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Recently the authors developed a scattering approach that allows for a complete description of
the steady-state physics of quantum-impurities in and out of equilibrium. Quantum impurities are
described using scattering eigenstates defined ab initio on the open, infinite line with asymptotic
boundary conditions imposed by the leads. The scattering states on the open line are constructed
for integrable quantum-impurity models by means of a significant generalization of the Bethe- Ansatz
which we call the Scattering Bethe-Ansatz (SBA). The purpose of the paper is to present in detail
the scattering approach to quantum-impurity models and the SBA and show that they reproduce
well-known thermodynamic results for several widely studied models: the Resonance Level model,
Interacting Resonance Level model and the Kondo model. Though the SBA is more complex than
the traditional Thermodynamic Bethe Ansatz (TBA) when applied to thermodynamical questions,
the scattering approach (SBA) allows access to an array of new questions that cannot be addressed
otherwise, ranging from scattering of electrons off magnetic impurities to nonequilibrium dynamics.

I. INTRODUCTION

Recent advances in nanotechnology have allowed ex-
tensive experimental study of quantum impurity systems
out of equilibrium in controlled, tunable settings:. The
impurities are typically realized as quantum dots, tiny
islands of two-dimensional electron gas attached to leads
via tunnel junctions. The number of electrons on the
dot can be controlled using a gate voltage since the hop-
ping of electrons is impeded by a large charging energy
U. When there is an odd-number of electrons on the
dot the upper-most energy level contains only a single,
unpaired electron, which behaves effectively as an Ander-
son or Kondo impurity coupled to the two (or more) leads
playing the role of electron baths. Applying a potential
difference between the leads results in a current flowing
across the dot. A wealth of new experimental data has
been collected in recent years on quantum-impurities out
of equilibrium in this setting including current vs voltage
curves and nonequilibrium density of states (DOS) on
the quantum dots?. Nonetheless, a comprehensive the-
oretical understanding of the physics of these models is
lacking.

Quantum impurity systems are also the simplest ex-
amples of strongly correlated electron systems, wherein
interactions between electrons are strong enough to re-
sult in new collective behaviors which require a new set
of degrees of freedom for their description- the Kondo ef-
fect being a canonical example?. The strongly-correlated
behavior is typically characterized by a low energy scale
such as the Kondo temperature below which strong cor-
relation physics dominates and perturbative descriptions
break down. One of the most fascinating new frontiers
in strongly-correlated systems is the study of such sys-
tems in out-of-equilibrium situations. Quantum impu-
rities are an ideal experimental and theoretical setting
for exploring the interplay between nonequilibrium- and
strongly-correlated dynamics due to the relative simplic-
ity of these models and the wealth of experimental data
available.

New theoretical questions arise in this context. Do suf-
ficiently large voltages suppress strong-correlations and
thus kill the Kondo effect? Do new scales, such as the
decoherence scale, arise? Does voltage effectively behave
as a temperature? How should one handle intrinsically
non equilibrium phenomena such as nonequilibrium par-
ticle and energy currents or entropy production. What is
the effect of strong correlation the entropy production?

Currently, the most commonly used technique to treat
quantum-impurities out of equilibrium is Keldysh per-
turbation theory?. The perturbative methods, however,
are applicable only in the high voltage regime and break
down precisely where strong correlations become impor-
tant. As such, they are unable to answer the interesting
questions proposed above. A variety of non-perturbative
techniques have been developed in order to capture the
strong correlation physics of quantum impurity models,
mainly in the context equilibrium physics. These in-
clude renormalization group methods, techniques from
bosonization and conformal field theory, and exact so-
lutions using the Bethe-Ansatz3. Most of these methods
are no longer applicable when the influence of nonequilib-
rium dynamics is comparable to the strong correlations
in the problem. This highlights the need for new the-
oretical approaches that can probe the interesting non-
perturbative regimes?67:8:9.10,

Recently we have introduced such a non-perturbative
framework that allows the description of a steady state
out-of-equilibrium quantum impurity system in terms of
a time-independent scattering formulationt!. A steady
state ensuest? when the system is open. Open systems
must be defined directly on the infinite line to allow an
in-flow and out-flow of electrons and energy from the sys-
tem. The infinite volume limit, which needs to be taken
ab initio, provides a dissipation mechanism. Under these
circumstances the non-equilibrium steady state can be
described by a scattering eigenstate of the full hamilto-
nian, an eigenstate defined on the infinite line with its
asymptotic behavior specified at the incoming infinity.
In most cases the asymptotic boundary conditions are
determined by the electron leads*.
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We have subsequently also introduced a method, the
Scattering Bethe Ansatz (SBA), to construct those scat-
tering eigenstates on the infinite line for the Kondo model
and other integrable impurity models. The traditional
Bethe Ansatz, on the other hand, which has been exten-
sively applied to these models, is defined with periodic
boundary condition with periodicity L (with L subse-
quently sent to infinity). This approach is appropriate to
closed systems and allows an efficient calculation of the
thermodynamic properties of the systems. However, it
does not give access to their scattering properties, nor to
the non-equilibrium physics.

The scattering approach can also be applied under
equilibrium conditions, when all baths are held at the
same chemical potential, or in the case when only one
lead is present. The purpose of this paper is to study
the Scattering Approach under these simpler circum-
stances and confront it with the conventional approach
which can also be applied here. We will show that
the SBA reproduces known thermodynamical results for
quantum-impurity models. Nonetheless, as mentioned
above, the algebraic Bethe-Ansatz and its finite tem-
perature counterpart the Thermodynamic Bethe Ansatz,
prove technically easier when calculating thermodynam-
ics of quantum-impurity models. The real advantage
of the SBA is that it allows us to harness the power
of integrability to explore new questions about electron
S-matrices and T-matrices important for understand-
ing quantum-mechanical coherence and dephasing due to
magnetic impuritiest®14. And, in a context which we will
not further explore in this paper, SBA allows us to un-
derstand nonequilibrium steady-states in these models.

The paper is organized as follows. We start with a for-
mal introduction to the scattering approach to quantum-
impurity models and the scattering Bethe-Ansatz (SBA).
Subsequently, we demonstrate our ideas on the Resonant
Level model where the physics is particularly simple since
the Hamiltonian is quadratic. Finally, we use the SBA
to construct scattering states to reproduce well-known
T = 0 equilibrium results for Interacting Resonant Level
and Kondo models. We conclude the paper with some
conjectures about the Kondo model that significantly
simplify the calculation of some impurity properties.

II. THE SCATTERING FORMALISM

The basic idea underlying the scattering formalism is
the observation that a quantum impurity can be viewed
as a localized dynamical scatterer off which electrons
from the attached leads or host metal scatter. The scat-
tering changes the internal state of both the impurity and
host electrons and leads to the generation of strong corre-
lations. The standard procedure for treating such prob-
lems is to set-up an initial state with wavepackets that
represent the incoming particles in the far past and evolve
this initial state for a very long time with a time-evolution
operator U(t,t,) = T exp(—i ftto H(t")dt') of the appro-

priate interacting field-theory; H is the Hamiltonian that
describes the particles and dynamical scatterer - in this
case the quantum impurity. As the impurity is local, the
interaction switches off far away from the impurity and
we can define ’'in’ or ’out’ states by specifying the asymp-
totic behavior in the far past or the far future. Namely,
the ’in’ , respectively, 'out’ states are eigenstates of the
total Hamiltonian, satisfy the boundary conditions that
they tend to plane waves representing free incoming par-
ticles in the t — —oo and ¢ — oo limits respectively. The
cross-section for a particular process is then obtained by
calculating the overlap of the “in” state with an appro-
priate “out” state. A recent application of these ideas
to quantum impurities is given inl®16, While scatter-
ing states are designed to allow access to the scattering
properties of the system, they also allow calculation of
the thermodynamic properties.

The Hamiltonian for a quantum impurity attached to
a bath of free electrons is of the form:

H=Hy+ Hy =Y et o p+ Hu (1)

a,k

with € the full three-dimensional dispersion of the elec-
trons and « denoting the internal degrees of freedom of
the electrons. The term Hj,; describes the impurity and
its interaction with the bath of electron. Examples in-
clude the Kondo interaction,

Hiyy = JZ#’Z,}‘ (5)aa’ Zd}a’la 'gv
ak

a'k’

with S a localized spin representing the impurity, and
the resonance level model (RLM),

Hiy = tZ( w};»d + h.c.) + eqd'd,
E

describing a local level at energy ¢4 which hybridizes with
the bath electrons.

Standard manipulations=* allow us to rewrite the
Hamiltonian as chiral 1-d field theories. Since only the
combination ) = 1/1213 enters into the interaction we can
rewrite the theory in terms of the field
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as (D denotes the bandwidth, namely the cut-off)

D
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while the interaction terms take the form,
J [del, (3)aar [ de'thaser-S or t( [ de pid+h.c.)+eqdld
for the Kondo or the IRLM Model respectively. Finally
introducing a chiral fermion field

D
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the kinetic term becomes

D
Hy = —i/D dz ) (2)0y1a ()
while the field enters locally into Hiy, in the form 1] (0).
As we are interested in the physics on energy scales much
smaller than the cut-off D, we consider only universal
results obtained in the limit D — oo.

Open vs Closed Boundary Conditions: The
scattering approach to quantum impurity problems, by
its very nature, is defined in infinite systems, without
boundaries. Physically, this is equivalent to requiring
that once incoming electrons scatter off the impurity they
do not return and scatter off the impurity again. We re-
fer to infinite size systems with no boundaries as “open
systems”. The infinite size of the electron bath assures
that the host metal or lead is a good thermal bath. Real
life systems are not infinite but possess boundaries; our
treatment is valid as long as the return time for the elec-
trons is much smaller than the system size. The infi-
nite size of the system implies that scattering states are
no longer normalizable and in particular, the Feynman-
Hellman theorem no longer holds!®. This will be impor-
tant in understanding the results of later sections when
we construct eigenstates for the IRLM and Kondo mod-
els.

In this open system framework the nature of the in-
coming particles that scatter off the impurity is specified
by asymptotic boundary conditions. The incoming par-
ticles, far from the impurity, are eigenstates of the free-
electrons Hamiltonian Hy and any eigenstate of Hy is a
possible boundary condition describing what the incom-
ing particles look like. Two different boundary conditions
are of primary interest: (i) when the incoming particles
are a Fermi sea, typically representing the host metal and
(ii) when the incoming particles are a Fermi sea and an
excited quasi-particle. The former allows for us to cal-
culate thermodynamical properties from scattering while
the latter allows us to compute, in principle, single par-
ticle S and T matrices. These boundary conditions are
depicted in Figure [Tl

Time Dependent and Time Independent For-
malisms: T = 0: There are two different descriptions
for scattering processes. In the time-dependent descrip-
tion, the interaction between the conduction electrons
and quantum impurity is turned on in the far past, at
t = t, and then adiabatically time-evolved using the
Hamiltonian

H = Ho + entHinte(t - to)v (2)

with H, describing the free electron bath and H;,; the in-
teractions between the quantum impurity and the incom-
ing electrons, i.e., between the dot and the leads. Before
t = t, the quantum impurity is decoupled from the elec-
tron bath and the system is described by an asymptotic
boundary condition, an eigenstate of Hy which we de-
note |®,) (at T > 0 the system is described by some den-
sity matrix p, describing decoupled leads and the dot).
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FIG. 1: The incoming particles in the chiral picture corre-
spond to the particles on the left of the impurity and the
outgoing scattered particles are on the right. We take the
convention that the impurity is at * = 0. Using this conven-
tion, incoming particles are located on the negative x-axis,
z < 0, and outgoing particles to the positive x-axis, z > 0.
We typically consider two types of open boundary conditions
for incoming particles. In the first, the incoming particles de-
scribe a filled Fermi sea. This is useful for calculating thermo-
dynamics. In the second, the incoming particles are a Fermi
sea and an excited quasi-particle. This allows us to calculate
the single-particle S and T matrices.

At later times, as the baths and the quantum-impurity
evolve, the interaction is turned on adiabatically?® from
the state |®,) under the action of the time evolution op-
erator

V(1)) = Ult,to)|Po)

Ut t,) = Ti{exp(—i / WHE)) )

o

We now wish to establish that a steady-state ensues af-
ter sufficiently long time- long enough that all transients
die out. For this purpose one must show that the limit
t, — —oo exists, free of infra-red divergences. This has
been shown to be the case for the Kondo modelt? under
the condition that the infinite volume limit is taken first,
i.e. the system is open and the impurity is coupled to
good thermal baths. The ”openness” of the system pro-
vided the dissipation mechanism necessary for the steady
state, allowing the high-energy electrons to relax and es-
cape to infinity. The adiabatic limit n — 0 is taken last,
allowing the smearing of the bath levels (level separation
d ~ 1/L to take place turning the poles in the Green’s
function into a cut).

Under these circumstances |¥(¢)) become time-
independent and describes a time independent eigen-
state which we denote |¥),. Thus, we can also describe
our state in a time-dependent picture. In the time-
independent picture time is traded for space and - for
the chiral unfolded picture- the far past corresponds to
incoming particles located at distances z < 0 and the
far future to outgoing particles located at x > 0. (see
Figure[[). Under both equilibrium and non-equilibrium



conditions (e.g. coupling to baths at different chemical
potentials), the expectation value of any operator O

5 _ (YO[)s
9= T, “
is time independent.

A stronger conclusion can be deduced which is central
to our construction: the state |¥(0)) = |¥)s becomes,
by the Gellman-Low theorem!?, an eigenstate of the full
Hamiltonian H, specified by the initial condition |®,)
that describes the electrons in the far past (z < 0). In
other words , the state |U), is a scattering eigenstate
of the full hamiltonian H = Hy + Hiyt, satisfying the
Lippman-Schwinger equation,

1

V) =|®) + =————
W)s = | >+E_Hoim

Hint|\I]>s (5)

with |®,) - the incoming state playing the role of a bound-
ary condition imposed asymptotically. The scattering
state |¥)s can be viewed as consisting of incoming par-
ticles (commonly taken to be a bath of free electrons)
described by |®,), and of scattered outgoing particles
given by the second term in the above equation. Once
again two elements are required to fully determine the
system: a hamiltonian, H, and a boundary condition,
|®,), which describes the incoming scattering state far
from the impurity. Note that previously, in the time-
dependent picture, |®,) played the role of an initial con-
dition rather than a boundary condition. As the impu-
rity is short ranged the scattering state |¥)s must reduce
to the eigenstate |®,) when all the particles are far to
the left of the impurity. This gives a prescription for
calculating scattering eigenstates for quantum-impurity
problems. We must construct an eigenstate of the full
Hamiltonian H with the requirement that when all the
electrons are to the left of the impurity the eigenstate
reduces to a prescribed eigenstate of Hy describing the
free decoupled two baths and the impurity. It is worth
emphasizing that we never explicitly solve ([H). Instead,
we directly construct eigenstates of the full-Hamiltonian
with |U), that are of the form described above.

Scattering formalism at finite Temperatures:
The above discussion can be generalized to finite temper-
atures. Once again there are two equivalent frameworks
for quantum-impurity problems, a time-dependent and
time-independent. In the former, we proceed as in the
zero temperature case. We consider the quantum impu-
rity and the baths to be decoupled in the far past, at
t = t, — —oo, adiabatically turning on the coupling.
The Hamiltonian is again given by (2]). The change from
zero temperature is that the system is no longer described
by a single eigenstate but must instead by described by
a density matrix. At t = —oo, the quantum impurity
is decoupled from the electron bath and the system is
described by the density matrix

po = exp (—5H,) p=T"" (6)

At later times, the system is described by time evolving
the density matrix pg with the time evolution operator

p(t) = U'(t, —00) po U (t, —0) (7)

with U(t, —o0) being understood as the limit U(t,t, —
—00). The expectation value of an operator O can be
calculated in the usual manner by

Tr(p(t)O)

© =T

(8)

Again a time independent description can be given.
Now the boundary-conditions for our evolved density ma-
trix ps is provided by po: to the left of the impurity, we
know that the scattering density matrix ps must reduce
to po. Further, the finite temperature analogue of our
zero temperature condition that our scattering state |¥)
be an eigenstate of H is requirement that the density ma-
trix ps commute with the full Hamiltonian in the limit
n — 0.

Thus, at T' > 0 we consider the incoming states,
{|¢,m)}, the complete set of eigenstates of H, with en-
ergies F,,, distributed with the probability of each state
given by the Boltzman weight, e‘ﬁE?n,

po=e Mo = 3" e FEn | m)(p,m|,  (9)

Using (@), the time-independent density matrix ps is
ps = U(0,—00)p,UT(0, —00)
= > e PnU(0,00)|6,m) (6, m|UT(0, ~oc)

= Ze_ﬁE?n|\I/,m> (U, m| (10)

where we have used (@) and in the second line we have de-
fined the scattering state |, m) = U(0, —o0)|®, m) with
incoming particles describe by |®,m). The steady state
physics is captured by the operator p; which describes
an ensemble of scattering states weighted by the Boltz-
man factors determined by the energy of the incoming
electrons. This form for ps is consistent with the require-
ment that ps; commute with the Hamiltonian and reduce
to po to the left of the impurity. We can calculate the
expectation value of an operator as in (g])

0) = T2 (1)

III. THE SCATTERING BETHE-ANSATZ

We have shown in the previous section that the ther-
modynamic properties can be obtained from scattering
eigenstates defined directly on the infinite line with in-
coming boundary conditions imposed by the lead. In gen-
eral, constructing such eigenstates is a formidable task



due to the strong correlations between particles, and is
only carried out approximately. But for a special class of
models, many of which have important direct physical ap-
plication, the many-particle eigenstates can be explicitly
constructed using the Bethe-Ansatz wavefunction form.

The Bethe-Ansatz approach has a long history stretch-
ing back to Bethe’s study of the Heisenberg model2C.
The approach has been typically implemented on systems
defined with periodic boundary conditions with respect
to some finite length L. Subsequently the thermody-
namic limit is achieved sending L to infinity maintaining
a constant density. If a field theory limit is to be taken,
then a further scaling (or universality) limit is required.
By means of this “Traditional Bethe Ansatz” (TBA) ap-
proach the thermodynamics of several impurity models
was studied in great detail A7-21:22,

Scattering, on the other hand, must by definition take
place in infinite systems with no boundaries - open sys-
tems in our terminology. To compute scattering proper-
ties a different formulation is required. This can be seen
from several points of view. To begin with, particles must
come in from asymptotic regions and after scattering oc-
curs, escape again. Thus the system must be open to
allow the flow of particles and energy in and out of the
system. Furthermore, there must be a way to distinguish
between the incoming particles, typically bare particles,
eigenstates of H, but not of H, and the renormalized
quasiparticles that are the eigenstates of the latter but
not of the former. Expressing the bare particles in terms
of the renormalized quasiparticles and vice versa lies at
the heart of the scattering theory.

Thus the traditional (or closed) Bethe-Ansatz (TBA)
and the Scattering (or open) Bethe-Ansatz (SBA) nat-
urally address different sets of questions. The natural
questions that can be addressed using the first are ther-
modynamical. The TBA, by using a periodic system and
requiring wave-functions to be self-consistent, reproduces
the full renormalized excitation spectrum of a quantum-
impurity model. With the knowledge of the spectrum,
one can use statistical mechanics arguments to calculate
the thermodynamic quantities. Boundary conditions (pe-
riodic or otherwise) imposed on a finite length system
are essential to this approach. But all knowledge of the
bare theory is lost. As such, the TBA is unable to tackle
questions about the scattering properties of the quantum
impurities. Scattering relies on working in systems with
bare particles and open boundary conditions- namely sys-
tems of infinite extent with no boundaries.

There is a price to pay for working in open systems.
The wavefunctions are no longer normalizable and one
does not have recourse to thermodynamic concepts such
as free energy. Thus, while the SBA is essential for ana-
lyzing scattering properties of quantum impurity models,
it is more difficult to extract the thermodynamics using
it. Table [l summarizes the comparison between the two
approaches.

I [ sBA|  TBA]|
System Infinite Finite
Boundary condition||asymptotic (open) periodic
Wavefunctions used explicitly not used
Thermodynamics difficult easy
Scattering Properties possible |not possible
Nonequilibrium Generalization Yes No

TABLE I: Summary of differences between the Scattering
Bethe-Ansatz (SBA) and Algebraic Bethe Ansatz (ABA).

A. The Bethe-Ansatz Wavefunction

The central objective of the SBA is to construct on the
infinite line eigenstates of the Hamiltonian

H = Hy+ Hypt = —i /Oo daal (2)0,100 (x) + Hing (12)

— 00

with the condition that far away from the quantum-
impurity the incoming sector of the eigenstate reduces to
a prescribed eigenstate, |®), of the free-electron Hamilto-
nian Hy. As such, any scattering state must have a well-
defined sense of incoming and outgoing particles, with
the incoming electrons being to the left of the impurity
(x < 0) and the outgoing scattered electrons those to its
right. The state |®) can be any eigenstate of Hy. We
focus in this paper on the case where |®) is a Fermi-
sea of incoming particles. However, many other choices
are possible. In particular, to calculate S-matrices and
T-matrices of quantum-impurity Hamiltonian one can
choose |®) to be a Fermi-sea with one incoming parti-
cle above the Fermi-sea (see Figure[I]).

The choice of |®) describing incoming particles imposes
an asymptotic boundary condition on the full scattering
eigenstate. In general, imposing boundary conditions on
our scattering states is quite difficult. However, when
the incoming particles are a free Fermi sea, imposing the
boundary-condition simplifies greatly. The key to this
simplification is the observation that the natural basis
for Bethe-Ansatz wavefunctions is not the Fock basis,
but a new “Bethe basis” described extensively below.

The SBA constructs eigenstates of the Hamiltonian us-
ing wave-functions of Bethe-Ansatz type2?. The Bethe-
Ansatz utilizes the integrability of the Hamiltonian H to
divide multi-particle scattering events into two-particle
scattering events characterized by the two-particle S-
matrices, S¥ derived from H. The integrability of
the Hamiltonian translates in this language into a self-
consistency condition on the two-particle S-matrices
known as the Yang-Baxter Equation (YBE)2? ensuring
that all multi-particle interactions can be consistently
broken-up into pair-wise interactions. The consistent
wavefunctions of the Bethe form, which we collectively
refer to as Bethe-Ansatz wavefunctions, are eigenstates
of the Hamiltonian.



We restrict our analysis to quantum-impurities coupled
to non-interacting electrons. We further assume that par-
ticle number is conserved, the Bethe-Ansatz wavefunc-
tions all have a definite number of particles, NV, and there
are only local interactions: two particles can interact only
if they are at the same point. To write a Bethe-Ansatz
wavefunction, it is necessary to divide the configuration
space into N! regions according to the ordering of the par-
ticles on the infinite line. For example, we can consider a
region where particle 5 is to the left of particle 7 which is
to the left particle 9 etc., (x5 < x7 < z9...). Each such
region is labelled by a permutation ) in the symmetric
group, Sy4+1. Since a particle ¢ and j can only interact
when they occupy the same position x; = x;, there are
no interactions in the interior of these regions. Within
each region, the Hamiltonian H reduces to Hy and the
eigenfunctions are sums of plane waves. The most gen-
eral wave-function of the above form is (with z¢p = 0 the
position of the impurity)

\BA, {p}) = /d:vl . dpy € TP (13)

N
Z Agl...aN,aoe(IQ) H 1/)24] (IJ)|O5 a0>
Q j=1

where 0(zq) = 0(rg) < Tg2) - Tow) < TQ)) and
Q@ runs over all N + 1! permutations. The state |0, )
denotes the drained Fermi sea (g, (x;)|0) = 0) and the
state of the impurity.

When a boundary between two regions is crossed, two
particles interact (multi-particle interactions forbidden
by Fermi statistics) and hence the amplitude in the re-
gions across the boundary are related by a two par-
ticle S-matrix determined by solving the two-particle
Schrodinger Equation for the relevant Hamiltonian. The
amplitude in a region @, Aa,. an(Q), is related to the
amplitude in an adjacent region, @', differing from it by
the exchange of neighboring particles i and j, via the
S-matrix S,

AZ,

= (SV)arax A5,

Bi..B8 (Sij)gi@}AQ (14)

QN B1...0n
where in the second equality we have used the fact the
two-particle S-matrix S% acts non-trivially only on the
sectors of the Hilbert space corresponding to particles 4
and j. In general, the matrix relating the amplitude in
the region @ = I, defined by (z1 < x2 < ... < zy < )
is related to the amplitude in region @, (vg1) < Tg(2) <
. < zov) < TQo)), by an S-matrix S¢ given by a
product of two-particle exchange S-matrices S along
the path leading from I to Q. Since many paths can lead
from I to Q consistency requires that S be uniquely de-
fined in a path independent way. This is assured by the
Yang-Baxter condition?t. Thus, the Bethe-Ansatz wave-
function can be written in terms of a single amplitude

A = A' in the region Q = I and the S-matrices S?,

|BA,{p}) = /dzl...deeszjxj (15)

N
> (59 a; . anblzq) [T ¢, (5)10).

Q J=1

The energy of a Bethe-Ansatz wavefunction (&) is
given by F = Zj pj. Note, however, that the Bethe-
Ansatz wavefunction with Bethe-Ansatz momenta, {p;}
is degenerate in energy with all other Bethe-Ansatz wave-
functions {p}} with Ej p; = E =) .pj. Thus, there are
an infinite number of degenerate Betfle—Ansatz wavefunc-
tions of the same energy for any Hamiltonian. Generi-
cally, a scattering state with energy E is a sum of Bethe-
Ansatz wavefunctions (4]

UEEDY

{p}i3; p;=E

Cipy|BA, {p}), (16)

with Cy,) the amplitude in the scattering state of the
Bethe-Ansatz wavefunction |BA, {p}) and the sum run-
ning over all sets of Bethe-Ansatz momenta {p} with en-
ergy F.

B. The Bethe-Ansatz Basis

To construct scattering eigenstates for integrable quan-
tum models the Bethe-Ansatz wavefunction exploits the
large degeneracy of the linearized free electron gas. As
taught in standard chapters on degenerate perturbation
theory the correct basis of states in a degenerate sub-
space to perturb from is the one that diagonalizes the
perturbation, or equivalently, the one to which the sys-
tem returns once the perturbation is turned off. This is
precisely the intuition behind the “Bethe basis” of a non
interacting field theory. A Bethe basis for a free electron
gas is the basis inherited from the interacting quantum-
impurity theory when the impurity is removed, or when
the system is studied far from the short range impurity.
The basis is defined by the presence of a non-trivial two
particle S-matrix S% between the right moving free elec-
trons in Hy. Indeed, a moment’s reflection shows that as
the particles move with the same velocity (to the right
with vp = 1) an S-matrix does not indicate interaction
but a choice of basis.

We now discuss the Bethe basis in more detail. For
a quantum-impurity model, there are two kinds of two-
particle S-matrices: those that describe electron-electron
scattering, which we denote S%, and those that describe
impurity-electron scattering which we denote S%. The
S-matrices % and S% are determined by the impurity
interaction term Hiyy in (I2) and the Yang-Baxter con-
sistency conditions.

Imagine turning off the coupling to the impurity in
(@) so that H;,: = 0. Then (I2) reduces to the free-field



Hamiltonian Hy and the electron-impurity S-matrix, S%
reduces to the identity, S% — 1. The electron-electron
S-matrix S%, however, does not change. This leads to the
somewhat surprising conclusion that Bethe-Ansatz wave-
functions of the form (&) with S¥ # 1 are eigenstates
of the free field Hamiltonian Hy.

This can be understood as follows. Consider the first
quantized version of Hy. In the two-particle sector, the
first quantized Hy is given by Hy = —i(0,, + 0z, ). Notice
that any wavefunction of the form

|2;p1,p2; q> = /dxquag ei(:D1+q)x1+(p2+q)z2

Pl (z1)0l, (22)0)

is an eigenfunction of Hy with energy E = p; + pa (the
{«@;} label the internal degrees of freedom of the free elec-
trons). Since ¢ can take on any value, there is an infinite
number of such states. Any sum of eigenfunctions of the
above form is also an eigenfunction of the Hy with energy
E

(17)

3

125 p1,p2) =

Z/dwldﬂczei””““”mAZlazeiq(“_“)%1($1)¢32(w2)|0>
q

- / Ay dap PP £ )T (bl (22)[0)

where to go from the first line to the second line we have
used the fact that Zq Agmeiq(zl*fﬂ is the general ex-
pression for the Fourier transform of an arbitrary func-
tion, f(x; — x3), of &1 — x2. Thus, due to the large
symmetry of the free electron problem, there is an in-
finite number of degenerate two-particle eigenstates for
Hjy. The above argument easily generalizes to more than

two particles: any function of the form

|N) = /dwl . deerf:lpszs Hfaiaj (xs —x5)

i<j

[Tvi, @ (19)

is an N-particle eigenstate of Hy. Since 0(zg) =
[lic; 0(zqui)—q))- is of that form [ we conclude that
the most general N-particle Bethe-Ansatz wavefunction
with S® a product of electron-electron S-matrices, S%,

N, BA) = / 476 T3P (S A) 0, o ()
UL, (@) -l ().
is an eigenstates of Hy. However, for S¢ # 1 (which

implies S% # 1), it is clearly not of the usual Fock-basis
form,

(20)

N, F) = / dFe ZiPi% Ay, ol (1) 0L (@n)[0).
(21)

(18)
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The different choices for S¥, and in turn S, correspond
to different 'Bethe-Ansatz’ bases for free electrons. The
choice of S¥ imposed by the impurity interaction corre-
sponds to working in a particular ”Bethe-Ansatz” basis
for the problem. The usual Fock basis corresponds to the
choice S = 1.

We now proceed to discuss the relationship between
the Bethe basis, with S% # 1 and the Fock basis S¥ = 1.
We denote, for a particular choice of a consistent set of
matrices S%, the resulting Bethe-Ansatz wavefunctions
by {|BA),} where n enumerates all possible choices for
the {p} and A, . .oy in @0). The set of Bethe-Ansatz
wavefunctions {|BA),} form a complete basis for our
Hilbert space of Hy in the limit of infinite size and par-
ticle number. In quantum mechanics, different basis for
the Hilbert space are related by unitary transformation.
Thus, we can formally define an operator U that relates
the Fock basis {|F),,} to the BA basis {| BA),}. U maps
states in the Fock basis (2]]) to states in the Bethe-Ansatz
basis (20). In general, the matrix U relating the two basis
is quite complicated since a single state in the Fock basis
|F); maps onto a sum of wavefunctions of the Bethe-
Ansatz form |F), — > Unm|BA),. For example, in
(@) we saw that the two particle eigenstate is actually a
sum over many Fock states of type (IT)).

However, U simplifies greatly if we restrict ourselves to
asking how the ground state of Hp in the Bethe-Ansatz
and Fock basis are related. For a systems with unique
ground-states, U must map the Fock basis ground state,
|N, F)g4s to the ground state in the Bethe-Ansatz basis
N, BA)gys. Thus, the ground state in the Fock basis maps
to a single wavefunction of the Bethe-Ansatz form (20).
Since the ground state of Hy is a free Fermi-sea, it follows
that a Fermi-sea can be represented by a single Bethe-
Ansatz wavefunction. In the sections that follow, we will
restrict ourselves to this case where we represent a free
Fermi sea, the ground state of H, in both basis.

C. Imposing Asymptotic Boundary-Conditions

The goal of the SBA is to construct eigenstates of the
Hamiltonian (I2)) satisfying the asymptotic boundary-
condition that the incoming particles are a prescribed
eigenstate, |®), of Hy. We focus on the simplest case
when incoming particles come from a bath and are a free
Fermi-sea. Central to the imposition of any boundary-
condition on the fully interacting Bethe-Ansatz wave-
functions is the observation that these wave functions
pick a particular Bethe-Ansatz basis for the free Hamil-
tonian Hy. Thus, the boundary condition, typically
formulated in the Fock basis, must be reformulated in
the natural basis for the scattering state wavefunctions,
the Bethe-Ansatz basis. The antagonism between the
Fock basis, natural for boundary-conditions, and the
Bethe-Ansatz basis, natural for wavefunction is at the
heart of many of the SBA. We discuss only the zero-
temperature case. The generalization to finite tempera-



tures is straightforward.

Recall that the incoming electrons in our chiral pic-
ture are electrons to the left of the impurity, x < 0 (see
Figure ?77). Thus, the asymptotic boundary condition re-
quires that the scattering state reduce to the eigenstate
of Hy, |¥) — |®y) = |P)paths ® |ag), when all particles
are to the left of the impurity, {z;} < 0, with |®)pesn
a state describing a Fermi sea of free electrons. In gen-
eral, the scattering state |¥) is a sum of wavefunctions of
the Bethe-Ansatz form ([I6). The amplitudes of the dif-
ferent Bethe-Ansatz wavefunctions CY, ) are determined
by the asymptotic boundary condition. It was argued in
the last section that the |®)pqtps can be written using a
single Bethe-Ansatz wavefunction of the form (20). Thus,
in the case where the incoming particles are described by
|®)patns, our scattering state |¥) can also be described by
a single Bethe-Ansatz wavefunction. The incoming elec-
tron corresponds to the regions in the wavefunctions of
the form 8(xg;zo) = H(ZEQ/(l) <zgre) <... <zgnN) <
xo) with @' a permutation of the N¢ electrons in the
problem. Since there are no electron-impurity scattering
events in these regions, SQ" can be written entirely in
terms of the electron-electron scattering matrix S% and
the scattering state |¥) reduces to |¥~) when all elec-
trons are to the left of the impurity,

o) — |07 = /d:z:l oday et 2 ki (22)
/ N
ZSQ Aal...aNe;aoe(xQ’;xO) H wlj (‘TJ)|O>
Q =1

The right hand side is precisely of the form (20). We
therefore conclude that |¥) reduces to eigenstate of Hy
in the Bethe-Ansatz basis when all particles are to the left
of the impurity. This leads to the observation that when
the incoming particles are a free Fermi sea, imposing the
asymptotic boundary conditions corresponds to choosing
the amplitude A, . oy and the Bethe-Ansatz momenta
{p;} for a single wavefunction of the form (20) such that
|¥~) describes a Fermi sea.

As is usual in the Bethe-Ansatz, we do not seek to
determine the BA momenta {p;} in the thermodynamic
limit, computing, instead, the distribution function for
the BA momenta, p(p). For an infinite system, the distri-
bution p(p) and the amplitude A,,. o, are independent
of the procedure used to arrive at them2!. This observa-
tion allows us to find p(p) and A, ..oy using an auxiliary
Algebraic Bethe Ansatz problem for a system of free elec-
trons on a finite ring of length L’ with Hamiltonian Hy
and two-particle S-matrices, S¥. In the limit L' — oo,
the distribution function for the BA momenta and am-
plitude in the auxiliary problem will coincide with those
of the physical system. p(p) and A, ..oy are obtained in
the auxiliary problem in the usual way by requiring that
the wavefunction be periodic. In particular, the ampli-
tude Aq, ..oy and the BA momenta {p;} must satisfy the
auxiliary Bethe-Ansatz equations,

Pl A oy =891 GILGIN | giitl g

N N

This program is carried out explicitly for the IRLM and
Kondo models in the appendix.

To summarize, the imposition of the asymptotic
boundary condition on the incoming particle greatly sim-
plifies in the special case where the incoming particles
are a free Fermi-sea. The scattering state |¢)) can be de-
scribed by a single Bethe-Ansatz wavefunction and the
imposition of the boundary condition is reduced to find-
ing the amplitude and BA momenta for this BA wave-
function. These are found by using the TBA to treat
the auxiliary problem of free electrons on a finite ring
of length L’ in the appropriate Bethe-Ansatz basis. The
amplitude and the BA momenta of the auxiliary problem
coincide with those of the scattering state in the limit
L' — 0.

D. Computing with Scattering States

Thus far, we have discussed the explicit construction of
the scattering states |¥) for integrable quantum impurity
models. We proceed now to compute the expectation
values of physical quantities in the scattering eigenstates

using ()

<O> — M (23)
(W|w)

The calculations of expectation values are greatly sim-
plified because we work directly with infinite systems.
Technically, this is because for strictly infinite systems,
we can ignore all but one term in the Slater-determinants
occurring in the above expression. This simplification is
the mathematical expression of the physics for infinite
systems: electrons that scatter off the impurity “leave”
the system and never return to scatter off the impurity
again.

Consider first the overlap between two Bethe-Ansatz
wavefunctions.  Since they are given as a sum of
plane waves in each region @, the overlap of two such-
wavefunctions, (BA, {p,;}|BA,{k;}), is (suppressing the
internal index «; for notational brevity)

Z / dzdije’ 2 (kj; _pfyf)ﬁ(a:Q)H(yQ)
Q.Q

N

AQ)A(Q)(0]

s=

N
b(ys) [] 1 (x5)0) (24)
1 j=1
The Fermions field give rise to a Slater determinant

Z (_1)sgn(5)/dfdgeiEj(kjrrpjyj)g(xQ)g(yQ)

Q.Q.8
N
AQAQ) H (zs() —;)(25)

where S is a permutation of the NV particles. Integrating
over ¥/, we have



(BA, {p;}|BA, {k;}) = (26)

)
0

Thus, we see that this expression is the norm of plane
waves integrated over a region 0(zg). As is usual we
regularize plane waves by first placing the system in a
box of size L whose size is then taken to infinity at the
end of the calculation. This allows us to consider the
simpler problem of plane-waves

L/2

lim dee’Fi7P)Tig(x) < xy ... < xn).  (27)
L=oo ) _L/2

It is straightforward to show that the leading order con-
tribution in L to this integral is LY /N! which occurs
only if the two sets of Bethe-Ansatz momenta are identi-
cal {k;} = {p;}. This is the statement that plane waves
are ’orthogonal’ even on a region 6(xg) for an infinite
system. Thus, for infinite size systems we can ignore all
terms in (26) where the k; # pg-1(;) for all j.. This leads
to great technical simplifications as we only need to keep
terms in the sum (26) where @ = 1. Similar, simplifica-
tions occur when computing the expectation value of an
operator O between Bethe-Ansatz wavefunctions.

IV. SCATTERING APPROACH TO THE
RESONANT LEVEL MODEL

In this section, we will apply the scattering framework
to a quadratic model, the Resonance Level Model (RLM).
Despite its simplicity there is much interest in this model
because it describes the strong coupling physics of the
Kondo model. It will be shown that our results agree
with other approaches to this model such as Keldysh or
Landauer which can be carried out completely in this
quadratic case. In the next section we shall apply our
approach to a fully interacting model with strong corre-
lations.

The Hamiltonian for the RLM,

Hry = Ho+ Hrrint (28)
Hy = ~i [ el @)0,0(0)
Hprine = t(¥1(0)d + h.c.) + eqd'd,

describes a local level df onto which electrons can hop on
and off. The energy of the level (relative to the Fermi
energy) is controlled by €4, related to the magnetic field
in the anisotropic Kondo?%. Notice, that we have already
projected to one dimension and there are only right mov-
ing chiral electrons. As explained in the last sections, in

Z(_l)sgn(S) / dfel Zj(kjmj *ZDJ'IS(J'))9($Q)A(Q)A(QS_1)
Q,S

(1)) [zt 0)70(5g)AQ)A@S )

s ———

Free Electrons

FIG. 2: The scattering state [¢) describes a quantum-
impurity where the incoming particles ({x; < 0}) are a free
Fermi-sea with N particles.

the chiral picture, the free incoming electrons are located
to the left of the impurity, < 0, and the scattered out-
going electrons are to the right of the impurity, > 0.
The RLM serves as a good pedagogical introduction to
the scattering framework for quantum impurity models
since it is quadratic model and we will not have to resort
to the full machinery of the scattering Bethe-Ansatz.

A. RLM at T =0: Thermodynamical Properties

Consider first the zero temperature thermodynamics.
We must construct a ’in’ scattering state, |¥), describing
incoming electrons from the host metal scattering off the
impurity. The scattering state |¥); is an eigenstate of the
full Hamiltonian (28] such that when all the particles are
to the left of the impurity |¥), reduces to an eigenstate
|®,) of Hy describing a Fermi see (see Figurd2).

The RLM Hamiltonian (28) conserves total particle
number. Hence, we can work in a sector of the Hilbert
space with a definite number of particles, N. Beginning
with N = 1, the most general single particle eigenstate
is of the form

1= ([ dse™ g 0@+ e ) o) (29
Applying the Hamiltonian leads to Schrodinger equation
Owgp(x) + Ve,d(z)

tgp(0) + €qep

= pgp(x) (30)
pep. (31)

Taking the ansatz that g,(z) is of the form g,(z) =
Af(—x) + BO(z) and inserting this into the above equa-
tion, one has, using the regularization scheme 6(z)0(x) =
16(x)2, that

. t2
B_ iy _ L (32)
A 1t

2(p—e€a)

Thus, the most general single particle eigenstate is given



by
19, = ( [ doert0(-2) + 5000) + ey ) 0
19(0) 11+ e
€p (p — Ed) - 2(p — Ed) (33)

where to get the second equation we have used [BI]) and
the aforementioned regularization scheme. For future ref-
erence it will be helpful to define the single particle scat-
tering state creation operator

) + €0 (x))0l (z) +

Since the Hamiltonian (28] is quadratic, a N-particle
eigenstate is given by a tensor product of single particle
eigenstates. The most general N-particle eigenstate is of
the form

W) = [T olp) = [ [ dee'roal, @)0) (5)

of(x) = (0(-

p

S(x)epd  (34)

Notice that we have not yet specified the momenta {p;}
of the state. Since we wish to construct a scattering
eigenstate, these momenta must be chosen to satisfy the
boundary condition that when all particles are to the left
of the impurity our eigenstate reduces to an eigenstate of
H, describing the incoming electrons of the host metal
or lead at thermal equilibrium (see Figure 2)). At zero
temperature, this means that the scattering state must
reduce to |P,) = |P)patns ® |da), when all particles are
to the left of the impurity. Here |¢pq) describes some
impurity state and |®)pq¢ns describes a free Fermi sea

|P)baths = /dI1---deeizyzlpjx“/ﬁ(%)---1/)T($N)|0>

(36)
under the additional condition that the momenta of the
particles {p,;} be distributed according to the Fermi-
Dirac distribution function. Since we are interested in
the limit where the number of particles goes to infinity,
it is sufficient to specify the distribution of the momenta
instead of the individual values of the momenta them-
selves.

The single particle eigenstate (B3]) consists of an in-
coming particle, [ dzf(—z)e®*4T(x)|0), and an outgo-
ing scattered wave, [ dzf(z)e’P*+%)f(2)[0). Since the
multi-particle scattering state (B3] is a tensor product of
the single particle state, when all particles are to the left
of the impurity [1), reduces to

W)s — (37)

N
/d:cl...de [To-
s=1

If we choose the momenta {p;} to be distributed accord-
ing to the Fermi-Dirac distribution, (B3] reduces to the
expression for |®)p.:hns. Hence, our scattering state is

z4)e’ E;'V:lpﬂjdﬁ(xl) .

YT (2n)|0).
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given by (B8) with the requirement that the momentum
distribution of the electrons be chosen according to the
Fermi-Dirac distribution.

Expectation values We can calculate the expecta-
tion value of operators for the RL model using ([@). We
are interested in calculating the dot occupation ng =
(d'd). Since the multi-particle eigenstate (B3] is a ten-
sor product of single particle eigenstates ([B3)), it is useful
to prove some identities about single-particle scattering
states. We regularize our system, as is usual in scatter-
ing theory, by placing the system in a box of length L.
The physical system corresponds only to the L = oo limit
and finite L properties are not well defined. A straight-
forward calculations yields (without loss of generality set-

ting A =1 in (33))

(14/1p) = 39
1 _ ei(prék)L
P|2 —
L e [ ]
and
(Hldtdlip) = eie, 39

Thus the overlap of states with the same momenta is
of higher order in L than those with different momenta,
so that plane waves are an orthogonal basis for infinite
size systems. In the scattering framework which works
directly with infinite size systems, it is sufficient to con-
sider overlaps only of single-particle states with the same
momenta.

Consider now the dot occupation. To leading order in
L, one finds, combining (39), (38)), (B3), and ), that the
occupation is given by

- < Z |epg

40
< |1+ % |2 (40)

LZAQ"’ pJ_Ed)

with A = t2/2, where to go from the first to the second
line we have used the explicit forms of e, and e’ . Since,
we are interested in the infinite size limit N, L — oo, we
can replace the sum by an integral over the distribution
of incoming electrons which is given by the Fermi-Dirac
distribution function, 6(e; — p) to yield

(na) —/dp9(€f—P)(m_iﬁ

(41)

We compare this result to the one from the traditional
Bethe-Ansatz, defined with periodic boundary conditions
on aring of length L. In the usual Bethe-Ansatz, one puts
the system on a circle and imposes the self consistency
condition that |¢) at @ = 0 equals |[¢) at z; = LZ.
This leads to the B.A. equations. For this model where
the two-particle S-matrices are trivial, the B.A. equations
yield for the energy

E=Yp = Z (2”"1 + %5%.) . (42)



The {n;} are integers corresponding to the energy of a
free electron and the {d,,} the shift in the energies due
to the impurity. For future reference, define the ’impu-
rity” energy as Ejpmp = limp oo % Zj op, = [dpp(p)d(p)
with p(p) the distribution that describes the free elec-
trons in the Bethe-Ansatz basis. From the Feynman Hell-

man theorem!8, we know that
OE  OFimp
<nd>_a_6d_ Odeg LZ pj—ed +A2
2A
= dpO(Ef — p)——————— 43
[0 - )

in agreement with the expression we computed using the
scattering state formalism (@I).

It is helpful to define an operator that directly yields
the impurity energy using scattering states. This is
done by considering the overlap of the outgoing scattered
waves with the unscattered Fermi-sea. Define a state
|®1) that describes a bath of outgoing particles (i.e. all
particles are to the right of the impurity)

F) = /dezne

Then, we can define impurity energy alternatively in
terms of an impurity energy operator, Fj,, that acts
on scattering state |t)

—i (@7]W)
7% (o)

Eip| ) = Jim —1lo

EOIEYITY Q/JT(ggl) .. wT(UCN)|O>

A straightforward calculation shows that the expectation
value of impurity-energy operator

Lzap]—/dpp P)é(p)

(44)
agrees with the expression derived from traditional meth-
ods. The virtue of this operator is that it can be gen-
eralized in a straightforward manner to all integrable
quantum-impurity models. This object is closely related
to the many-body T-matrix for the quantum-impurity
model.

RLM at Finite Temperatures: Thermodynam-
ical Properties Consider now the finite temperature
case. At finite temperature, T' > 0, the system is no
longer described by single scattering eigenstate. Instead,
we must consider a density matrix of the form (I0) com-
posed of scattering states weighted by the thermal Boltz-
mann distribution. Label the set of N-particle scattering
states by the energy of the incoming electrons {|y, m)},
with m labelling all possible sets of energies for the par-
ticles p; < p2 < ... < pn. We expect that these scat-
tering states are a complete basis for the Hilbert space,
and indeed find that this assumption reproduces known
thermodynamic results correctly.

(Y] i | ¥)
(W|w)
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We calculate the finite temperature properties of the
RLM using ([I). The dot expectation value is calculated
using dot occupation operator fg = d'd:

(fa) = _ Ty, e PP, m (@, mlig
T T, Ty, e PP, my{d,m|

S m € P Em (0, nltp, m) (0, mliraltp, n)
S € PEm (1, nfep, m) 2

The above expressions simplify when we work in the infi-
nite physical L limit since we can keep only leading order
terms in L. Recall, that m, m’ and n are shorthand la-
bels for the ordered set of energies of the N electrons
p1 < p2 < ... < pn. Thus, if m # n, there is at least
one electron in each state with different energy. Further-
more,notice that the overlaps of a single particle eigen-
states (33)) given by ([B8)) are leading order in L only if the
energies of the two single particle eigenstates coincide.
Hence, we conclude from (B5]) that the leading order in L
contribution to the overlap of multi-particle eigenstates
comes from states where all particles have the same en-
ergy, or in other words, when the two states are identical.
Thus, for the infinite L limit, we can set m = m’ = n in
the above expressions to get

Tr(psia)

e PEL (4, n|ig|v, n)

(ha) = ;E oBED, T LN

_ NP
_Z L Z A2+ pj—ed)

n P €{Pj}n

S Y o

n P €{pj}In

(45)

where P(n) is the Boltzman probability for the state la-
belled by n. We can now use a standard trick of statisti-
cal mechanics and replace the sum over all configurations
by an integral over the average occupancy of a level of
energy p, N(p), which in this case is given by the finite-
temperature Fermi-Dirac distribution function, f(p,T).
This yields

(Na) Z/dpf(paT)(M_fdﬁ-

Thus, the effect of temperature is then incorporated by
requiring that the momentum distribution of the incom-
ing electrons be chosen according to the finite temper-
ature Fermi-Dirac distribution for free electrons. This
expression is in agreement with known results. We will
see that the above argument is quite general and that the
effect of temperature can be generically incorporated by
integrating over finite-temperature distribution functions
instead of their zero-temperature counterparts.

An almost analogous calculation using the impurity en-
ergy operator Ej,,, yields that the finite energy impurity

(46)



energy is

(Bimp) = / dp £(p.T)5, (47)

The great limitation of the scattering formalism is that
though we can calculate the finite temperature energy,
calculating the free energy is much trickier. A free energy
operator can also be defined for these models though this
is much trickier and will not be discussed in this paper??

V. SCATTERING APPROACH TO THE
INTERACTING RESONANCE MODEL (IRLM)
THERMODYNAMICS

In this section, we compute the zero temperature ther-
modynamic properties of the interacting Resonance Level
Model (IRLM) within the scattering framework. The
IRLM Hamiltonian,

Hipim =

Hy+ H; = —i/da:d)T(x)azd)(:zr) + H;

—i/d:c Y1 (2)0ptp(z) + t(4pT(0)d + h.c.)
+U 1 (0)(0)d'd + eqd’d

describes a local level, df, onto which spinless electrons
hop on and off. There is an additional Coulomb interac-
tion between the level and electrons. We consider only
the case where ¢; > 0, where the level is above the Fermi
energy of the electrons. Unlike the RLM considered ear-
lier, this model is no longer quadratic and we must use
the full Scattering Bethe-Ansatz (SBA) technology to
construct scattering states.

We construct the scattering states. They satisfy
the Lippman-Schwinger equation (B), and specifying the
boundary condition on the incoming particles, |®), and
the Hamiltonian (@8], uniquely determine the corre-
sponding scattering state |¥). In this section, we restrict
ourselves to scattering states where the incoming par-
ticles are a Fermi-sea at zero temperature |®,). Such
scattering states are sufficient to describe the zero tem-
perature thermodynamic properties of the IRLM such as
the dot occupation and impurity energy.

In principle, the scattering formalism can also be used
to describe quasi-particle S and T matrices. We defer
these topics to future publications as they require treat-
ing more complicated boundary condition for incoming
particles that includes quasi-particle excitations above
the Fermi-sea.

A. Construction of the scattering state

The scattering states for the IRLM are constructed
using the SBA, directly in open systems of infinite size,

12

L — oo. The most general N-particle eigenstate is of the
Bethe-Ansatz form

N
|{p}> = A/dI62 Ez<] sgn(z;—z;)®(pi,p;) Ha iy xg |0 )
j=1

with

®(p.k) = tan™? (Z(p oy

and 6, and e, given in (2) and @3)2°. Note that a is
the operator that creates a single-particle eigenstate (34)
in the non-interacting RLM. The states |{p}) are a com-
plete set of states in terms of which a particular scattering
state can be constructed as a linear combination of by the
set ({p}) determined by the boundary conditions. In our
case the boundary condition requires that the incoming
particles look like a free Fermi sea. As discussed pre-
viously, for this boundary condition a single state [{p})
with appropriately chosen set {p} suffices to determine
|¥)s. In more detail, when all the particles are to the left
on the impurity, {z;} < 0, |¥), must reduce to an eigen-
state of Hy, |®,), describing a zero temperature Fermi
sea and a decoupled impurity. When all the {z;} < 0,
the operators {o/, , ()} reduce to {e®i®iypt(x;)} and the

eigenstate |U), reduces to

- /derz iy s9n(@i =) R(Pips) oI 325 TP HW ;)[0).

j=1

Thus, we must choose the {p;} in such a manner that
the above expression describes a free Fermi sea.

Despite its appearance the expression on the right
hand side is an eigenstate of H,. This can be seen by
applying h, = —i Ejvzl Oy, to the wave function. In-
deed, since all particles are right mover the scattering
S-matric S = e*®P:Pi) describes the choice of a Bethe
basis in the infinitely degenerate energy subspace of free
electrons. Thus, for {z;} < 0, |¥)s reduces to an eigen-
state expressed in the Bethe basis characterized by the
two-particle S-matrix S = e'®®i-2i). This Bethe basis
is the natural basis for our problem since, as discussed
previously, degenerate perturbation theory demands that
we choose the basis for the free electron eigenstates by
“turning off” the perturbation, in this case the coupling
to the quantum impurity. It is worth emphasizing that
the momenta {p;} should coincide with the usual Fock
momenta of quasi-particles only when U = 0 and the
S =1,

The boundary-condition on incoming particles must
be implemented in the Bethe-Ansatz basis with a non-
trivial two particle electron S-matrix S = ¢®®i:Pi)  Ag
discussed previously, the requirement that the incoming
particles be a Fermi sea translates in this Bethe basis into
the condition that in |®,) the incoming particles be an



eigenstate of Hy of the form (20)

@) patr = A / et i 7373 ¢4 ey s9n(ai=a,)¥(pi,p,)

Y (@) . 4 (@n)|0) (50)

with the additional condition that the distribution for the
BA momenta of the incoming particles, p(p), satisfy a set
of free Bethe-Ansatz equations for an auziliary problem
of free electrons on a ring of length L’ with a two par-
ticle S-matrix, S = exp (i®(p,k)). These equations are
derived in the appendix ([(A9) and are given by,

o) = 5~ [ AkoDE .1 (51)
_ Loy U (ca—B)
KoM = 0 o 7tk 2er TR

The desired scattering state, |¥);, is given by [{8]) with
the additional requirement that the distribution of the BA
momenta, p(p), solves the Bethe-Ansatz equation above.
The simplicity of the equation follows from the fact the
ground states in the Fock basis and in the Bethe basis
are unique. This is no longer the case for excited excited
states. It is also worth emphasizing that (52 correspond
to a free Hamiltonian Hy and thus differ from the usual
Bethe-Ansatz equations for the IRLM2S in that they con-
tain no impurity contribution.

B. Zero Temperature Properties

Having constructed scattering states, we now use them
to calculate the thermodynamic properties of the IRLM.
In particular, we will use scattering states to calculate the
zero-temperature dot occupation (fg) = (d'd) and the
impurity energy FEj,, defined as using the impurity en-
ergy operator (44). At zero temperature, E;n,, plays the
role of the free-energy for all dot thermodynamic prop-
erties. We then show that our results agree with those
derived using traditional Bethe-Ansatz techniques.

To calculate the impurity dot occupation we use ()
which yields

(w|d'd| )

() = 5701 (52)

with |¥) as in (48). As is usual in scattering theory,
we regularize our calculations by placing the system in a
box of size L. Since scattering is defined only for open
systems, the physical system correspond to the infinite L
limit and finite L properties are not well defined. From
the definition of of @), it follows that d'da}_(x,)|0) =
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§(zs)ep,dt|0). Thus,

(W|dtd|w) = Z(—1)5A2/dgdfa(xs)
X e% Zi<]‘(Sgn(mi*mj)*Sgn(yi*yj))q’(mypj)
N
< ep, [ (Olay(yy)dial(z;)lo) (53)
j’3=1,j#s

A very similar calculation yields

(0| W) :AQ/dgdfe% Picj(sgn(i—z;)—sgn(yi—y;))2(pi:ps)

N
(0leje (1) (IJ)|O> (54)
Jhi=1
To proceed with the calculation we note that from (34,
one has the relations

{aj(z;), al(z,)} = PP [O(—xy) + s r) g (z,)]
X (x5 — ;) + ep, ey, 0(25)3(2;)

{d.al(zs)} = ep,d(zs) (55)

The right hand side of the first equation has two terms:
the first term proportional to é(zs — x;) comes from the
anti-commutation of the fermionic field 1) while the sec-
ond comes from d. When calculating (53) and (B4) keep-
ing only the first term is sufficient to get the leading order
in L in the dot occupation since the first term contains
only one delta function where as the second contains two.
In explicitly open systems where L in infinite, it is suffi-
cient to treat the anti-commutation relation as

{0 (), al(xs)} ~ €t 7Pa) (56)
x[@(—xs)ei(éps 75?1)9(%'5)]5(1:5 — ;)

Then, the norm to leading order in L is given by

(¥w) = 42 3 (1)

oESN

/ {4 di €% Tics (@) (@020 = 2(Poti) o))

N
[T eempeezefo(=as) + €0 2o 0 )} wots) — )
s=1

The integral over y is trivial. As explained in the last
section, the leading order in L contribution to such an
integral comes when e*(Ps~Pa(=))¥s = 1 or precisely when
the permutation ¢ = 1. In this case the integral is per-
formed trivially and yields (¥|¥) = A2LY. An analogous
calculation using (53] yields to leading order in L that
(U|did| W) = A2LN=1Y°Y | fe,, [*. Combining these two
results yields

. U|dTd| ) 1
<7’Ld> - < <|\IJ|\IJ| Z' Ps|2 Z AQ

—fd



where we have defined the hybridization A = t2/2. In
the, infinite L, infinite NV limit, we can replace the sum
by an integral over the distribution of BA momenta for
the incoming particles, p(p) given by (A9) to get

A 2A
(Na) Z/dpp(p)m

We can also compute the impurity-energy using the im-
purity energy operator

(57)

(58)

where |®T) is the eigenstate of the free bath given by
(B9) with the additional requirement that all particles be
to the right of the impurity:

N
|ot) = A/de O(xs)e! 20 PiTi e Licy 597 (@i =23)(Pi;ps)
s=1

@) 6t (@)[0).

These correspond to outgoing free Fermi-sea of scattered
electrons. In this case,

(59)

<q)+|w> _ /dgjdfe% >icj(sgn(zi—z;)—sgn(yi—y;))®(pi,ps)

X | H e P33 0y ){0)ab (y; )04;[ (z;)]0)

J’j=1

= A2 > (—1)59"”/dgdf

gESN

N
J=

e3 Lic;(sgn(i—2;)(2(pip;) =2 (Po(i) Po(i)))
N

x [ e rrenm e (a.)d(uo(s) — 2.) (60)
s=1

Once again the integral over y is trivial and the leading
order in L contribution comes from when the permuta-
tion o = 1 This yields (®F|y)) = A2(L/2)Net Xl 0vs
An almost identical calculation to the one used to calcu-
late (1|9 gives (®F|dT) = A%2(L/2)N. Combining these
results and substituting in (B8) gives

) — ot 1 &
<Eimp> = flog (%) = i3 ;5 s (61)

We can once again replace the sum by integrals over p(p)
to get

By = / dp p(p)5,. (62)

These results can be checked with those arrived at us-
ing the traditional Bethe-Ansatz (TBA)2¢. The TBA
results are almost identical to those from the SBA ex-
cept that the distribution p(p) must be replaced by TBA
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distributions p;(p) that include a contribution from the
impurity,

= / dp p1(p)dp

2A
/ dp pr (p)m

Since, as pointed out in2¢, the distributions for the TBA,
p1(p), differs from the distribution from the SBA, p(p),
by a term proportional to N~ where N is the number
of particles, in the L, N — oo limit, the SBA and TBA

expressions coincide.

(63)

VI. SCATTERING APPROACH TO THE

KONDO THERMODYNAMICS

In this section, we discuss how the scattering Bethe-
Ansatz could be used to calculate interesting physical
quantities in the Kondo model. Due to the complex-
ity of the scattering state for the Kondo model, doing
concrete calculations requires the generalization of many
mathematical methods described in the context of spin
chains. In particular, we discuss the tantalizing possi-
bility that many of the methods of Maillet, Terras, and
collaborators?? can be generalized to the Kondo model
where they may allow exact calculation of as yet inacces-
sible interesting physical quantities such as the impurity
T-matrix. The section starts with a brief discussion of
the scattering state that captures the thermodynamics of
the Kondo problem. In the next subsection, we discuss
a possible mapping between the Kondo problem and an
auxiliary ’abelian’ problem similar to the IRLM model.
Finally, we discuss how to calculate quantities in this
auxiliary problem and discuss how this formalism may
be generalized. We concentrate only on the zero temper-
ature properties of the Kondo model. The generalization
to finite temperatures will be presented later.

A. The Scattering State

The scattering state for the Kondo model is signifi-
cantly more complicated than that for the IRLM. These
extra complications stem from the non-abelian nature of
the electron two-particle S-matrices in the Kondo model,
S = P%. This is already evident in the appendix where
we represent the free-Fermi seas in the Kondo Bethe-
Ansatz basis. We focus on constructing scattering states
where the incoming particles are a free Fermi-sea at zero
temperature. Such scattering states, using a conjecture
discussed below, allow one to recover the zero tempera-
ture thermodynamics of the Kondo model using scatter-
ing states.

It was shown earlier that for scattering states with the
asymptotic boundary conditions that the incoming parti-
cles are a Fermi sea, that the scattering state |¥) can be



described by a single Bethe-Ansatz wavefunction. The
most general Bethe-Ansatz wavefunctions is of the form

N
W)= [ 7R Y59 00, aaBlag) [] wl, (@)10).

Q j=1
(64)

with S the product of two-particle S-matrices in the
Kondo model, S = P for electron-electron scattering

i0 __ 1+4iJ P
and S = 555

P is the permutation matrix that exchanges the spins
of particles i and j2

The asymptotic boundary conditions that the incom-
ing particles be a filled Fermi-sea now reduce to choos-
ing the Bethe-Ansatz momenta {p;} and the amplitude
Aoy . anao S0 that when all the particles are to the left of
the impurity are scattering state reduces to eigenstate of
Hy in the Kondo Bethe-Ansatz basis describing a filled
Fermi-sea. This state, |®)pqtns is extensively discussed in
the appendix and is described by a wavefunction of the
form (AIQ) with Ay, . p, given by (AI3)and BA momenta

{p;} of the form 27 with n; integers running from —N
to 0. The amplitude is written in terms of solutions to
, the spin rapidities {A~}.
p p ¥
When all particles are to the left of the impurity, the
scattering state (64]) reduces to

v) — (65)

N

/dfezj it Z SQIAaL..aNaoe(xQ’;xO) H wl] (24)]0).

Q' Jj=1

for electron impurity scattering with

with Q" a permutation of the N¢ electrons, 0(zg ;x0) =
H(ZCQ/(l) < HQ/(Q) << TQ(Ne) < ZCO) with x¢ the po-
sition of the impurity. Since reaching the regions @’ in-
volves no electron-impurity scattering, the S is a prod-
uct of the electron-electron scattering matrix S% = P%
only. If we choose the momenta {p;} and amplitude
Ap, . by asin the paragraph above, (?7) reduces to the de-
sired eigenstate of Hy (A10). Thus, the imposition of the
boundary-conditions follows directly from the represen-
tation of the filled Fermi-sea in the Kondo Bethe-Ansatz
basis.

Summarizing, the full scattering state is described by
(??7) with the additional conditions that Ay, . 5, be of the
form (AI3) with the {A,} solutions to (AI2) whose den-
sity is given by (A16) and BA momenta {p;} of the form
2T with n; integers running from —N to 0. Choosing
the amplitude and BA momenta in this way ensure the
scattering state |¥) reduces to a state describing a filled
Fermi sea |®)pqins for incoming particles.

B. Can we map the Kondo to an abelian
quantum-impurity problem?

Having constructed the scattering state, the next task
is to compute quantum-impurity properties using this
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state. This task is significantly more difficult than in the
IRLM since the amplitude Ap, . p, is written in terms of
lowering B operators of the quantum-inverse scattering
method. These operators do non commute but instead
satisfy a complicated algebra. This makes it difficult to
manipulate them2!. For this reason, it is quite desir-
able to explore the intriguing possibility that the Kondo
problem is in fact equivalent to an auxiliary quantum-
impurity problem similar to the IRLM. The central differ-
ence between the Kondo scattering state and the IRLM
is that the scattering states for the Kondo problem are
constructed using non-abelian two particle S-matrices
where as the two-particle S-matrix for the IRLM is an
abelian phase. We call models with abelian two-particle
S-matrices, abelian quantum impurity problems. In this
section, we conjecture that the Kondo problem can in-
deed be mapped to a very particular ’abelian’ quantum-
impurity problem. This abelian quantum-impurity prob-
lem correctly reproduces the thermodynamics of the
Kondo model. We conjecture that arguments similar to
those given by Maillet et al will show that the abelian-
ization of the problem extends to all quantities allowing
an easy computation of the scattering properties.

The starting point for the conjecture are the Bethe-
Ansatz equations for the Kondo model. These Bethe-
Ansatz equations are derived using the TBA by consid-
ering a quantum impurity on a finite ring of length L and
imposing periodic boundary conditions. They are given
by

Ay—1+ic/2

eipj L H’Y 1 m (66)

M e i
H A(;_A +ZC _ (Aw—l—ic/2)N (A,Y—iC/Q)N

As — —ic A, —1+ic/2 Ay +ic/2
5=1,6%

with the additional information that the energy of the
Bethe-Ansatz wavefunction is E' = 37, p;. The A are
known as the spin rapidity and parameterize the M spin-
down particles. We also need the log of these equations
which yields

b = %nﬁ%z[ez(m—l)—w] (67)

N€Oy(A, —1) + N'6a(A,) = —27L, +Z91 L —Ag)

with 6,,(z) = —2tan™! nz/c and n; and I; integers com-
ing from the logarithm and are the charge and spin quan-
tum numbers respectively. The energy of the eigenstate



is given
M
Ne
E = ij 7 Z — 7
y=1
M _ M
- Z Tt T Z =271, — N'63(Ay) + > 0(Ay — Ag)
=1 6=1

‘Z i

The first two terms are the energy of a free-electron
gas in the spin-charge decoupled Kondo basis and the
last term is the shift in the ground state energy due to
the Kondo impurity. Previously, we have defined this as
the impurity energy Ej,p,. Thus, for the Kondo problem
we can write (suggestively)

(69)

13,

with 0x(A) = —602(A,) = 2tan™' (2A/c). We can also
define a phase ®x (A, —As) = 61(Ay —As) and a function
E(A) = DOy(A — 1) with D = N°¢/L. Then, the second
Bethe-Ansatz equation in(G7) can be derived from the
equation

zmp -

M
GIR(A)L _ Lidic(Ay) H oK (Ay—As)

6=1

by taking the natural logarithm of both sides. This sug-
gestive notation is illuminating because the above equa-
tion is of the form of the self-consistency monodromy
equation in the TBA that leads to the BAE

FNEA = 7,4 = (§9971 . g1, §IMGI0 | §iit1) A
with S78 = e!®x(Ai=As) (5 £ 0) and S90 = 0x (),

Thus, viewing the A’s as a function of the ks, we
see that the BAE for the Kondo problem could be de-
rived from another abelian quantum impurity problem
of M electrons with an electron-electron scattering ma-
trix given by S7% = e!®x(Ai—As) and electron-impurity
scattering matrix given by 70 = ¢i¥x(Ay),

The SBA can be applied to this auxiliary quantum-
impurity problem in the abelian formulation. The scat-
tering states are analogous to those of the IRLM model
with {®,0} — {®Px,dx}. A straight-forward construc-
tion and calculation using the SBA for this abelian prob-
lem yield the correct Kondo thermodynamic properties.
This opens up the possibility that scattering properties
of the Kondo model can be alternatively calculated in
this abelian quantum-impurity model where manipula-
tions of the scattering states are much easier. The scat-
tering states constructed in the last section are unwieldily
because they are defined in terms of complicated algebras
found in the ABA.
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The open problem in this conjecture is how to map op-
erators in the original Kondo problem to this new abelian
quantum-impurity problems. Such a mapping has been
worked out for the Heisenburg spin-chain by Terras and
collaborators??. Due to the close analogy of the Bethe-
Ansatz equations for the Heisenburg spin chain equa-
tions, we expect that a similar mapping of operators can
be performed for the Kondo model. If such a mapping
can be fully flushed out, the SBA should lead to exact so-

(68) lutions for many impurity properties such as the impurity

T and S-matrices.

VII. CONCLUSIONS

This paper outlines a scattering framework for
quantum-impurity models. Generally, constructing scat-
tering states for interacting impurity models is quite dif-
ficult. However, if the model is integrable, these states
can be constructed using the Scattering Bethe Ansatz
developed in this paper. The SBA correctly reproduces
the zero temperature thermodynamic properties of both
the Kondo model and the IRLM. In addition, it raises
the exciting possibility that the Kondo model may be
equivalent to an abelian quantum-impurity problem.

The scattering framework also gives us insight into
how the Bethe-Ansatz works. The impurity physics in
any Bethe-Ansatz basis, always looks like single-particle
impurity phase shifts, §. This suggests that the Bethe-
Ansatz basis diagonalizes the lead electrons so that the
impurity T-matrix is a phase shift. The complexity of the
problem is shifted from the impurity-electron interaction
to finding an appropriate basis for free electrons. This
observation is essential when using the SBA to calculate
nonequilibrium properties of the Kondo model. We feel
that this new perspective on the Bethe-Ansatz may lead
to new physical insights and is worth exploring in greater
detail.
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APPENDIX A: THE BETHE-ANSATZ BASIS
FOR KONDO AND IRLM

In general constructing scattering eigenstates is a
formidable task. However, for integrable quantum-
impurity models such as the IRLM and Kondo Models,
scattering states can be constructed using a generaliza-
tion of the Algebraic Bethe-Ansatz and quantum Inverse
scattering methods. Consequently, the natural basis for
these scattering states is not the Fock basis, but rather a



new 'Bethe-Ansatz’ basis. Central to constructing scat-
tering eigenstates, is the requirement that far away for
the impurity, the incoming electrons look like a free Fermi
sea. In this section, we show how to represent a Fermi-
sea in the Bethe-Ansatz basis appropriate to the IRLM
and Kondo models. For these models, the impurity forces
two-particle S-matrices S¥ to be2!:26

R S U(pi — pj)
S — i1®(pi,ps) — t 1 J
IRLM e exXp | 2 tan —2(]91' +pj — 2€d)

S%ondo = Pij (Al)
In this appendix we show how to represent free-electrons
in the Bethe-Ansatz basis for each of these models. De-
note these two-basis the IRLM basis and the Kondo basis
respectively.

1. Free Electrons in the IRLM Bethe-Ansatz Basis

We first focus on the IRLM. Particles in the IRLM
are spinless and labelled by their B.A. momenta p;.
The IRLM Bethe-Ansatz basis has a electron-electron S-
matrices of the form (AJl). A Bethe-Ansatz wavefunc-
tion in the IRLM Bethe-Anatz basis is given by (up to
an overall multiplicative phase independent of the {z,})

|N, BA) = A/dfeiszﬂje% i< sgn(@i—z;)2(pi,p;)

¢T(a1) .. 0T (an)]0).

with sgn(x) the sign function which is equal to £1 if & >
0/x < 0. In writing the above expression, we have used
the identity that (0(—z) + e*®0(z)) = e 3PezPs9n(@),
As discussed in the main text, to find the B.A. momenta
{p;} we consider an auxiliary problem of free electrons
living on a finite ring of size L’. In the L' — oo the
momenta of the physical and auxiliary problem coincide.
We restrict ourselves to the zero temperature case and
when ¢4 is greater than the Fermi-level of the electrons.
This is the case considered in?6. To derive the Bethe-
Ansatz for the BA momenta distribution functions, we
must equate the wavefunction for the auxiliary problem
on a circle when a particle j is at ; = 0 and at z; = L'.
This gives rise to a Bethe-Ansatz condition of the form

(A2)

Sl Gi=2gi-1i g — GiN  gij+l,ip;L’ (A3)
which implies that
(§9971 . SN G A= TP AL (A4)

Plugging in the explicit form of the two-particle S-matrix
for the IRLM from (AJ]), this equation gives rise to an
equation for the BA momenta {p;} of the form (noting
that we can cancel A from both sides since it is a con-
stant)

el — i1 @)

(A5)
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Taking the log and multiplying by —i one has

1 2mn;
s=1

(A6)

with n; an integer. Notice that the amplitude A has
dropped out of the equation implying that it may be
taken to be any constant. Notice that the 'free’ Bethe-
Ansatz equations (A6) for the BA momenta of Hy in the
TRLM basis can be obtained form the Bethe-Ansatz equa-
tions for the full IRLM Hamiltonian (including impurity
interactions)2¢

1 & 2tn; N
Pj = 557 Z‘b(pj,ps) + I + 75@ (A7)
s=1

by setting the impurity contribution proportional to N*
equal to zero.

As is usual, we will not be concerned with solving the
discrete version of this equation but instead will solve for
the distribution function, p(p) describing the density of
solutions to the equations in an interval (p,p + dp). It
is worth emphasizing that such distributions make sense
only in the limit L' — oco. In this limit, we can replace
the sum by an integral to get

27T’nj
L'

p; = / dkp(k)D(p;, k) + (AS)

In the usual way, an equation for the zero temperature
density p(p) is obtained by subtracting the equation for
p; from that for p;;; and expanding in the difference
Ap = pj+1 — p; which yields?!

o) = 5=~ [ AkoDE .1 (A9)
_ 108k U (k)
Kp.k) = 2r  Op 7w (p+k—25d)2+UT2(p—k)2

This equations are valid as long as €4 is greater than the
Fermi energy of the lead electrons. Though we do not
do it here, we could also find the distribution of the BA
momenta at finite temperatures by considering the free
Thermodynamic Bethe Ansatz (TBA) equations for H
corresponding to the free zero temperature BA equation
(m) for Ho.

Summarizing, in the IRLM basis, there is a non-trivial
two particle S-matrix between free electrons of the form
(AT)). The presence of this matrix corresponds to work-
ing in a Bethe-Ansatz basis for the IRLM that is distinct
from the usual Fock basis. In this basis, the eigenstates
of Hy are of the form (A2) with the multi-particle S-
matrices S9 given as products of two particle S-matrices
of the form (AJ)). For a free Fermi-sea at zero tempera-
ture, the distribution for the BA momenta, p(p), is given
by (A9) not the Fermi-Dirac distribution functions.



2. Free Electrons in the Kondo Bethe-Ansatz Basis

We now concentrate of the wavefunction of a free-
Fermi sea at zero temperature in the Kondo basis. In the
Kondo basis, free-electrons have a two-particle S-matrix
S% = P where P is the permutation matrix acting
on the spins of electrons i and j2!. The Bethe-Ansatz
wavefunction for the Kondo Bethe-Ansatz basis is

IN) = / et 2Pt (SO by Ay 4 0(Fq) (AL0)
oh, (@) . 9l (2n)]0)

with S@ an appropriate product of two particle S-
matrices P%. Note that the amplitude in the region
Q =1, Ay, b, and the choice of BA momenta {p;} are
still unspecified. We will once again have to choose these
appropriately by considering an auxiliary problem de-
fined on a circle of length L’. In the limit where L’ — oo,
the expressions from the auxiliary problem coincide with
those for the infinite-size open system. Thus, we can use
the beautiful quantum-inverse scattering technology2!.

Once again the BA equations for the auxiliary problem
are derived by equating the wavefunction for the auxiliary
problem on a circle when a particle j is at ; = 0 and at
x; = L'. This gives rise to a Bethe-Ansatz condition of
the form

(Z5)o 08 Ap, by = (A11)

(59715 GIN GaF N e = €T Ay .
We must choose Ay, ., such that it is eigenvector for the
equation Z; A = z; A with eigenvalue z; = e~"il. Note,
that in general there are many solutions to this equation.
We will be concerned with a single eigenvector, namely
the ground-state.

A general method called the quantum-inverse scatter-
ing method has been developed to solve this problem.
Let NV and M denote the total number of particles and
the total number of spin down particles respectively. Let
us denote the spin Hilbert space of particle j by V;. Let

VvV ® vazl V; be the N-particle spin-space. The Bethe-

Ansatz equations for the ferromagnetic vacuum are2!
M .
A, +is
g =Mag, B Bu) = [ 72
~=1 v 25
ﬁ As— A, +ic (A7 _z'g)N (A1)
sty N0 T Ay Ay i3

Each set of solutions to the Bethe-Ansatz equations
{A\;} corresponds to a different eigenstate of Hy. Dif-
ferent choices of M correspond to eigenstates of spin
N/2 — M. Since, We are interested in the ground state
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configuration with zero spin we restrict ourselves to the
sector where M = % Let the solutions of the BA equa-
tions with M = N/2 for the ground state be given by
{A%°}. Define 8, = Ag® +ic and denote the ferromag-

netic vacuum in the space V¥ by |w) = vazl (é) .
J

Then, the amplitude Ay, 5, in (AI0) is given by

A(Al - AM)bl...bN = B(A1 + 20/2) .. B(AM + ’LC/2)|(.«)>
= Z AjlijO'j_l .. .oj_M|w > (Al?))

J1---dm

where the usual spin amplitude notation Ay, . p,, is writ-
ten as Aj, . ;,, by specifying the position of the M down
spins and the operators B(A,+ic/2) are defined in the as
is usual in the quantum-inverse scattering matrix2!. The
B are best thought of as generalized lowering operators
o~ that lower the spin of particle j. The BA momenta
{p;} in (AI0O) on the other hand are trivially of the from

2mn, .
p;j = =72 For the ground state, it runs from some lower

cut-off K = —@ to the Fermi energy at zero.

Just as in the IRLM case, we can talk about the density
of {\;}, 0,();) rather than the individual A themselves.
This approach is valid in the limit: N, L — oco with D =
N/L held fixed. To get the distribution for the density,
we take the logarithm of both sides of the second equation

in (AT2) to get

M
NO(2A,) = =271, + Y _60(A - A,) (A14)
5=1
with 6(z) = —2tan"'(z/c) and I, an integer. Since we

are interested in the {\;} for the groundstate, we set
M = N/2. We then consider o,(A) describing the num-
ber of solutions in an interval (A, A + dA). Standard
manipulations yield the equation?!

oo(A) = %[ N }—%/dA’oO(A’)K(A—A’)

7w |+ 4A2
1 c

This can be easily solved by Fourier transform to yield
the equation for the density of {A;} in the groundstate,

1 N
70(A) = 2¢ cosh IA (A16)

To summarize, a Free Fermi sea in the Kondo Bethe-
Ansatz basis is captured by a state of the form (AI0Q)
with Ay, sy given by (AI3)), the {A,} solutions to (AT12)
whose density is given by (A16]). The BA momenta {p;}
are of the trivial
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