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QUANTUM ANNEALING OF A SPIN GLASS

In a quantum annealing process, some parameter s in a Hamiltonian H(s) is changed slowly as a
function of time, i.e., s = s(t) and the Hamiltonian is time dependent; H(t) = H(s(t)). In typical
protocols used in quantum computing based on quantum annealing, the Hamiltonian is written in
the following way with two non-commuting parts H0 and H1;

H(t) = [1− s(t)]H0 + s(t)H1, (1)

where s is changed smoothly from s = 0 to s = 1 at fixed velocity v between the initial time t = 0
and final time t = T ;

s(t) = vt, v = 1/T. (2)

The term H0 is in some sense simple, so that the system (wave function) at t = 0 can be prepared
to be in the ground state of H(t = 0) = H0. In the basis considered, this state should be highly
fluctuating, i.e., it is a superposition of many basis states (often the equal superposition of all basis
states). At the other end, H(t = T ) = H1, the Hamiltonian corresponds to a purely classical
(diagonal in the basis used) potential energy. In quantum computing applications, this potential
energy is obtained as a result of a mapping from some complex optimization problem and the goal is
to find the ground state of this Hamiltonian H1. A main focus has been on Ising-type models with
highly frustrated random interactions (spin glasses and related satisfiability problems of interest in
quantum information science).

The motivation for this kind of setup is that, if the annealing process is sufficiently slow, the
adiabatic theorem guarantees that the system will stay in its ground state of H(s) at all times,
assuming that it can be regarded as completely isolated from its environment. Thus, we start by
preparing the system in a trivial but highly fluctuating state at t = 0, and at t = T we end up
with a state—a single basis state—which is the ground state of a complicated Hamiltonian H1.
In principle the ground state can be degenerate (and this is in fact quite common), and if so one
would obtain one of these when performing a measurement at the end of the process.

Spin glass model

In this assignment you will solve the time dependent Schrödinger equation for an annealing process
on a quantum spin model (an Ising model in a transversal field) defined by the Hamiltonian (1)
with the terms

H0 = −
N∑
i=1

σx
i = −

N∑
i=1

(σ+
i + σ−

i ), (3)

H1 = − 2

N − 1

N∑
i=1

∑
j>i

Jijσ
z
i σ

z
j , (4)
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where σz
i = ±1 and σx

i = σ+
i + σ−

i are z and x Pauli spin matrices for the spins i = 1, . . . , N .

The term (3) is trivial, having a ground state with all spins fully polarized in the x direction, i.e.,
at t = 0 we start the annealing process with the state

|Ψ(t = 0)⟩ =
N∏
i=1

1√
2
(| ↑⟩i + | ↓⟩i) = 2−N/2

∑
σz

|σz
1 , . . . , σ

z
N ⟩, (5)

which is the equal superposition of all the 2N basis state in the basis used the computation. The
Ising interactions Jij in (3) couple all the spins in a random way, with the numbers Jij drawn from
a distribution of the type illustrated in Fig. 1;

P (J) =

{
a, for − 1 ≤ J < 0,
1− a, for 0 ≤ J ≤ 1.

(6)

There are N(N − 1)/2 distinct pairs of spins and double-counting is avoided by restricting the
second sum in Eq. (4) to j > i. The N -dependent factor in front of the H1 sum gives an extensive
energy (i.e., tyhe total energy is proportional to N), which is clearly the case when all the couplings
are positive (so that the classical ground state is a fully polarized ferromagnet) but is also true in
many other cases. In some cases (for some coupling distributions with equally mixed signs of Jij),
the energy defined as in Eq. (4) is not extensive (but this is nothing we need to worry about here).
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Figure 1: Example of the probability distribution (6), here with the parameter a = 1/3.

For a = 0, all the couplings are ferromagnetic [note the negative sign in front of the Ising term in
the Hamiltonian (4)] and the ground state is a trivial ferromagnet with a doubly-degenerate ground
state (all spins “up” or all spins “down”). For a > 0, the ground state can be very complicated
and, if N is large, it can be very difficult to find the ground state, with the time taken to find it
scaling exponentially with N with all known classical algorithms. The question is whether quantum
annealing can find the ground state in a time scaling only as a power law in N . Here we will consider
only small N , of the order 10, and we will not be able to answer this question. The goal is only to
investigate how the quantum annealing process behaves as a is increased from 0.

Runge-Kutta solution of the Schrödinger equation

Recall the Runge-Kutta (RK) method, which we used earlier to solve classical equations of motion.

2



It is a general method for a first-order differential equation of the form

dx(t)

dt
= f [x(t), t]. (7)

On a uniform time grid with ∆t = tn+1 − tn and x(tn) ≡ xn, the fourth-order RK algorithm (with
step error of order ∆5

t ) can be written as

k1 = ∆tf(xn, tn),

k2 = ∆tf(xn + k1/2, tn+1/2),

k3 = ∆tf(xn + k2/2, tn+1/2),

k4 = ∆tf(xn + k3, tn+1),

xn+1 = xn +
1

6
(k1 + 2k2 + 2k3 + k4), (8)

where the intermediate numbers k1 − k4 have to be evaluated successively.

This RK algorithm can be directly generalized to a matrix differential equation. We are interested
in the Schrödinger equation with a time dependent Hamiltonian;

∂Ψ({σz}, t)
∂t

= −iH(t)Ψ({σz}, t), (9)

where we work in the basis {σz} = {σz
1 , . . . , σ

z
N} of the z spin components. Instead of a function f

depending on x and t in Eq. (7), we now have to act with the Hamiltonian on the wave function,
which is easy to do when we work in the matrix form of the Schrödinger equation.

Thus, instead of the scalar x in Eq. (8) we now work with vectors Ψn with 2N components Ψn(a)
at time-step n, each element a of the vector representing the weight of a basis state in the bit
representation (a = 0 corresponding to all down spins etc.). To integrate one time step we have to
carry out the following operations corresponding to Eq. (8):

ϕ1 = −i∆tH(tn)Ψn,

ϕ2 = −i∆tH(tn+1/2)[Ψn + ϕ1/2],

ϕ3 = −i∆tH(tn+1/2)[Ψn + ϕ2/2],

ϕ4 = −i∆tH(tn+1)[Ψn + ϕ3],

Ψn+1 = Ψn +
1

6
(ϕ1 + 2ϕ2 + 2ϕ3 + ϕ4), (10)

where ϕ1, . . . , ϕ4 are also vectors with 2N elements. For each step we have to carry out four
multiplications of the Hamiltonian matrix (at three different time points) with a vector.

Starting program for non-random ferromagnet

The program given to you with this assignment carries out the RK integration for a system with
all ferromagnetic couplings Jij = 1. The input data, read from the file read.in are: The number
of spins N , the total time T , the RK time step ∆t, and the frequency fw at which output data
should be written to a file. These input parameters should be written on separate lines in the order
N , T , δt, fw.
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Figure 2: Sucess rate (left) and excess energy (right) in annealing processes with velocity v = 1/10
for systems with different number of spins N .

The output data are written to res.dat on lines with t, Ps(t), Es(t) for times t separated by wf

steps of size ∆t. Ps is the probability of the system being in the classical s = 1 ground state
(i.e., the state with the lowest Ising energy), which can be interpreted as the success rate of the
optimization. Es is the excess Ising energy above the lowest value, which is another measure of
the efficiency of the optimization procedure. We would certainly be interested in these quantities
at the end of the process, t = T , but it is also interesting to look at their behaviors throughout the
simulation.

Programming task

You should modify the program so that it can study systems with couplings distributed according
to Eq. (6). Here it may be useful to first generate the sign of each coupling first using one random
number Jij < 0 with probability a and Jij > 0 with probability 1−a), and then use another random
number between 0 and 1 for the magnitude

Since the results will depend strongly on the coupling realization, the program should average over
many realizations. As always in such cases, we should calculate error bars for the averages and you
are given the program used to compute averages based on bin averages to be generated by your
program. The input parameters in read.in should now be: N , a, T , δt, fw,bins,reps (in this
order). where a is the parameter in the probability distribution, bins is the number of bins to be
generated, and reps is the number of random instances of the couplings to be run for each bin.
The output file with bin data should be called res.dat and it should be in the same format as
the output file from the starting program, but now with rows of bin averages instead of the results
from the single run.
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Investigations

Part 1

As always, we have to check convergence with the time step ∆t. To do this, use the starting
program and repeat calculations such as those illustrated in Fig. 2 for N = 8. Use two different
total integration times; T = 10 (v = 0.1) and T = 100 (v = 0.01) and vary ∆t. Show figures
illustrating poor performance when ∆t is too large and convergence as ∆t is reduced.

Part 2

Use your own program and carry out calculations for a = 0, 1/4, and 1/2. Note that for a = 0
the system is a random ferromagnet, so it is different from part 1. You have to check how many
repetitions and bins you need in order for the error bars to be reasonably small (you can keep
bins=20 and vary reps). The way you carry out the investigation is open eneded. You should
investigate different system sizes and velocities, and based on this work draw some conclusions on
the efficiency of quantum annealing to reach the ground state. The computing time increases very
quickly as a function of N and this will limit how far you can go in size. Just do whatever you can
with your resources.

In addition to plots showing behaviors over the whole annealing path (s ∈ [0, 1] as in Fig. 2), you
should also focus on the final point s = 1, which is the point of main interest in quantum computing
(the ability of the system to reach the classical ground states, i.e., the solutions of corresponding
optimization problems). Produce plots of the success probability and the excess energy versus the
system size N for different velocities and verrsus the velocity for different system sizes.
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