(j-1,nx)
    y=1+(j-1)/nx
    if (x.ne.1)  f2(j-1)=f2(j-1)-t*f1(j)
    if (x.ne.nx) f2(j+1)=f2(j+1)-t*f1(j)
    if (y.ne.1)  f2(j-nx)=f2(j-nx)-t*f1(j)
    if (y.ne.ny) f2(j+nx)=f2(j+nx)-t*f1(j)
  enddo
```

Labeling for 4*4 elements

```
  13  14  15  16
  9  10  11  12
  5  6  7  8
  1  2  3  4
```
One step in the iteration of the a and b coefficients

\[|f_1\rangle = H|f_0\rangle - a_0|f_0\rangle \]
\[|f_{n+1}\rangle = H|f_n\rangle - a_n|f_n\rangle - b_{n-1}|f_{n-1}\rangle \]
\[a_n = H_{nn}/N_n, \quad b_{n-1} = N_n/N_{n-1} \]

if (m==1) then
 call hoperation(f0,f1)
 aa(0)=dot_product(f0,f1)
 f1=f1-aa(0)*f0
 nn(1)=dot_product(f1,f1)
else
 call hoperation(f1,f2)
 aa(m-1)=dot_product(f1,f2)/nn(m-1)
 bb(m-2)=nn(m-1)/nn(m-2)
 f2=f2-aa(m-1)*f1-bb(m-2)*f0
 nn(m)=dot_product(f2,f2)
 f0=f1
 f1=f2
endif

The method of constructing the normalized states directly is very similar (program on-line)
The full basis and Hamiltonian construction

Random initial state

do i=1,n
 psi(i)=rand()-0.5d0
endo

norm=1.d0/sqrt(dot_product(psi,psi))

psi(:)=psi(:)*norm

Perform \texttt{niter} Lanczos steps and diagonalize

f0(:)=psi(:)
nn(0)=1.d0

Do \texttt{m=1,niter}
 perform code on previous page
endo
d(:)=aa(:)
e(:)=sqrt(bb(:))
call diatri(niter,d,e,eig,states)
Calculation of the states

In order to calculate states (wave functions) we have to perform another Lanczos procedure, since we have not saved all the states $|f_n\rangle$

If we want the m-th lowest state, we transform with the m-th eigenvector obtained in the diagonalization. The eigenvectors are in the matrix `states`; \texttt{vec=states(:,m)}

\begin{verbatim}
f0=psi
psi=psi*vec(0)
call hoperation(n,f0,f1)
f1=f1-aa(0)*f0
psi=psi+vec(1)*f1/sqrt(nn(1))
doi=2,niter-1
 call hoperation(n,f1,f2)
 f2=f2-aa(i-1)*f1-bb(i-2)*f0
 psi=psi+vec(i)*f2/sqrt(nn(i))
 f0=f1
 f1=f2
enddo
\end{verbatim}

Normalized states $|\phi_n\rangle = N_n^{-1/2} |f_n\rangle$