
Homework 6; due Thursday, November 21

PY 502, Computational Physics, Fall 2024

Department of Physics, Boston University

Instructor: Anders Sandvik

EQUILIBRATION TIME SCALING IN THE 2D ISING MODEL

In this assignment you will carry out Monte Carlo simulations of the 2D ferromagnetic Ising model,

E = −
∑
⟨i,j⟩

σiσj , (1)

where the sum is over nearest-neighbors on the square lattice with N = L2 spins. There is no
external magnetic field. We will focus on the equilibration properties when starting a simulation
from a very atypical state (fully polarized) at the given simulation temperature. You can use and
modify the program available on the course web site, or write your own from scratch.

Relaxation to equilibrium and magnetization reversals

The initial state used in a Monte Carlo simulation is normally not a typical state of the equilibrium
distribution at the given model parameters. Therefore, some time (number of update cycles, what
we call Monte Carlo steps) have to be devoted to equilibrate the system before physical observables
are “measured” on the generated configurations. The time-scale of the equilibration can depend
strongly on the model parameters. In this assignment you will investigate characteristic time scales
of the Ising model as it approaches equilibrium when starting from a very atypical state; the one
with all spins set to “up” (fully polarized). You will study the magnetization,

m =
1

N

N∑
i=1

σi, (2)

as a function of the simulation time.

Fig. 1 showsm versus the simulation time, measured in Monte Carlo steps (each step consisting ofN
spin-flip attempts using the Metropolis algorithm) in three independent runs, in each case starting
from the fully polarized state. The temperature T = 2 is below the critical temperature (Tc =
2 ln−1(

√
2 + 1) = 2.2691853142130...) and we can see that the magnetization typically fluctuates

about the values m ≈ ±0.9. Occasionally there is a “rare event” in which the magnetization goes
through 0 and reverses, and also one can see cases where m comes close to 0 or goes through 0 but
quickly fluctuates back to typical magnetizations on the side of 0 where it came from. Note that
here the system is already quite strongly ordered, i.e., the typical m values are close to 1. As we
move closer to Tc the magnetization will fluctuate closer to 0.

By repeating such simulations from the same starting state (here with m = 1) many times with
different streams of random numbers, one can investigate the average time dependent magnetization
⟨m(t)⟩ and how it approaches 0. This will be part 1) of this assignment. We can also investigate
the average time it takes for the system to first reach a state with m = 0 (which can strictly happen
only if the system volume N is even, i.e., the length L is even, which we will assume here), which is
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Figure 1: Magnetization as a function of simulation time in three different runs (i.e., with different
sequences of random numbers) for the 2D Ising model with N = 82 spins at temperature T/J = 2,
in each case starting with the fully polarized (m = 1) configuration.

part 2) of the assignment. Up to a factor 1/2, the average time to reach m = 0 should be similar to
the time-scale of magnetization reversals, since from an m = 0 state the system will move to m < 0
or m > 0 with equal probability. It will not be exactly equal to the time scale of magnetization
reversals defined in the equilibrium, but, as you should be able to see in your results from part 1),
the differences when measuring it from the initial m = 1 state should be very small.

Programming task

Write a 2D Ising Metropolis simulation code (use elements of the code on the course web site if you
like) where the following input data are read from a file read.in (or using some other appropriate
means to input the data, e.g., if you are working with Jupyter notebook):

L,T,bins,reps,steps

Here L (integer) is the system length, T (real) the temperature, bins the number of simulation bins
for which averages are written out, reps the number of times the equilibration process (simulation)
is repeated for each bin, and steps the number of Monte Carlo steps used in each simulation. For
reference, in Fig. 1 we have steps=1000 and reps=3.
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The same program should be used for both part 1) and part 2) of the assignment. For part 1) the
average magnetization as a function of simulation time t (Monte Carlo steps) should be computed
for t = 1, 2, . . . , steps. For part 2), we want to let a simulation run until m reaches 0 and therefore
the number of steps is not predetermined. In this case the input number of steps should be steps=0,
and each time m = 0 is found a new simulation is started.

In both parts, the spins should be initialized to all +1 before each of the simulations. The total
magnetization M (not divided by N ; m = M/N) is then M = N . When the Metropolis spin flips
process is carried out, M should be updated each time a spin has been flipped; M → M +2σi after
σi → −σi. Each simulation should use a different random number stream, which is automatically
accomplished when only initializing the random number generator once in the beginning of the
program (which does not even have to be done if you use the built-in Julia random number geerator
rand).

For part 1) (i.e., if steps is non-zero), after each Monte Carlo step of N spin-flip attempts, the
current magnetization m = M/N should be added to a vector of length steps in which the
average magnetization over the reps simulations is accumulated; if we call the vector mag, then
mag(t) will be used for computing the average magnetization after t Monte Carlo steps. When
a bin is completed, write the averages to a file res.dat with lines in the format t, ⟨m(t)⟩, for all
t = 1, 2, . . . , steps. Each new set of bin data should be appended to the results previously written
to the file. The average over the bins and the error bars are computed with the program res.f90

supplied with the assignment on the course web site. Remember to reset the data array mag() to
zero ahead of each new bin.

For part 2), a simulation should be interrupted once M = 0, whereupon the time taken should
be accumulated in order to compute the average time. If the M = 0 event happens after the i:th
spin-flip attempt during Monte Carlo step t, the time taken is t− 1 + i/N . The average time over
the reps repetitions should be written to the file res.dat after each bin. Note that in this mode
of running the program (steps=0) the average magnetization is not computed, only the average
time to reach M = 0.

NOTE: For this assignment you have to use the SSC cluster (even though in principle it may be
doable on your own computer).

Simulations and analysis, part 1)

Time dependent magnetization: Carry out simulations for systems sizes L = 4, 6, . . . , 16 at T = 2
(i.e., below Tc), with at least bins=100, reps=1000, steps=500. To get smaller error bars you can
increase bins and reps, but it should not be necessary. You can also extend to larger steps if you
like.

Plot the magnetization for all t from 1 to steps (you can also include m = 1 at t = 0) on a
lin-log scale (useful for detecting exponential decays) and also produce another plots focusing on
the short-time behavior graphed on a lin-lin plot. Based on these plots you should be able to detect
and reason about two different time scales. Discuss these time scales and how they depend on the
system size. You don’t have to do any data fits, just discuss the physical meaning of the time scales
and roughly what they are in this case.
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Simulations and analysis, part 2)

Carry out simulations and study the average time to reach M = 0 for the temperatures T =
2.0, 2.1, 2.2 below Tc, as well as exactly at Tc (the value given in the introduction), and above Tc at
T = 2.5. In each case use system sizes L = 4, 6, 8, . . ., as high as you can go (or as high as you need
to go in order to draw reliable conclusions). Do it systematically and keep track of the results and
the actual running times. For low T the time to reach M = 0 will typically be very long, leading
to long run times and limiting how far you can go (for T = 2.0 you don’t have to go above L = 12,
for higher T you should be able to go to larger systems.)

Look at your data with different kinds of plots; lin-lin, lin-log (to detect exponential forms), log-log
(to detect power laws), and log-lin (to detect possible logarithmic divergences). Try to reason about
your results and present plots that best illustrate your conclusions about the behavior in different
temperature regions.
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