Programming the Swendsen-Wang algorithm

To construct clusters, we need arrays containing
- Neighbors of given site s: `neighbor[i,s]`
- Two spins connected by given bond b: `bondspin[i,b]`
- Bonds connected to given spin s: `spinbond[i,s]`

Labeling of spins and bonds; example in 2D

Note: in Julia the labels have to start from 1, adjust accordingly
Storing spin and bond variables in one-dimensional vectors
spin[1:n], bond[1:d*n]

Construction of lattice arrays in 2D

```
subroutine lattice

for s0=1:n
    x0=mod(s0-1,ll)
y0=div(s0-1,ll)
x1=mod(x0+1,ll)
x2=mod(x0-1,ll)
y1=mod(y0+1,ll)
y2=mod(y0-1,ll)
s1=1+x1+y0*ll
s2=1+x0+y1*ll
s3=1+x2+y0*ll
s4=1+x0+y2*ll
    neighbor[1,s0]=s1
    neighbor[2,s0]=s2
    neighbor[3,s0]=s3
    neighbor[4,s0]=s4
    bondspin[1,2*s0]=s0
    bondspin[2,2*s0]=s1
    bondspin[1,2*s0+1]=s0
    bondspin[2,2*s0+1]=s2
    spinbond[1,s0]=2*s0
    spinbond[2,s0]=2*s0+1
    spinbond[3,s1]=2*s0
    spinbond[4,s2]=2*s0+1
end do
```
Main program

\[bprob = 1.0 - \exp(-2.0/\text{temp}) \]

for \(i = 1: \text{div}(\text{steps},4) \)
 castbonds()
 flipclusters()
end

for \(j = 1: \text{bins} \)
 resetbindata()
 for \(i = 1: \text{steps} \)
 castbonds()
 flipclusters()
 measure()
 end
 writebindata(n,steps)
end
Generating bond configuration

```plaintext
function castbonds()

    for b=1:2^n
        if spin[bondspin[1,b]]==spin[bondspin[2,b]]
            if ran()<=bprob
                bond[b]=true
            else
                bond[b]=false
            end
        else
            bond[b]=F
        end
    end

For cluster finding/flipping, see program sw.jl
```