Leapfrog/Verlet method including damping

We assumed velocity-independent force (acceleration) in

$$v_{n+1/2}=v_{n-1/2}+\Delta_t a_n$$
 we do not have \emph{v}_n for \emph{a}_n = $\emph{a}(\emph{x}_n,\emph{v}_n,\emph{t})$
$$x_{n+1}=x_n+\Delta_t v_{n+1/2}$$

We can still use this form, with $a_n \to a(x_n, v_{n-1/2}, t)$, where error is $O(\Delta_t)$ - x error is then $O(\Delta_t^3)$ instead of $O(\Delta_t^4)$ [see by expanding a(v) in v] To do better, first separate out dissipative part of force:

$$a(x, v, t) = \frac{1}{m} [F(x, t) - G(v)]$$

Consider the approximation

$$a(x_n, v_n, t_n) \approx [F(x_n, t_n) - G(v_{n-1/2})]/m$$

and use this for intermediate (^) velocity and position:

$$\hat{v}_{n+1/2} = v_{n-1/2} + \Delta_t [F(x_n,t_n) - G(v_{n-1/2})]/m$$

$$\hat{x}_{n+1} = x_n + \Delta_t \hat{v}_{n+1/2} \quad \text{has O($\Delta_t3) error}$$

Then we can obtain v_n with $O(\Delta_t^2)$ error: $v_n = (\hat{x}_{n+1} - x_{n-1})/(2\Delta_t)$

$$v_n = (\hat{x}_{n+1} - x_{n-1})/(2\Delta_t) + O(\Delta_t^2)$$

Now we can use this in the acceleration $a_n(x_n,v_n,t)$; $O(\Delta_t^2)$ error Summary of procedure:

$$\begin{split} \hat{v}_{n+1/2} &= v_{n-1/2} + \Delta_t [F(x_n,t_n) - G(v_{n-1/2})]/m \\ \hat{x}_{n+1} &= x_n + \Delta_t \hat{v}_{n+1/2} \\ v_n &= (\hat{x}_{n+1} - x_{n-1})/(2\Delta_t) \\ v_{n+1/2} &= v_{n-1/2} + \Delta_t a_n \\ x_{n+1} &= x_n + \Delta_t v_{n+1/2} \end{split} \qquad \text{vn used here in an} \end{split}$$

More than twice as much work as the standard Leapfrog method

$$v_{n+1/2} = v_{n-1/2} + \Delta_t a_n$$
$$x_{n+1} = x_n + \Delta_t v_{n+1/2}$$

but the $O(\Delta_t^4)$ error is now maintained (work pays off)

Test by running friction.ipynb on the web site (tomorrow's discussion)