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From intracellular signaling to population
oscillations: bridging size- and time-scales in
collective behavior
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Abstract

Collective behavior in cellular populations is coordinated by
biochemical signaling networks within individual cells. Connecting
the dynamics of these intracellular networks to the population
phenomena they control poses a considerable challenge because
of network complexity and our limited knowledge of kinetic
parameters. However, from physical systems, we know that behav-
ioral changes in the individual constituents of a collectively behav-
ing system occur in a limited number of well-defined classes, and
these can be described using simple models. Here, we apply such
an approach to the emergence of collective oscillations in cellular
populations of the social amoeba Dictyostelium discoideum.
Through direct tests of our model with quantitative in vivo
measurements of single-cell and population signaling dynamics,
we show how a simple model can effectively describe a complex
molecular signaling network at multiple size and temporal scales.
The model predicts novel noise-driven single-cell and population-
level signaling phenomena that we then experimentally observe.
Our results suggest that like physical systems, collective behavior
in biology may be universal and described using simple mathe-
matical models.
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Introduction

Collective behavior is a common feature of many biological

systems and is present in systems ranging from flocking birds,

human spectators, schooling fish, and circadian rhythms in many

higher organisms, to swarming bacterial colonies, cell migration,

and embryonic morphogenesis (Farkas et al, 2002; Couzin &

Krause, 2003; Waters & Bassler, 2005; Kawano et al, 2006; Szabó

et al, 2006; Ballerini et al, 2008; Giardina, 2008; Friedl & Gilmour,

2009; Ullner et al, 2009; Zhang et al, 2010). In cellular systems

that exhibit collective behavior, individual cells must coordinate

their behavior with one another to produce the observed popula-

tion-level phenomena and do so utilizing extracellular small

molecules or proteins. For example, bacteria commonly utilize

quorum-sensing molecules to synchronize gene expression in cellu-

lar populations and form aggregate biofilms (Waters & Bassler,

2005), and synthetic biology has exploited these mechanisms to

engineer new circuits that give rise to population-level behaviors

(Mondragón-Palomino et al, 2011; Youk & Lim, 2014). However,

each cell’s behavior and its communication with other cells are

controlled by complex intracellular biochemical networks. Illumi-

nating how the dynamics of these intracellular networks lead to

the population-wide collective behavior observed in these systems

is a challenging problem, in part due to the difference in size and

temporal scales at which these behaviors are controlled and

displayed (Mehta & Gregor, 2010). In this work, we utilize the

phenomenon of universality in an effort to connect individual

genes to single-cell signaling behaviors and then to relate single-

cell activity to population behavior.

A classic example of such collective cellular behaviors is the tran-

sition during starvation from an independent, single-celled state to a

multicellular aggregate in the eukaryotic social amoeba Dictyostelium

discoideum. Its population-level behaviors are controlled by a

complex biochemical network within individual cells and coordi-

nated through cell–cell communication via the small molecule

cyclic AMP (cAMP). During starvation, single cells begin to

produce cAMP and up-regulate the expression of signaling network

components. Once this signaling machinery is sufficiently

expressed, cells can detect the external cAMP and respond by

massively producing their own pulse of cAMP internally that is

then released into the environment. Released cAMP diffuses

through the extracellular environment, relaying the stimulation to
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other cells and eventually leading to autonomous population-level

oscillations (Alcantara & Monk, 1974; Gross et al, 1976; Tomchik

& Devreotes, 1981; Gregor et al, 2010).

Despite our extensive knowledge of the components of the

Dictyostelium signaling pathway, there is no consensus on how

this pathway gives rise to synchronized cAMP oscillations in

cellular populations (Martiel & Goldbeter, 1987; Lauzeral et al,

1997; Laub & Loomis, 1998; Sawai et al, 2005). Not only are

there likely other as-yet-undiscovered components in the signal-

ing circuit, the circuit dynamics are poorly understood and these

dynamics change with increasing starvation time and changing

environmental conditions. As a result, it is challenging to

uncover the origins of collective behavior and predict novel

behaviors even in a well-studied model organism such as Dictyos-

telium through a detailed, “bottom-up” modeling approach that

incorporates each network component and interaction. These

challenges are made even more pronounced by the need to

bridge multiple timescales. For example, chemotactic responses to

cAMP in Dictyostelium occur on the order of 30–60 s (Manahan

et al, 2004; Iglesias & Devreotes, 2008, 2012; Takeda et al, 2012;

Wang et al, 2012), whereas the period of population-level cAMP

oscillations are typically an order of magnitude larger (6–10 min)

(Tomchik & Devreotes, 1981; Gregor et al, 2010). Another

approach is clearly needed to elucidate how these complicated

single-cell networks give rise to collective population behaviors

and to bridge the divide between different temporal and size

scales.

Here, we present a general modeling approach for overcoming

these challenges based on the concept that population-level behav-

iors do not depend on all details of the intracellular dynamics of

individual members of the population and that a dimensionally

reduced system accurately captures the essential phenomena. This

approach has been key to understanding collective behavior in

physical systems, for example, the equilibrium phase transition

from a gas to a liquid (Guckenheimer & Holmes, 1983; Anderson,

1997; Kadanoff, 2000). In dynamical systems, at transitions

between two different behaviors, so-called “bifurcations”, only a

few qualitatively different behaviors are possible and these can

be described by simple, low-dimensional models regardless of

the complexity of the system being modeled (Strogatz, 2001;

Izhikevich, 2007). This concept is known as “universality” (Kadanoff,

2000).

Many biological systems also undergo bifurcations in their

behavior and may thus be amenable to mathematical modeling

via a universality-based approach. For example, both isolated

Dictyostelium cells and cellular populations undergo a bifurcation

to oscillations as a function of external cAMP levels (Tomchik &

Devreotes, 1981; Gregor et al, 2010). Here, we exploit universality

to build a simple predictive model of the Dictyostelium signaling

circuit that reproduces the essential behavior of single cells as well

as cellular populations and experimentally confirm its success.

This “top-down” modeling approach does not require detailed

knowledge of the signaling circuit and is ideally suited for complex

biological regulatory networks where kinetic or topological

information is limited. Using this approach, we show that a

universal model can successfully describe both single-cell and

multicellular dynamics in collective biological systems, such as

oscillatory cell populations of amoebae or neurons.

Results

A 2D-model for Dictyostelium signaling dynamics

Population-level Dictyostelium signaling dynamics have been experi-

mentally described in great detail (Martiel & Goldbeter, 1987; Laub &

Loomis, 1998; Sawai et al, 2005; Gregor et al, 2010), but a compre-

hensive model that captures the basic phenomenology and yet retains

predictive power is still missing. Thus, guided by experimental obser-

vations, our goal is to build a low-dimensional single-cell model,

experimentally test its predictions, and then use it as a building block

for a model that describes population-level signaling dynamics.

The key experimental observation underlying our single-cell

model is a qualitative change, or bifurcation, in the Dictyostelium

signaling network’s dynamical behavior in response to increasing

concentration of extracellular cAMP in a microfluidic device,

measured using a FRET sensor (Fig 1A and B, Supplementary

Figs S1 and S2) (Nikolaev et al, 2004; Gregor et al, 2010). At low

extracellular cAMP levels, cells respond by producing a single pulse

of internal cAMP, whereas at high cAMP, cells oscillate. Hence,

the extracellular cAMP concentration plays the role of a bifurcation

parameter, and the system should be describable by a simple,

low-dimensional model (Strogatz, 2001; Izhikevich, 2007). Further-

more, low-dimensional dynamical systems close to a bifurcation

can exhibit only a few universal, qualitative behaviors, often

termed bifurcation classes. The existence of small, noisy sub-

threshold fluctuations in the baseline of internal cAMP levels even

in the absence of extracellular cAMP and the fact that varying extra-

cellular cAMP is sufficient for the bifurcation to occur imply that

the Dictyostelium signaling network is well described by a co-

dimension one bifurcation (i.e., only one parameter needs to be

varied for the bifurcation to occur), which is the simplest bifurca-

tion class consistent with oscillations. We would therefore like a

model that exhibits the following behaviors: an oscillatory bifurca-

tion with no “bistability” between oscillations and silence, finite-

frequency oscillations at the bifurcation, and bursts in response to

steps below the bifurcation.

The simplest two-dimensional model that satisfies the above

conditions is the excitable FitzHugh-Nagumo (FHN) model

(FitzHugh, 1961; Nagumo et al, 1962; Izhikevich, 2007; Murray,

2007). The FHN model falls into the supercritical Hopf bifurcation

class, where a single stable fixed point transitions into a stable limit

cycle that increases in amplitude as the bifurcation parameter

increases (Supplementary Fig S3). It has been studied extensively in

the theory of dynamical systems and neuroscience (Izhikevich, 2007)

and formally has oscillations that rise from zero amplitude and finite

frequency with no bistability. A feature of the FHN model is that

when its bifurcation parameter is pulled rapidly upward while

remaining below the bifurcation threshold, it exhibits a transient

spike-like response with a characteristic amplitude, analogous to

when neurons produce a voltage spike and fire. Because of that anal-

ogy, we adopt these terms from neuroscience to describe cells

producing an internal pulse, or spike, of cAMP. Other models of

population-level Dictyostelium signaling dynamics based on excitabil-

ity have been proposed (Vasiev et al, 1994, 1997; Lee, 1997; Marée

et al, 1999), but do not capture the details of single-cell behaviors

that our model does. Furthermore, while these models and ours are

excitable in the sense of displaying large, transient responses to large
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Figure 1. Modeling cytosolic cAMP responses to external cAMP stimuli in individual Dictyostelium cells.

A, B Experimental observation of a bifurcation: cytosolic cAMP responses to an externally applied cAMP stimulus of 1 nM (A) and 10 lM (B) at 5 min in three single
Dictyostelium cells expressing an Epac1camps-FRET sensor (cells stimulated using a custom microfluidics device (see Supplementary Fig S2); FRET signal is a
normalized ratiometric fluorescence intensity measurement proportional to cytosolically produced cAMP (Salonikidis et al, 2008); see Materials and Methods).

C Schematic of proposed model (see text for details).
D Cytosolic cAMP responses of single cells in microfluidic devices to successive externally applied cAMP stimuli of 1 nM (light and medium blue) or 5 nM (dark blue)

followed by 2 nM (light blue) or 10 nM (medium and dark blue) step.
E, F Phase portraits for a small (E) and a large (F) step stimulus (corresponding to (A) and (B), respectively), with repressor (R) nullcline (i.e., dR/dt = 0) shown in red and

activator (A) nullclines (i.e., dA/dt = 0) shown in green (see text for model details). For the activator, two nullclines are shown corresponding to a pre-stimulus
(light green) and a post-stimulus (dark green) regime. A fixed point for the dynamics occurs where the S-shaped activator nullcline intersects the repressor
nullcline (red line). The response trajectory is shown in black. See Supplementary Fig S3 for details about the FHN model fixed point behavior.

G, H Activator variable as a function of time for (G) a small stimulus (corresponding to A, E) and (H) a large stimulus (corresponding to B, F; green dashed line
indicates stimulus onset).

Data information: For simulated data throughout the paper, time unit “T” is defined as the average minimum period in the FHN model for a single cell, and “Amplitude”
is defined as the mean height of spikes at 1 nM “internal cAMP”. Simulated model time courses will be shown in shades of green. Experimental time courses will be
shown in shades of blue with time units of min and amplitude in arbitrary FRET signal units.
Source data are available online for this figure.
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signal perturbations, these other models do not allow for oscillatory

behavior at the single-cell level while extracellular cAMP concentra-

tions are fixed as has been observed experimentally (Gregor et al,

2010). The FHN model relies on internal feedback mechanisms to

produce this behavior at the single-cell level due to its proximity to

an oscillatory bifurcation, as we emphasize below.

The model has two dimensionless dynamical variables: an “acti-

vator”, A, which activates itself through an auto-regulatory positive

feedback, and a “repressor”, R, that is activated by A and, in turn,

inhibits A through a slower negative feedback loop (see Fig 1C).

Mathematically, the noisy FHN is described by the stochastic

Langevin equations

sA
dA

dt
¼ fðAÞ � Rþ Ið½cAMP�exÞ þ gðtÞ (1)

sR
dR

dt
¼ ðA� cRÞ þ c0 (2)

where the nonlinear function f(A) = A – (1/3)A3 mimics the effect

of a positive feedback loop. The dimensionless parameter e = sA/
sR controls the ratio between the activator and repressor timescale

dynamics, that is the excitability; c is the repressor degradation

rate, and c0 sets the steady state repressor value in the absence

of external cAMP. The input function I([cAMP]ex) depends on

the experimentally controlled extracellular cAMP concentration,

[cAMP]ex, and reflects any “pre-processing” modules that may

exist upstream of the excitable FHN circuit. Experimentally, we

find that the upstream “pre-processing” circuit can sense fold

changes in cAMP (Fig 1D) and thus is well modeled by I(x) =

alog(1 + x/Kd). Kd corresponds to the threshold for response to

cAMP, and a determines the magnitude of the response (see SI of

Sawai et al, 2005). We have also included a Langevin noise term

g(t) that satisfies the relation 〈g(t) g(t 0)〉 = r2d(t � t 0), where

r2 is a measure of the strength of the noise. Importantly, our

qualitative predictions do not depend strongly on the choice of

parameters and the form of the nonlinearity of f(A) (Strogatz,

2001). All we require is that in the absence of external cAMP,

the system is below the oscillatory bifurcation and excitable.

Nonetheless, parameters were chosen to best fit the experimental

data, and a single set of parameters was used throughout this

manuscript. Figure 1E and F show the phase portraits for a FHN

model for externally applied cAMP stimuli (E) below and (F)

above the threshold for oscillations, respectively. In the low

cAMP phase portrait (Fig 1E), the final fixed point is stable and

describes the long-time behavior of the system (Fig 1G). In

contrast, in the high cAMP phase portrait (Fig 1F), the fixed point

is unstable and the trajectories converge on a limit-cycle attractor

for nonlinear oscillations (Fig 1H). Thus, the activator concentra-

tion A is a good proxy for the experimentally observed intracellu-

lar cAMP levels, allowing for facile comparison between model

and experiments.

One of the prominent behaviors of the FHN model is that in

response to steps of external cAMP below the threshold for oscilla-

tions (Fig 1E), the trajectory makes a long excursion through

phase space resulting in a spike of the activator. This excursion

produces a transient spike in the “internal cAMP” levels analogous

to those seen in experiments (Fig 1A). Such spikes have also

been observed previously where this behavior was interpreted

as “adaptation” of the adenylyl cyclase, ACA, responsible for

production of intracellular cAMP in response to changes in

extracellular cAMP levels (Comer & Parent, 2006). In contrast, our

model here indicates that these so-called “accommodation spikes”

result directly from the underlying excitability of the Dictyostelium

intracellular signaling circuit. Accommodation spikes occur

frequently in models of dynamical systems, particularly in the firing

of neurons, emphasizing here the connection between these

vastly different systems.

Single Dictyostelium cells are excitable feedback systems

Before using this model as a building block for describing cellular

populations, we performed a series of experimental tests concentrat-

ing on qualitative predictions of our dynamical model that do not

depend on the detailed choice of parameters. Our model predictions

for the time dependence of activator A are well matched to our

experimental data for single-cell cytosolic cAMP responses to exter-

nally applied cAMP stimuli (Fig 1A, B, G, and H). Notice that the

model reproduces the initial accommodation spikes for all values of

externally applied cAMP followed by oscillations for the 10 lM
stimulus. We do find that some longer-term behaviors, such as a

slight dampening of the oscillations or down-regulation of noisy

firing, do not exactly match our phenomenological model as it is

lacking additional terms that would represent such long-term behav-

ior. We suspect that this is due to genetic regulation becoming a

factor in our experiments at these longer (>10 min) timescales as

Dictyostelium is known to regulate gene expression based on cAMP

exposure and stimulus shape (Mann & Firtel, 1989). While adapta-

tion processes are clearly at work over longer timescales, in this

work, we focus only on the shorter time dynamics in an effort to

understand the dynamical mechanisms underlying the signal relay

response for a given adaptation state. However, cells typically never

experience such uniformly elevated levels of external cAMP as

applied here, and our model correctly reproduces single-cell

responses to all naturalistic stimuli.

Over a wide range of cAMP concentrations in experiments,

accommodation spikes quickly increase to their peak value,

but differ in their decay time back to baseline (Fig 2A). Our

model predicted and we subsequently experimentally verified that

accommodation spike widths monotonically increase with increas-

ing extracellular cAMP concentration (Fig 2B and C), but the period

of the ensuing oscillations for stimuli of 100 nM cAMP and above

decreases as extracellular cAMP concentration increases (Fig 2D

and E). Together, these results confirm that our model accurately

represents the internal cAMP dynamics governing both the initial

accommodation spike and the subsequent oscillatory behavior,

suggesting that the same molecular mechanism underlies both

phenomena. This demonstrates that although single-cell oscillations

are not observed in natural conditions, we can make predictions

about natural behaviors from modeling their existence. Note that

the observed scaling of mean accommodation spike widths scales

logarithmically with increasing cAMP (Fig 2B), further validating

our choice of a logarithmic pre-processing module. Furthermore, the

spike width scaling is also inconsistent with the dynamics of adapta-

tion by an incoherent feedforward network such as those proposed

to govern Dictyostelium chemotaxis (Takeda et al, 2012; Wang et al,

2012). These results confirm that the full cAMP signaling circuit is

best described using an intracellular feedback mechanism, and
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provide evidence that the observed dynamics result from an under-

lying negative feedback architecture.

Single cells are sensitive to the rate of stimulus change, not
threshold sensors

One of the most interesting predictions of our model is that internal

cAMP responses can depend on the rate of externally applied cAMP

levels (Fig 3A and B) (Levine et al, 1996; Sawai et al, 2005). In particu-

lar, the model predicts that the signal propagation circuit will respond

with an accommodation spike in response to a sub-oscillation thresh-

old step of external cAMP (e.g., 1 nM), but will show no response for a

slow ramp to the same external cAMP level (Fig 3A). The underlying

reason for this difference in responses to a step or fast ramp vs. a slow

ramp is best understood through the phase portrait (Fig 3A and C).

For a sufficiently slow ramp of stimulus, the dynamics of the

system can follow the stable fixed point as it moves through phase

space, without ever leaving its equilibrated state, analogously to a

thermodynamic system that follows a slow temperature change

adiabatically. In contrast, for fast changes in external cAMP levels,

the dynamics are no longer adiabatic and the large sudden change

in position of the stable fixed point elicits an accommodation spike.

Our experimental results are in agreement with our simulated model

predictions (Fig 3A), showing that cells can be sensitive to the rate

of change of stimulus, and are in direct contrast to previous model

assumptions that single cells behave as binary threshold sensors

that spike as soon as a certain extracellular cAMP concentration is

achieved (Levine et al, 1996; Sawai et al, 2005). Similar behavior

was recently experimentally observed in the stress response of

Bacillus subtilis (Young et al, 2013).

A second test of our model is the response of the Dictyostelium

signal propagation circuit to a large exponential ramp of externally

applied cAMP that transitions the system from a sub- to a

super-oscillation threshold level (e.g., 100 pM to 300 nM). Our
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Figure 2. Phenomenological agreement between model and experiments.

A Experimental mean accommodation spikes of cells in microfluidic devices for externally applied cAMP stimuli of 1 nM (light blue), 100 nM (medium blue), and
10 lM (dark blue) (see main text for discussion). Error bars represent SEM.

B, C Experimental (n = 16, 14, 14, 20, and 11 cells) (B) and modeled (C) mean initial accommodation spike widths. Error bars represent SEM. Colored data points in (B)
correspond to data in (A), with additional mean accommodation spike widths taken at 10 nM and 1 lM.

D, E Experimental (n = 11, 16, 10 cells) (D) and modeled (E) mean oscillation times, with experimental mean oscillations found by identifying the peak Fourier
transform. Error bars represent errors by bootstrapping.

Source data are available online for this figure.

ª 2015 The Authors Molecular Systems Biology 11: 779 | 2015

Allyson E Sgro et al Universal dynamics in collective behavior Molecular Systems Biology

5



model predicts that once the external cAMP levels are increased

adiabatically beyond a critical threshold value where the fixed

point changes stability, the system will start oscillating with the

amplitude of the oscillations growing with increasing externally

applied cAMP (Fig 3B and D). Although we are limited both

experimentally through the use of syringe pumps and by the time

window of the developmental phase we are examining in our

ability to probe different ramping speeds and heights that may

affect the generalizability of this result, we again find that single

cells can be sensitive to the rate of change of stimulus as our

model predicts (Fig 3B). This behavior validates our initial

assumptions that the Dictyostelium intracellular signaling circuit is

in the supercritical Hopf bifurcation class and can be described by

the FHN model (Strogatz, 2001). While the timescales involved in

these ramp experiments are long, cells remain quiescent and do

not respond to cAMP stimulus with production of their own

0 10 20 30 40 50 60 70 80

0

0.2

0.4

Time (min)

FR
E

T 
S

ig
na

l
(A

U
)

2.5 5 7.5 10 12.5 15 17.5

0

0.5

1
A

m
pl

iti
de

Time (T)

0

1

C
cA

M
P

(n
M

)

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2
0.4
0.6

Time (min)

FR
E

T 
S

ig
na

l
(A

U
)

2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5

0

0.5

1

A
m

pl
itu

de

Time (T)

0

300

C
cA

M
P

(n
M

)

−2 −1 0 1 2
−1

0

1

2

Activator (A)

R
ep

re
ss

or
 (R

)

−2 −1 0 1 2
−1

0

1

2

Activator (A)

R
ep

re
ss

or
 (R

)

A

B

DC

Exponential Ramp

Figure 3. Cytosolic cAMP responses depend on the rate of externally applied cAMP.

A, B Externally applied cAMP stimuli (black) with a step and an exponential ramp to a final height of 1 nM cAMP (A), and with a small intermediate step (3 nM height,
ranging from green dashed line at 25–40 min to give system time to equilibrate), and an exponential ramp to a final height of 300 nM cAMP (time of experimental
ramp denoted with gray background, ranging from time 40–100 min) (B). Corresponding activator variable (green) and experimental data for three cells in
microfluidic devices (blues) as a function of time are shown below. Model traces are shown for two different degrees of cellular excitability, 2 = 0.1 (light green)
and 0.2 (dark green), showing a diversity of responses similar to that seen experimentally.

C, D Phase portraits for a small (C) and a large (D) exponential ramp stimulus (corresponding to (A) and (B), respectively); R nullcline shown in red, pre-stimulus A
nullcline shown in light green, and post-stimulus A nullcline in dark green. The response trajectory is shown in black.

Source data are available online for this figure.
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cytosolic cAMP during the majority of the experiment. Thus we

speculate that the “activity-dependent” gene regulation that causes

our model predictions to diverge from experimentally observed

behaviors during long, constant exposure to cAMP (e.g.,

oscillation dampening) is not an issue in these experiments. Our

suggestion of activity-dependent adaptation is only one possible

explanation of the slow ramp behavior, and we leave a detailed

investigation to future work.

Single-cell properties bound multicellular behaviors

As a final test of our single-cell model, we probed how single cells

respond to repetitive stimulation of the type seen during collective

oscillations. While excitable systems respond to small changes in

inputs, they also have a large refractory period where they become

insensitive to further stimulation after the stimulus is withdrawn,

not merely after its original onset. This interplay between the abil-

ity to respond to pulses, immediately followed by a refractory

period, can be probed by subjecting cells to pulses with different

widths and subsequent rest periods. Experimentally, single cells

can easily be entrained to short (1 min) pulses of external cAMP

with a long (5 min) rest period between each pulse. However,

when the pulse width is increased to 5 min with only a minute of

rest between each pulse, poor entrainment results (Fig 4A). We

quantified single-cell responses to a range of pulse widths and

pulse periods, measuring entrainment quality as the mean correla-

tion between the first period response and subsequent period

responses (Fig 4B). As pulse widths approach the full length of the

period, there is insufficient rest time for the system to relax to its

previous steady state and thus poor entrainment results. Similarly,

our model simulations produce a well-entrained response to a

variety of pulse widths, but only after a sufficient refractory period

has passed (Fig 4C).

Entrainment is a natural experimental test of the Dictyostelium

intracellular signaling network. During the aggregation stage of

development, cells detect waves of external cAMP similar to the

pulses in our entrainment experiments. Our experiments indicate

that a pulse of 3–4 min must be followed by a 2–3-min refractory

period for entrainment to occur. These observations are consistent

with estimates of the cAMP wave widths and periods found in

aggregating populations (Tomchik & Devreotes, 1981). Furthermore,

as shown in Fig 2A, the 3–4-min pulse width seen in aggregating

populations can naturally arise from single-cell accommodation

spikes in response to a wide range of external cAMP inputs.
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Figure 4. Cytosolic cAMP responses are entrainable to external cAMP stimuli and have a refractory period.

A Cytosolic cAMP responses of single cells in microfluidic devices to externally applied 10 nM cAMP pulses of 1 min (top) and 5 min (bottom) with a 6-min period
(green dashed lines indicate stimulus onsets; red dashed lines indicate stimulus conclusions).

B, C Phase diagrams summarizing 63 single-cell experimental (B) and simulated (C) responses to various pulse widths and periods. “Entrainment Quality” is the mean
Pearson correlation coefficient between the first period response and subsequent responses and is represented in color. Red regions display high correlation, while
blue regions have low correlation.

Source data are available online for this figure.
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Together, these results suggest that the excitability of individual

cells places strong limitations on the dynamics of collective oscilla-

tions in Dictyostelium populations.

Population model reproduces critical behaviors

Thus far, we have theoretically reproduced a wide range of single-cell

behaviors. However, to extend our mathematical description to

cellular populations and their autonomous, synchronized oscilla-

tions, an explicit model for the dynamics of extracellular cAMP is

necessary. We capture these dynamics by a simple mean-field

approach, meaning that cells and stimulant are well mixed as they

are initially in experiments, thus neglecting spatial detail that arises

as cells self-organize at longer timescales. Our multi-cell model builds

on the basic structure of the adapted FHN model above where each

cell i is described by an activator Ai and a repressor Ri (Equations 1

and 2, respectively). Cells secrete low levels of cAMP at a constant

baseline rate a0, and extracellular cAMP is degraded at a rate D. In

addition, when a cell spikes, it releases a large cAMP pulse into the

environment at a rate S. Finally, experimentally we can also flow

additional cAMP into the system at a concentration af. These

behaviors are captured by a system of Langevin equations of the form

dAi

dt
¼ fðAiÞ � Ri þ Ið½cAMP�exÞ þ giðtÞ (3)

dRi

dt
¼ eðAi � cRiÞ þ ec0 (4)

d[cAMP]ex
dt

¼ af þ qa0 þ qS
1

N
RN
i¼1HðAiÞ � D½cAMP�ex; (5)

where gi(t) is a cell-dependent Gaussian white noise term with

〈ni(t) nj(t
0)〉 = r2dijd(t � t 0), and q is the cell density by volume.

Equation 5 describes the spike-driven secretion of cAMP into the

medium by the sum, qSð1=NÞRN
i¼1HðAiÞ with Θ(Ai) being the

Heaviside function, which is equal to 1 if Ai > 0 and 0 otherwise.

Note that the degradation rate D = J + aPDE q, where aPDE is the

basal rate of phosphodiesterase secretion, can be modulated in our

experimental setup by changing the flow rate J in our microfluidic

devices (see Materials and Methods).

Our model reproduces the phase diagram for a wide range of

environmental conditions from Gregor et al (2010), indicating that

our mean-field approach is sufficient to describe the autonomous,

synchronized population-level oscillations exhibited in Dictyostelium

populations (Fig 5A and B). Note that these collective oscillations

are actually synchronous accommodation spikes, not the induced

oscillations resulting from an unstable limit cycle as with the single-

cell oscillations. Plotting the population firing rate in terms of q/J
results in a data collapse for sufficiently large J, and we find good

agreement between the model-predicted firing rate dependence on

q/J (Fig 5C) and the previously published data (replotted in Fig 5D).

The ability of our model to accurately reproduce observed popula-

tion-level behaviors over a wide range of experimental conditions

demonstrates the success of our strategy of using the carefully

calibrated single-cell model as a building block for a multi-cell

description.

When the flow rate J is sufficiently high, the external cAMP

concentration dynamics become fast, leading to a separation of

timescales between individual cell dynamics and external cAMP

dynamics. As a result, external cAMP can be thought of as quickly

reaching a quasi-steady state. This assumption dramatically simpli-

fies our analysis of the model, because it allows us to ignore the

dynamics of the external medium. Conceptually, it is helpful to

think of the extracellular cAMP as originating through two distinct

processes: the “firing-induced cAMP”, qS/J, which measures the

cAMP released by cells when they spike, and the “background

cAMP”, (af + qa0)/J, which is the cAMP present even when cells do

not spike. Together, these two sources of cAMP are sufficient to

describe the external medium and constitute the basis variables for

computing single-cell and population firing rates (Fig 6A). The

single-cell firing rate is a measure of how often an individual cell in

the population fires, averaged over the population; the population

firing rate is a measure of how often the population fires synchro-

nously. In a coherent population, these measures produce similar

results, whereas in an incoherent population, the population firing

rate vanishes. Together, these two quantities provide a succinct way

to summarize the behavior of the system and allow us to determine

in which areas of phase space cells are oscillating and whether these

oscillations are synchronous or asynchronous.

To probe the predictive power of our population-level model, we

performed a series of simulations where collectively oscillating cellu-

lar populations are subject to step stimuli of additional external

cAMP into the medium (Fig 6B). Considering the phase diagrams in

Fig 6A, the addition of extracellular cAMP increases the parameter

af and hence moves the system “horizontally” in the phase diagram,

in contrast to changing the cell density or external flow rate, which

moves the system “diagonally” through the phase diagram. Without

direct access to extracellular cAMP concentrations, a priori it is

unclear where natural populations are located in this phase diagram.

One possibility is that to minimize energy expenditure while still

allowing for synchronization, collectively oscillating Dictyostelium

populations reside in “knee region” of Fig 6A labeled Point I. If so,

flowing in a small amount of additional extracellular cAMP to these

populations will lead to slowing of the synchronized population-

level oscillations (Point II in the phase diagram), and a further

increase in the amount of extracellular cAMP will result in a loss of

oscillations both at the level of single cells and cellular populations

(Point III). These behaviors are in stark contrast to that of single cells

where flowing in additional cAMP always increases the firing rate.

The model also suggests that adding even more external cAMP to

the system (Point IV) will cause individual cells to start oscillating

asynchronously. In this regime, individuals have a high firing rate

but fire incoherently resulting in a negligible populating firing rate.

To test these predictions, we probed these autonomously oscillat-

ing populations of Dictyostelium with varying levels of additional

cAMP at multiple flow rates (see Fig 6C and D). For extremely low

levels of added extracellular cAMP, the cellular population contin-

ues to oscillate synchronously. However, when we increase the

cAMP levels further (~2–10 nM), the oscillations slow down. Even-

tually, collective oscillations disappear for intermediate levels of

cAMP (10–20 nM). Finally, when the extracellular cAMP concentra-

tion is increased to extremely high levels (≥100 nM), there is a

marked increase in baseline level of the population-level FRET

signal, indicating unsynchronized, autonomous oscillations of single

cells. The ability to continue to synchronize oscillations over low

background levels of cAMP (~2–10 nM) allows populations to

Molecular Systems Biology 11: 779 | 2015 ª 2015 The Authors

Molecular Systems Biology Universal dynamics in collective behavior Allyson E Sgro et al

8



maintain collective states in environments where degradation of

secreted cAMP is never complete.

Intracellular noise drives population-level phenomena

The agreement between our simulated phase diagram and population-

level experiments in Figs 5 and 6 suggests that our phenomenological

model correctly captures the key biological mechanisms that give

rise to collective oscillations in Dictyostelium populations.

However, the question of what are the key biological mechanisms

beyond a positive feedback loop remains unanswered. Previous

work on autonomously oscillating Dictyostelium populations

strongly suggests noise may also be a key to the onset of collective

oscillations (Gregor et al, 2010). To elucidate the role of noise in

the intracellular cAMP circuit in the emergence of these collective

oscillations, we recomputed our phase diagram from Fig 6A for

various levels and sources of noise in equation 3 (see Supplemen-

tary Fig S4). In the absence of stochasticity (Fig 7A and Supple-

mentary Fig S4B) or for noise solely in the external cAMP levels

(Supplementary Fig S4C), the phase diagram loses almost all of the

structure seen in Fig 6A. Specifically, the knee region where

synchronously oscillating Dictyostelium naturally reside without

additional external cAMP (i.e., Point I) disappears in the single-cell

phase diagram, and the simulation results are inconsistent with the

data collapse seen in Fig 5. However, the firing rate of individual

cells near the oscillatory bifurcation depends strongly on noise, and

population-level oscillations emerge in our model when one or a

few cells stochastically spike and drive the rest of the population

into synchrony. Therefore, intracellular noise introduces a form

of “stochastic heterogeneity” among identical cells that drives

collective synchronization in a mechanism that resembles coherence

resonance, a well-characterized phenomenon in the FHN and similar

models, where noise drives the stochastic oscillations in an excitable

system into coherence (Wang et al, 2000; Lindner et al, 2004;

DeVille et al, 2005; Kitajima & Kurths, 2005). To test whether simi-

lar effects could also arise from cell-to-cell heterogeneity in the

levels of extracellular cAMP needed to induce a cytosolic spike, we

repeated the simulations with a mixture of cells drawn from a

lognormal distribution of Kd. We found that the resulting phase

diagram again has a different shape than for a homogenous, noisy
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Figure 5. Multicellular model reproduces population behaviors in varying extracellular environments.

A, B A phase diagram showing the coordinated population firing rate spanning a range of cell densities and flow rates for the model (A) and experiments in
macrofluidic dishes from Gregor et al (2010) (B), with the mean firing rate represented in color, and white vertical lines indicate nonlinear breaks in the x-axis.

C, D Firing rates can also be considered as a function of the ratio between cell density and flow rate, q/J, as predicted by the model (C) and shown experimentally using
macrofluidic dishes in Gregor et al (2010) (D). Low flow rates are not plotted in (D) because in this regime, the effect of extracellular PDE is non-negligible. Model
firing rates are normalized to an arbitrarily high frequency (~1/30) to scale maximum values to 1.

Source data are available online for this figure.
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population and is insufficient to reproduce the observed population

behaviors (Supplementary Fig S4D). These simulations indicate that

in the presence of small amounts of extracellular cAMP, heterogene-

ity alone cannot drive synchronized population oscillations.

In the simulations, for regimes with intermediate and high extra-

cellular cAMP levels, synchronized population spikes no longer

occur. In these regimes, our model predicts that stochasticity drives

unsynchronized spiking and that that spiking increases with increas-

ing external cAMP levels (Fig 6A and B). Testing this prediction

experimentally lets us verify directly whether intracellular noise

indeed drives the observed population dynamics. To observe the

presence of unsynchronized spiking, we measured cytosolic cAMP

levels over time for single cells in autonomously oscillating popula-

tions that were subjected to external cAMP steps (Fig 7B). We find

that in populations the standard deviation of single-cell cytosolic

cAMP levels increases with increasing external cAMP levels

(Fig 7C). This roughly 21% increase in the standard deviation over

time in conjunction with the increased population mean cAMP

levels indicates that the single-cell levels of cytosolic cAMP them-

selves are noisier with increased spike height and/or frequency as
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Figure 6. Population model predicts slowing and decoupling of intracellular cAMP oscillations in a population with increased external cAMP.

A Firing rate phase diagrams for single cells in a population and the population as a whole as predicted by our model as a function of background and firing-induced
cAMP.

B Average “internal cAMP” responses of single simulated cells within a population (greens) and the population mean (black) responses at Points I–IV in (A) as simulated
by the model.

C Firing rate of 43 experimental populations in microfluidic devices with increasing external cAMP as a function of flow rate for cells plated at >0.5 ML
(1 ML = 6,600 cells/mm2), imaged 2 mm from population edge. All spikes at least 0.3 FRET signal units in height.

D Experimental population average cytosolic cAMP levels for experiments in microfluidic devices with 10 ll/min flow for no externally applied cAMP, 10 nM (low),
20 nM (intermediate), and 100 nM (high) steps of externally applied cAMP. Depending on fluid flow rates and externally applied cAMP levels, populations oscillate,
have slow synchronous oscillations, do not oscillate but randomly fire, or oscillate asynchronously (stimulus onset for all assays is at 60 min).

Source data are available online for this figure.
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external cAMP levels increase. While few clear accommodation

spike-like cAMP peaks appear to be present after external cAMP is

applied (Fig 7B), noise-driven spiking may not always result in full-

size cAMP peaks like those that result from natural cAMP waves or

step stimuli. For example, while a 1-min 1-nM external stimulus is

sufficient to produce a full-size peak of internal cAMP in a single cell

such as those shown in Figs 1–4, external cAMP stimuli that are

shorter than 20 s produce smaller peaks of internal cAMP (Fig 7D)

that are qualitatively similar to those seen in Fig 7B. This behavior

in response to short stimuli is consistent with our model. Together,

our model and experiments suggest that Dictyostelium populations

not only exploit stochasticity in their underlying intracellular signal-

ing network to initiate collective population-level behaviors, but

also to coordinate them in noisy extracellular environments.

Discussion

Through taking advantage of experimental advances that allow for

quantitative measurements of intracellular cAMP dynamics in

response to a wide variety of extracellular cAMP stimuli and envi-

ronmental conditions, we have developed a new conceptual frame-

work for understanding collective behavior in cellular populations.

Our framework is based on the phenomenon of universality, and we

have used it for analyzing the emergence of collective oscillations in

the social amoebae Dictyostelium discoideum. Our approach allows

us to accurately predict and reproduce a wide variety of experimen-

tally confirmed complex dynamical behaviors at both the single-cell

and population levels despite having minimal knowledge about the

kinetic parameters and interactions of the underlying circuit.

Together, our experiments and model revealed that the dynamics of

the Dictyostelium intracellular signaling network can be understood

using a simple two-variable model, specifically the noisy and excit-

able FitzHugh-Nagumo model. We experimentally showed that indi-

vidual cells can be sensitive to the dynamics of the input signal and

respond differently to steps and ramps of extracellular cAMP. We

also experimentally showed that the excitability of individual cells

leads to entrainment properties that fundamentally constrain the

dynamics of population-level oscillations. When we extend our

model to cellular populations, synchronized oscillations spontane-

ously arise from stochastic accommodation spikes, suggesting that

Dictyostelium cells actively exploit stochasticity in the biochemical

network for controlling population-level behaviors.

Our simple model explains a number of disparate biological

phenomena observed during the initiation of the collective phase of

the Dictyostelium life cycle. For example, it has been shown that

when subjected to steps of external cAMP, adenyl cyclase A, which

is responsible for cAMP synthesis, shows an initial peak of activa-

tion followed by a period in which its activity subsides even in the

presence of stimulus (Comer & Parent, 2006). We have shown that

this behavior naturally arises from the excitability of the Dictyostelium

intracellular signaling circuit. Furthermore, it was shown that

mutants lacking phosphoinositide 3-kinases PI3K1 and PI3K2 no

longer exhibit this accommodation spike behavior and continually

produce cAMP (Comer & Parent, 2006). The data from these experi-

ments are consistent with the idea that the mutants undergo a bifur-

cation to oscillation at lower levels of extracellular cAMP. Our

model also suggests a natural explanation for why Dictyostelium

produce extracellular phosphodiesterases (PDEs) to degrade extra-

cellular cAMP (reviewed in Saran et al, 2002). In the absence of
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Figure 7. Intracellular noise in the cAMP circuit drives observed population behaviors.

A Firing rate phase diagrams for single cells in a population (top) and the population as a whole (bottom) as predicted by the model with minimal noise (r = 0.01) as a
function of background and firing-induced cAMP. See Supplementary Fig S4 for other noise-source cases.

B Example single-cell (blues) and population (black) cytosolic cAMP traces taken from dual-expressing Epac1camps/mRFPmars tracer cells for oscillating populations at
~0.4 ML density, 10 ll/min flow subjected to steps of 10 nM and 500 nM cAMP in microfluidic devices.

C Mean standard deviations of the single-cell cytosolic cAMP levels for cells in 10 experimental populations inside microfluidic devices subjected to a step stimulus of
cAMP as shown in (B) from 10 to 60 min post-stimulus. Values are normalized to the mean standard deviation of cells exposed to a 10 nM external cAMP step to
show the relative increase in stochastic variability; errors by bootstrapping.

D Single-cell cytosolic cAMP responses to eight 1-nM pulses, 6-min period with 1-min-long pulses (gray) and two 1-min, two 30-s, two 20-s, and two 10-s pulses (blues)
given using microfluidic devices.

Source data are available online for this figure.
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degradation, the dynamics of the extracellular cAMP can no longer

track the intracellular dynamics of cells, resulting in a loss of

coherent oscillations. This loss of coherence is a generic phenome-

non present in oscillator systems that communicate through an

external medium (Schwab et al, 2012a,b). This is consistent with

experiments on mutants showing that cells lacking extracellular

PDEs do not give rise to spiral waves (Sawai et al, 2007) as well as

the loss of population oscillations in the presence of the PDE inhibi-

tor DTT (Gregor et al, 2010).

In addition to resolving these disparities in our understanding of

Dictyostelium intracellular signaling dynamics, our model also

allows us to discriminate between possible signaling network archi-

tectures. Currently, there is no consensus on the architecture of the

Dictyostelium signaling circuit downstream of the CAR1 receptors

(Laub & Loomis, 1998; Kimmel & Parent, 2003; Sawai et al, 2005;

Bagorda et al, 2009; Takeda et al, 2012; Wang et al, 2012; Nakajima

et al, 2014; Skoge et al, 2014). Our results indicate that there must

be a negative feedback loop that turns off production of intracellular

cAMP and that there is an as-yet-undiscovered intracellular positive

feedback in the circuit, represented in our model by f(A) = A � (1/3)A3.

In contrast with recent work showing that upstream of cAMP

production, the Dictyostelium chemotaxis network and its output

are well described by a feedforward network architecture (Takeda

et al, 2012; Wang et al, 2012; Nakajima et al, 2014; Skoge et al,

2014), our cAMP signaling circuit uses a network architecture based

on feedback. These incoherent feedforward loops cannot exhibit

intracellular cAMP oscillations such as those we observe at higher

external cAMP concentrations in single cells, making them

incompatible with our observations of the signal relay network.

Thus, the Dictyostelium chemotaxis and signal propagation

networks differ in their underlying functional topologies (feed-

forward versus feedback), even though they likely have shared

components and interactions. Indeed, this feedforward network

may be the source of the logarithmic pre-processing we observe.

One reason for this discrepancy is that the chemotaxis and signal

propagation networks operate at fundamentally different timescales.

Whereas the gradient sensing response is measured to be on the

order of 30 s (Manahan et al, 2004; Iglesias & Devreotes, 2008,

2012), the signaling network response operates on a timescale that

is nearly an order of magnitude larger (Tomchik & Devreotes, 1981;

Gregor et al, 2010). For example, the chemotactic response of the

pleckstrin homology (PH) domain of cytosolic regulator of adenylyl

cyclase (CRAC) dynamics occurs in tens of seconds and not in

minutes as is the case of internal cAMP (Wang et al, 2012). This

difference in timescales likely reflects different biological functions:

The chemotaxis network is designed primarily to climb shallow

gradients, whereas the signal propagation network is designed to

allow cells to aggregate into multicellular structures.

While FHN-inspired models have been previously used to

describe the spatial features of population aggregation and cAMP

waves in aggregates and slugs (Vasiev et al, 1994, 1997; Lee, 1997;

Marée et al, 1999), they neglect the intracellular signaling dynamics

of the signaling relay circuit and that are critical to our results.

Furthermore, the excitable mechanism underlying collective oscilla-

tions in our coupled FHN population model differs fundamentally

in several ways from earlier mathematical models for collective

oscillations in Dictyostelium. First, classical models of Dictyostelium

oscillations posited that cells re-sense their own secreted cAMP and

that this was the mechanism through which oscillations emerged

(Martiel & Goldbeter, 1987). Our experimental results demonstrate

that there is an intracellular, not extracellular, feedback look that

causes cells to oscillate when external cAMP concentrations are

fixed at a high level. Second, previous models treated cells as

threshold sensors that emit a pulse of cAMP whenever the extracel-

lular concentration of cAMP passed a threshold (Levine et al, 1996;

Sawai et al, 2005). Our model is similar in spirit to integrate-and-

fire models in neuroscience, with cells only spiking once their inter-

nal state reaches a threshold. While these input-threshold models

are successful at describing aspects of population-level behavior,

particularly spatial features, they are inconsistent with the dynam-

ics we observe at the single-cell level (Fig 3A). All of these models

are excitable in the sense that they display large, transient

responses to large external perturbations. However, our implemen-

tation of the FNH model at the single-cell level generates these

responses through proximity to an oscillatory bifurcation and is

unique among these models in that it is driven by internal, positive

feedback.

We emphasize that we have neglected several phenomena in

crafting our simple model and that these simplifications leave open

the possibility that there may be alternative models that also explain

our single-cell and population-level data. It is likely that due to

changes in gene expression during development, many molecular

components may vary on the timescale of hours (Mann & Firtel,

1989). In our model, this could manifest in a number of ways,

including changes in the value of parameters with time as well as

minor changes in the shape of the corresponding nullclines. We also

have ignored the dynamics of adaptation mechanisms and modules

that lie upstream of our excitable circuit. This is one possible reason

why our model does not reproduce the damped oscillations

observed in response to prolonged stimuli of cAMP. However, it is

worth emphasizing that there may be other equally plausible expla-

nations for these experimentally observed behaviors. Our model

also does not distinguish between the activator variable, A, and the

internal levels of cAMP produced when the activator is spiking. This

distinction may be important for understanding certain phenomena

such as adaptation. Finally, we note that the FHN model does not

reproduce the experimentally observed spike shape and that the

experimentally observed spike shape does not always match the

average, stereotyped response, likely due to cells that do not remain

flat on the surface of the coverslip when becoming rounded upon

stimulation with cAMP (Alcantara & Monk, 1974). While the model

could be modified to agree with each experimentally observed detail

by introducing additional fitting parameters, this would significantly

complicate the model and limit its power in predicting phenomena.

Since our model predictions do not depend on spike shape but

general phenomenology, we chose not to do this here. Nonetheless,

our experimental results suggest that these alternative models will

share certain basic fundamental features with our FHN-based

model, including a core negative feedback loop that gives rise to

oscillations and stochasticity.

The work presented here suggests that Dictyostelium cells

actively exploit stochasticity in the signal propagation network to

initiate and control population-level oscillations, and while more

examples of this type of exploitation are coming to light, it is still

clear that in many biological systems, noise limits or degrades

biological function (Eldar & Elowitz, 2010; Pilpel, 2011; Sanchez
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et al, 2013). Specifically, the increased likelihood of stochastic

spiking at higher extracellular cAMP levels suggests a possible

mechanism behind the origin of autonomous oscillation centers.

The slow leakage of cAMP during development postulated by

Gregor et al (2010) will likely not induce accommodation spikes

directly as cells can be sensitive to the rate of extracellular cAMP

change (Fig 3A), but the extracellular cAMP that builds up will

encourage increased stochastic spiking. These initial stochastic

spikes release comparatively large amounts of cAMP into the extra-

cellular environment, triggering other cells to spike and driving the

cells that fired first to become the origins of autonomous oscilla-

tion centers. This same stochasticity in the intracellular signaling

network drives cells to fire when background levels of cAMP do

not continually reset to zero, allowing for continued collective

oscillations at times when complete degradation of extracellular

cAMP does not occur.

Our work offers a bridge between the disparate fields of collec-

tive cellular signaling and neuroscience. The FHN model success-

fully describes the dynamics of both neurons and Dictyostelium

cells. Neurons use electrical impulses on the order of a millisecond

to communicate directly via synapses. In contrast, communication

in Dictyostelium cells occurs indirectly through the external medium

and is mediated via phosphorelays and second messenger molecules

such as cAMP over several minutes. Despite these different architec-

tures and timescales, due to the underlying universal dynamics,

both systems can be described by the same model and exhibit quali-

tatively similar behaviors including noise-induced accommodation

spikes. Our work suggests that, like physical systems, collective

behavior in biology may be universal and well described using

simple mathematical models. Universality has played a fundamental

role in furthering our understanding of physical systems, and we

suspect it will also play an important role in furthering our knowl-

edge of collective behavior in biology.

Materials and Methods

Cell culture, preparation, and genetic manipulation

Axenic Dictyostelium discoideum cell lines expressing Epac1camps

(AX4 background, gift of Dr. Satoshi Sawai), Epac1camps and

mRFPmars (AX4 background), ECFP, and EYFP (both AX3 back-

ground, gifts of Dr. Carole Parent) were grown according to stan-

dard protocols (Fey et al, 2007). Briefly, vegetative cells were grown

at 22°C while shaking at 180 rpm in PS medium consisting of 1.0%

special peptone (Oxoid), 0.7% yeast extract (Oxoid), 1.5%

D-glucose, 0.14% KH2PO4, 0.012% Na2HPO4-7H2O, 40 ng/ml

vitamin B12, 80 ng/ml folic acid, and 1× antibiotic-antimycotic

mix (Gibco) supplemented with 5 lg/ml (EYFP/AX3), 10 lg/ml

(Epac1camps/AX4), or 20 lg/ml (ECFP/AX3) G418. Vegetative cells

were washed and shaken at 1–2 × 107 cells/ml in development

buffer (10 mM K/Na2 phosphate buffer, 2 mM MgSO4, and 200 lM
CaCl2, pH 6.5) for 4–5 h prior to experiments.

The expression vector pBSRH-mars, which permits constitutive

expression of mRFPmars in Dictyostelium discoideum under control

of the act15 promoter, was kindly provided by Dr. Robert Cooper.

The Epac1camps strain was transformed with pBSRH-mars by elec-

troporation following a standard protocol (Gaudet et al, 2007), and

a clone was selected based on fluorescence intensity. Fluorescence

intensity of mRFPmars appears uniform in the cytosol.

Microfluidic device fabrication

Microfluidic devices for both single-cell and population experiments

were fabricated using standard photolithography techniques to

generate silicon masters and standard poly(dimethylsiloxane)

(PDMS) replica molding techniques to generate the final devices.

For the single-cell experiments, devices with two different feature

heights were required to mix the cAMP to provide temporally

complex input stimuli (Supplementary Fig S2A) (Stroock et al,

2002), and for these silicon masters, we used two-step photolitho-

graphy (Anderson et al, 2000). Briefly, to create the main cell chan-

nel, an initial (160 lm thick) layer of SU-8 photoresist was spin

coated, exposed to UV light, and developed on a silicon wafer.

Subsequently, a second (15 lm thick) layer of photoresist was spun

on top of this layer, the first layer features aligned to the mask for

this second layer, exposed, and developed. For the population

experiments, a 0.8-mm-tall aluminum Y-channel master was

machined with 2-mm-wide and 6.5-mm-long input channels and a

3-mm-wide and 19-mm-long cell area.

For both microfluidic devices, the microchannels were formed

out of poly(dimethylsiloxane) (PDMS) via replica molding. Specifi-

cally, a 10:1 ratio of PDMS pre-polymer to catalyst was poured on

top of the master of interest, baked for 50 min at 65°C, and then cut

to size and removed from the master. Access holes for tubing were

created using a 1.5-mm biopsy punch prior to plasma bonding the

slabs to glass coverslips. Devices were then baked for at least 1 h at

65°C to aid in restoring a hydrophobic surface to the PDMS.

Cell perfusion and cAMP stimulation

For experiments, vegetative cells were harvested at 1.5–

3 × 106 cells/ml, washed, and shaken at 1–2 × 107 cells/ml in

developmental buffer for 4–5 h before plating inside a microfluidic

device. Single-cell microfluidic devices were seeded with 2,000–

4,000 cells, and cells were permitted to adhere to the glass for

10 min before a constant flow rate of 4 ll/min was initiated using

syringe pumps (Fusion Touch 200, Chemyx). Population devices

were seeded with cells to the desired coverage and allowed to rest

for 10 min before initiating flow of 10–100 ll/min and imaging

2 mm from the population edge. Macrofluidic dishes were seeded

with 0.01 ML (1 ML = 6,600 cells/mm2) of cells and allowed to rest

for 10 min before initiating flow of 1 ml/min. Cells were maintained

at 22°C throughout imaging, and experiments were limited to

130 min to mitigate any potential adverse effects of longer-term

perfusion and ensure all cells are in the same developmental stage

when a single cAMP receptor is the predominant receptor activating

the signaling pathway (Insall et al, 1994). For experiments where

single-cell cytosolic cAMP traces were taken from a population,

15–20% Epac1camps- and mRFPmars-expressing cells were mixed

in the population to facilitate single-cell tracking.

Single cells in microfluidic chips have a higher initial average

response than those in macrofluidic dishes (Supplementary Fig S2B

and C) as the transition from 0 to the stimulus concentration of cAMP

in microfluidic chips is sharp, whereas in macrofluidic dishes, chaotic

mixing of the cAMP with buffer leads to a more gradual transition.

ª 2015 The Authors Molecular Systems Biology 11: 779 | 2015

Allyson E Sgro et al Universal dynamics in collective behavior Molecular Systems Biology

13



Image acquisition

Cells were observed using an inverted epifluorescence microscope

(TE300, Nikon) equipped with a Xenon lamp, automated excitation

and emission filter wheels (Ludl), automated stage (Ludl), and oil

immersion objectives (20× UPlanSApo NA 0.85, Olympus and 60×

Plan Apo NA 1.40, Nikon). For FRET measurements, three fluores-

cent images were taken at each time point and are described using

the following notation: FCellLine
exkRange;emkRange

where F is the fluorescence

intensity, and the cell line is the line expressing the donor fluoro-

phore only (D, here ECFP), the acceptor fluorophore only (A, here

EYFP), or the epac1camps complex (EPAC). The excitation wave-

length filter ranges are 436/20 nm for D and 500/20 nm for A, and

the emission filter ranges are 470/24 nm for D and 535/30 nm for A

(ET series filters, Chroma). A dichroic long-pass filter (T455LP,

Chroma) further separated eCFP excitation from emission fluores-

cence during imaging. Images were captured using a back-illumi-

nated Electron Multiplying CCD (EMCCD) camera (iXon+ 897,

Andor) with a depth of 16 bits, 256 × 256 resolution, and 1,000×

gain. To minimize photodamage, exposure times were limited to

80 ms at 20× magnification and 20 ms at 60× magnification, an

ND8 filter was in the emission path, and each field of view was

imaged every 15 s. Acquisition was controlled using a custom Java

plugin in Micro-Manager (Edelstein et al, 2010) that continually

centered the cell of interest in single-cell experiments and main-

tained focus at the plane of interest.

Data analysis

Image analysis was performed using custom MATLAB (MathWorks)

routines. Images were binarized, and for single-cell data, single-cell

masks were generated by thresholding each fluorescent cell against

its local background. For single cells to be considered the same cell

between frames, the current cell location must overlap with the

previous cell location and have an area change no greater than 33%

to ensure they are remaining in contact with the coverslip. After

masking, the FEPAC
exkD;emkD

; FEPAC
exkD;emkA

; and FEPAC
exkA;emkA

image intensities

were averaged across each cell at each time point to reduce noise.

To calculate changes in the FRET efficiency, we used the E fDA/c-
based FRET method (Salonikidis et al, 2008). Briefly, E is the FRET

efficiency, fDA is the fraction of Epac1camps complexes in their

bound states, and c is the relative donor/ acceptor extinction. This

method improves on the traditional ratiometric FRET method, which

uses FEPAC
exkD;emkA

=FEPAC
exkD;emkD

as a readout of FRET efficiency, by correct-

ing for any photobleaching that occurs during long experiments.

Furthermore, this method is independent of pH changes unlike the

ratiometric method (Salonikidis et al, 2008), meaning that any cyto-

solic pH changes that may occur do not affect our readout of the

FRET efficiency. To find E fDA/c, we use the formula:

EfDA=c ¼
FEPAC
exkD;emkA

� aFEPAC
exkA;emkA

� bFEPAC
exkD;emkD

aFEPAC
exkA;emkA

¼ fð½cAMP�Þ (6)

where a ¼ FA
exkD;emkA

=FA
exkA;emkA

, the relative acceptor fluorescence

signal, and b ¼ FD
exkD;emkA

=FD
exkD;emkD

, the donor bleedthrough. On our

imaging setup, a = 0.054 and b = 0.906. As Epac1camps is in a low

FRET configuration when bound to cAMP and a high FRET configu-

ration when unbound, we use �E fDA/c as our FRET intensity here.

All single-cell and population average FRET intensities are normal-

ized to the baseline levels observed for either the single cell or the

population at the beginning of each experiment prior to stimulation

(individual cells) or synchronization (population). FRET signal units

are defined as the change in �E fDA/c where E is the FRET effi-

ciency, fDA is the fraction of Epac1camps complexes in their bound

states, and c is the relative donor/ acceptor extinction and 0 is

defined as the baseline value of �E fDA/c for the experiment when

cells are in cAMP-free buffer.

In our analysis of single cells, the accommodation spike width

was defined as the time from the initial rise in cytosolic cAMP after

the onset of stimulus to the time where the cytosolic cAMP returned

to the baseline cAMP level before rising again for an oscillation or

staying at the baseline. The mean oscillation time for single cells

was calculated for each concentration by taking the mean of the

peak period in Fourier transforms of individual oscillating cell traces,

with error calculated through bootstrapping. Entrainment quality for

single cells was defined as the mean Pearson correlation coefficient

between the intracellular cAMP response to the first pulse of external

cAMP and subsequent intracellular cAMP responses to each subse-

quent pulse of extracellular cAMP. For single-cell analysis of spike

width and entrainment quality, cells with clear spikes 0.25 FRET

signal units or greater in height were analyzed. When analyzing

population average firing rates, spikes were required to be 0.3 FRET

signal units in height to be counted as a population spike.

Simulations

Simulations were done using the Euler–Maruyama method (Kloeden

& Platen, 1992) with a time step Dt = 0.005 and started with random

initial conditions. For phase diagram calculations, longer equilibra-

tion periods were used to eliminate the effect of the initial condi-

tions. Spikes were defined as peaks in activator with values above

zero, and rates were calculated by counting these spikes divided by

simulation time.

Parameters used for all simulations throughout the entire manu-

script (unless stated otherwise) are as follows:

2 = 0.1 (ratio between the activator and repressor timescales)

c = 0.5 (repressor degradation rate)

c0 = 1.2 (steady state repressor value in the absence of external

cAMP)

r = 0.15 (noise strength)

N = 100 (number of “cells” in population simulations)

a = 0.058 (cAMP response magnitude)

a0 = 800 (basal cAMP leakage rate)

aPDE = 103(basal PDE leakage rate)

Kd = 10�5 (cAMP response threshold)

S = 106 (firing cAMP release rate)

Supplementary information for this article is available online:

http://msb.embopress.org
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