Bit representation of floating-point numbers
Arbitrary real-valued numbers cannot be represented by bits

- approximated by certain rational numbers; “floating-point numbers”
B-1 3 2 10

- p bits for “significand” (fraction, mantissa)
- m bits for exponent o i I
] ] here bits b(i) are counted | |
- 1 sign bit 1 from left (i=0) to right (i=p-1) m P
p— ' p—1 '
R =sign x 2°) b(i)27" — sign x 2° (1 + Zb(z’)Z(ZH)) 1 < significand < 2
i=0 =0

The exponent can be positive or negative
- exactly how the exponent is stored is a bit subtle (we don’t need the details)

On most computers:

- single-precision (4 bytes); p=23, m=8
- double-precision (8 bytes); p=53, m=10 (precision about 16 decimals)
- some times 16-byte quadruple precision is available

Special values represented
+0,-0, +infinity, -infinity, “not a number” NaN

(precision about 7 decimals)



Example: floats, random numbers, arrays, multiple dispatch [randomarray.jl]

function makerandom(n::Int) First method, Int argument
r=Array{Float64} (undef,n) - array with n elements (undefined contents)

for ifl N - one way to loop over values i
endr[1]=rand () - i:th element assigned a random value in [0,1)
return r

end

function makerandom(m::Float64) Second method, Float64 argument
n=round(Int,m) - round to closest integer and convert to Int
r=Array{Float32} (undef,n)
for 1=1:n In general, any number of methods

rii1]l=rand() can be used, as long as they can be

end uniquely identified by their arguments
return r (more on functions later)

end

Two function declarations, same name, different argument types
- it’s really one function with two methods
- the method that matches calling raguments is dispached



Code calling this function:
n=5
m=convert(Float64,n)
a=makerandom(n)
for 1=1:n

println(i," ",a[1])
end
a=makerandom(m)
for i=1:n

println(i," ",a[i])
end

Output

Note, in second method:
Float64 value is assigned to a
Float32 variable; OK but of
course some precision is lost

Floating-point types in Julia
Floatle, Float32, Float64

\ 4

A A A A A A A A A A
UGrWNEFERUIEEWNERE

(S IS RO R O RS I S I oS B S RO

- converts integer n to 64-bit float

. 7/68629462884634
.2031804749902122
.1664474670812679
.5501970241421752
.4978716671303165
.5057016
.65821403
.2276439
.83020467
.84432185



Examples of matrix operations [matrix.jl]
Function to maxe a random n*n matrix

function randmatrix(n::Int)
mat=Array{Float64} (undef,n,n) matrix = 2-dimensional array
for j=1:n
for i=1:n
mat[i,j]l=rand()
end
end
return mat
end
a=randmatrix(n)
b=randmatrix(n)

c=axb here * means actual matrix multiplication
for i=1l:n
println(af1,:]1," ",b[1,:1," ",cl[i,:1) :meansall elements
end
c=a.xb point . before operator means element-by-element

b=inv(a) Base function for matrix inversion



Notes on variable/function names, non-ascii symbols
Names are case-sensitive; “Var” is different from “var”
- customary to use lower case for variables and function names

- use upper case first letter for module and type names
- functions that change arguments end in “!” (I violate this rule...)

Names of variables and functions can contain Unicode characters
- in addition to the conventional ASCII characters

Example: function %% (y) [specialnames.jl]
a=1
B=1
b6=a+B+y
return o
end

println(£Z(2))

Depending on your editor/environment, it may be painful to enter characters
- in the REPL, Latex commands can be used, e.g., \delta<tab> for 6

- probably better to avoid using special characters in code



Elementary Mathematical Operations from julialang.org

Expression

+X

-X

X +y
X -y
X *y
X /'y
X *y
x\y
x My
X %y

Name

unary plus
unary minus
binary plus
binary minus
times

divide
integer divide
inverse divide
power

remainder

Updating ops: +=
X +=Yy is equivalent to x = x + y, etc.

Description

the identity operation x op y is really equivalent to
op(x,y), i.e., op is a function
with two arguments. Try in
performs addition the REPL:

performs subtraction

maps values to their additive inverses

|julia> +
performs multiplication + (generic function with 190 methods)

performs division

x/y,truncatedtoaninteger ~ same as div(x,y); + is \div<tab> in the REPL

equivalenttoy / x
raises x to the yth power

equivalent to rem(x,y)

-= *= /= \= = %= A= = |: V= >>>= >>= <<=


http://julialang.org

Rounding functions

Function Description Return type
round (x) round x to the nearest integer | typeof(x)
round (T, x) | round x to the nearest integer | T

floor(x) round x towards -Inf typeof(x)
floor(T, x) | round x towards -Inf T

ceil(x) round x towards +Inf typeof (x)
ceil (T, x) round x towards +Inf T

trunc(x) round x towards zero typeof(x)
trunc(T, x) | round x towards zero T

Functions related to division

Conversion function

Convert(T,x)
converts x to type T if possible

Function Description

div(x,y), truncated division; quotient rounded towards zero

X+y

fld(x,y) floored division; quotient rounded towards -Inf

cld(x,y) ceiling division; quotient rounded towards +Inf

rem(x,y) remainder; satisfies x == div(x,y)*y + rem(x,y); sign matches x
mod(Xx,Vy) modulus; satisfies x == fld(x,y)*y + mod(x,y); sign matches y




Sign related functions

Function Description

abs (x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indicates the sign of x, returning -1, 0, or +1
signbit(x) indicates whether the sign bit is on (true) or off (false)
copysign(x,y) | a value with the magnitude of x and the sign of y
flipsign(x,y) | a value with the magnitude of x and the sign of x*y

Common math functions

Function Description

sqrt(x), vx square root of x

cbrt(x), ¥x cube root of x

hypot(x,y) hypotenuse of right-angled triangle with other sides of length x and y
exp(x) natural exponential function at x

expml(x) accurate exp(x) -1 for x near zero

ldexp(x,n) x*27~n computed efficiently for integer values of n

log(x) natural logarithm of x

log(b,x) base b logarithm of x

log2(x) base 2 logarithm of x

1oglO(x) base 10 logarithm of x

loglp(x) accurate log(1+x) for x near zero

exponent (x) binary exponent of x

significand(x) binary significand (a.k.a. mantissa) of a floating-point number x

Many special functions in package SpecialFunctions

Trig functions (radian args)

sin cos tan cot sec cscC
sinh cosh tanh coth sech csch
asin acos atan acot asec acsc
asinh acosh atanh acoth asech acsch
sinc coscC

Trig functions (degree args)

sind cosd tand cotd secd cscd
asind acosd atand acotd asecd acscd



Boolean Data Type and boolean operations
The type Bool is for variables with values true or false

- it uses 8 bits (even though 1 bit would be enough)
- Bool is a subset of Int (true=1, false=0)
- In most respects Bool is the same as Int8

Example: function trueorfalse(b::Bool) [booljl] Output: true
println(b) 1
println(bx1) 2
println(bx2) true
println(bxtrue)
end false
trueorfalse(true) 0
println() 0
trueorfalse(false) false
Boolean ops:  !x - negation
X andy are X & y - and (short-circuit; only evaluates y if x is true)
of type boolean || y - or(short-circuit; only evaluates y if x is false)

(expressions)



Numerical comparisons from julialang.org

Operator Name

These all result in

== equality
“true” or “false”
=, # inequality boolean values
< less than
<=, s less than or equal to 1f a
dosomething
> reater th .
sreaterthan elseif b
>=, > greater than or equal to doseomethingelse
_ else
Used, e.g., in doyetanotherthing
“if-elseif-else” control structure end
or “ternary operator” X?2Y :2Z

- operator with 3 args - if X is true, evaluate Y

Program ifelse.jl online - if X is false, evaluate Z


http://julialang.org

Bitwise boolean Operations from julialang.org
Performs boolean operations on

- individual bits of one argument

- same-index bits of two arguments

Expression Name Examp|eS Of these opsS
in program ‘bitwise.jI’ on the web site
~X bitwise not
X &y bitwise and
X |y bitwise or
X Yy bitwise xor (eXCIUSive Or) - same as Xor(x’y)
X >>>y logical shift right - shifts all bits
X >> y arithmetic shift right - leaves sign bit (1s are shifted in if negative)

X <<y logical/arithmetic shift left - does not preserve sign (0Os shifted in on right)


http://julialang.org

Vectorized operators
All operators acting on single variables have vectorized “dot” versions

For an array x (any number of dimensions):
.0p x performs “op” on each element

Example, for a vector x of lengt n
for i=1:n
x[1i] = x[1]72
end

does the same as X = X.A2 also works, but allocates

X .= X.72 a new X if x already exists (slower)
can also be expressed with the @. macro
@. X = x™2

Examples in program timing.jl online
- this program also introduces functionality for timing code for performance



