More about mutable/unmutable, variable bindings

A variable in julia is bound to (refers to, points to) a value

var » value - var is a memory address
- value is stored at that address

- var2 = var means that var2 will point to the same value as var

when an unmutable object is changed (e.g., var=var+1)
- ‘value’ may not change, but var points to another address with new value

when a mutable object changes
- the address does not change but the contents of that address change

An array is an example of a mutable object
- the binding is to the first memory address where the array is stored

Of relevance to how arguments are passed (from Julia doc):

Julia function arguments follow a convention sometimes called "pass-by-sharing", which
means that values are not copied when they are passed to functions. Function
arguments themselves act as new variable bindings (new locations that can refer to
values), but the values they refer to are identical to the passed values. Modifications to
mutable values (such as an array) made within a function will be visible to the caller.

More about functions
function func(a,b,c)

return d,e without return, the last evaluated expression is returned
end

return or return nothing returns object ‘nothing’
Single-expression function expression can be

func(arguments) = expression multiple statements between

func(a,b,c) = a+b-c begin ... end
Functions are objects that can be assigned, passed to other functions, etc
func2=func somefunction(func,..)

Read about: optional arguments, Varargs (arbitrary number of arguments), keywords...

Anonymous function

Example from Julia documentation

julia> map(x -> x*2 + 2x - 1, [1, 3, -1]) map(function,collection)

3-element Vector{Int64}: is a Base function, performs
2 function on each element of

14 .
9 collection

Modules
Can be used to organize codes

- make modules with functions and data structures for specifc tasks
- variables and functions can be exported to code block using the module

module ModName

export varil, funcl

end

include(“modname.j1”)
using .ModName using .ModName
if module declared in same file if in a different file

Even functions/data not exported - include() inserts the contents of the file

can be accessed: ModName.vari2 Those exported do not

Modname. func2 need ModName
. before module name required if the module is not installed as a package
- only make a package if you have developed a stable module

Example in module.jl, to be used with main.jl

Using modules available in the “community”
Packages (which may involve several modules) that are registered can be
added with the REPL package manager

Information about the registry and all its packages available here
https://github.com/JuliaRegistries/General
You can register your own package if you make something useful!
There is a search function, but just googling “Julia whatyouwant” may be better
Example: after googling “Julia integration” | quickly found QuadGK
https://juliapackages.com/p/quadgk

Installation in the REPL package manager (“]” at the Julia prompt)

(@vl.6) pkg> add QuadGK
Updating registry at “~/.julia/registries/General’
Resolving package versions...
Installed QuadGK - v2.4.1
Updating “~/.julia/environments/v1.6/Project.toml’
[1fd47b50]
Updating “~/.julia/environments/v1.6/Manifest.toml’
[1fd47b50] /
Precompiling project...
1 dependency successfully precompiled in 3 seconds (136 already precompiled, 1 skipped during auto
due to previous errors)

Now we can integrate
. . . julia> integral, err = quadgk(x -> exp(-x~2), 0, 1, rtol=le-8)
functions of one variable: (0.746824132812427, 7.887024366937112e-13)

julia> using QuadGK

