
The “let” block; a simple way to store values in functions
We often want to store the “internal state” of some function 
without having to pass that state as an argument
For example, rand() can be called without any argument 
- but clearly there must be some internal state that is somehow saved
References to data (pointers) can be permanently saved in “let” blocks 
- functions defined inside a let block can access these pointers

let 
    r = Ref(convert(UInt64,1))                                           
    global function ran64()           
       r[]=r[]*a+c 
    end 
end

Example, part of letblock.jl (random number generator, inside a module)
r is a reference (pointer) to an unsigned integer

-  the value at r is accessed by r[]

- would be r[i] for element i of a 1-dim array

The function must be declared global to make it accessible outside let-end
- global function objects are treated as constants, not slowing things down
- the integers a and c are declared as constants before let
The let block is a local hard scope, many other uses (see Julia doc)

Why not just use r declared in the global scope?

- for efficiency, avoid using global variables



Romberg integration
Idea: Use two or more trapezoidal integral estimates, extrapolate
- step sizes (decreasing order) h0, h1, …, hm, integral estimates I0, I1, …, Im
- use polynomial of order n to fit and extrapolate to h=0
- error for given h scales as h2 (+ higher even powers only)
- use polynomial P(x) with x=h2

Simplest case: 2 points (m=1), using h0=(b-a)/n0 and h1=h0/2 (x1=x0/4) 

Function evaluation once only for each point needed

Computation cost doubled, error reduced by two powers of h0!

reducing h by 50% 
- error should be 1/4 of previous 
- ! is unknown factor, eliminated

<latexit sha1_base64="g3YRNCfrdgHyAG/jUOX/ChRkdU0=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJ4sWxKUS9C0YvHCvYD22XJptk2NJtdkqxQlv4LLx4U8eq/8ea/MW33oK0PBh7vzTAzL0gE18Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NJxqihr0ljEqhMQzQSXrGm4EayTKEaiQLB2MLqd+u0npjSP5YMZJ8yLyEDykFNirPQofXxdlb57jv1S2a24M6BlgnNShhwNv/TV68c0jZg0VBCtu9hNjJcRZTgVbFLspZolhI7IgHUtlSRi2stmF0/QqVX6KIyVLWnQTP09kZFI63EU2M6ImKFe9Kbif143NeGVl3GZpIZJOl8UpgKZGE3fR32uGDVibAmhittbER0SRaixIRVtCHjx5WXSqlbwRaV2XyvXb/I4CnAMJ3AGGC6hDnfQgCZQkPAMr/DmaOfFeXc+5q0rTj5zBH/gfP4AxPWPrw==</latexit>

n1 = 2n0 � 1

Generalizes easily to the case of m estimates (Friday)



xi=hi2

General case; h0, h1, …, hm → I1, I2, …, Im 

How to construct a polynomial of order n going throug 
n+1 point pairs (xi,yi)

For each i, let hi+1 = hi/2 (xi+1 = xi/4) 
- save old sum, add new points 

Evaluate (this is the extrapolation) at x=0 (h=0) 

Error decreases very rapidly: O(h2(m+1))
Implemented in romberg.jl (both closed and open cases)


