Solving Classical Equations of Motion

Newton’s equation of motion govern the dynamics of:
- solar systems, galaxies...
(some relativistic effects, some times large, e.g., binary start systems)

- “everyday motion”; projectiles, baseballs, mechanical machines

- non-electronic aspects of solids, liquids and gases
(some quantum effects for light atoms/molecules)

- potentials from quantum mechanics

We will discuss basic numerical algorithms
(discretized time axis)

- 1D equation, properties of different integrators
- 2D motion, driving forces, disspation...
- chaos in classical dynamic systems (will be postponed to later)

1D motion - single particle x(t)
velocity and acceleration:

i(t) = dflf) _ (), i) =2 digt) — a(t)

Given a force F, the equation of motion is

1 _ . .
#(t) = —Flz(t), &(1), 1] potential depending on x or x(t)
m - dissipation (friction) depending on v
This 2nd order diff equation - location independent driving (t dep)
can be written as 2 coupled 1st order egs:
z(t) = v(t)

0(t) = alz(t), v(t),]
Discretized time axis (constant time step):
te{t())tla"'at]\f}? At:ti+1_ti

Start with given initial conditions at to: x=xo, v=Vvo
- use approximation to diff equation to integrate forward in time

To go from time t, to tn+1, in general we can expand around t,
Tpil = Tpn + DUy + %Afan + %A?an + ...
Unt1 = Up + Ava, + %Afan + %Afdn + ...

Simplest case: go to linear order:

Euler forward algorithm

LIn+1 — Tnp + Atvn

error in x4, is O(A?)
Un4+1 = Un + Atan

Julia implementation

for i=1:nt the path [x(t),v(t)] may be written to
t=dt*(i-1) a file or processed in some other way.
dowhatever(x,v,t)
a=acc(x,v,t) Note: for consistency with the
X=x+dt*v series expansion, the acceleration
v=v+dt*a

end should be evaluated with “old” x,v,t (i-1)

The Euler algorithm is not very good in practice
- should not be used in any serious work

lllustration of the Euler method
Harmonic oscillator
E = %ka + %mUQ (F = —kx) Periodic motion; w = \/E
m
Test case: k=m=1, xo=1, vo=0
Comparing two different time steps: 4=0.01, 0.001

1.5 I | I I I | I I I I | I | I | I |

PR AART TESS]

0.5

0.7 =

0

x(1)
E(t)

T

-0.5

AR R T)

_15 1 | 1 | 1 | 1 | 1 1 05 M

0 10 20 30 40 50 0 10 20 30 40 50
t t

Amplitude increases with time, unbounded energy error
- there are algorithms with bounded energy error for periodic motion

Leapfrog (Verlet) Algorithm
Use second-order form of x:
Tpai1 = Tp + Apvy, + %Afan + O(AY)
and recall first-order form of v:
Vpt1 = Up + Dgay, + O(A?)
Re-write x formula as
Tpa1 = Ty + A¢(vy + %Atan) + O(AY)
where we can identify “half-step” velocity v, 1/2 = vy + 2Asa, + O(A})
Tpnt1 = Tn + DiUpy1/2 + O(A?)
We will only have v on the half-step, use vn-1/2 to obtain vn+1/2

(cubic step error remains intact) Unt1/2 = Un + (A¢/2)an, + (A¢/2)%a, + O(AF)
Un—|—1/2 — Un—1/2 + Atan Un—-1/2 = Un — (At/Q)an + (At/2)2dn - O(A?>
LTnt1 = Tp -+ Atvn+1/2 — Un+1/2 = Up—1/2 T+ anA¢ + O(A?)

Note: The acceleration (force) at the integer step n is required
- we do not have vy
- force cannot be v-dependent here; an=an(xn,t)

