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Nonequilibrium steady-state currents, unlike their equilibrium counterparts, continuously dissipate
energy into their physical surroundings leading to entropy production and time-reversal symmetry
breaking. This Letter discusses these issues in the context of quantum impurity models. We use simple
thermodynamic arguments to define the rate of entropy production � and show that � has a simple
information-theoretic interpretation in terms of nonequilibrium distribution functions. This allows us to
show that the entropy production is strictly positive for any nonequilibrium steady state. We conclude by
applying these ideas to the resonance level model and the Kondo model.

DOI: 10.1103/PhysRevLett.100.086804 PACS numbers: 73.23.�b, 72.10.Fk, 72.15.Qm, 89.70.�a

Over the last decade, it has become possible to explore
experimentally quantum-impurity systems in nonequilib-
rium settings [1]. The quantum impurities are most often
realized using quantum dots, small pools of electrons con-
fined in space. In a typical experimental setup, a quantum
dot is attached to multiple leads at different chemical
potentials resulting in a nonequilibrium current across
the dot. This opens up the exciting possibility of using
quantum-impurity models to experimentally and theoreti-
cally explore nonequilibrium physics.

We focus in this Letter on the case when the currents
across the dot are in a nonequilibrium steady state (NESS).
NESSs have been extensively studied in a variety of physi-
cal systems including lattice models and fluid systems [2].
A system in a NESS continuously dissipates energy into its
surrounding, resulting in a continuous production of en-
tropy and the breaking of time-reversal symmetry. This is
in contrast to an equilibrium steady-state where a persistent
current can flow without producing entropy or dissipating
energy.

NESSs in quantum-impurity systems are usually mod-
eled by adiabatically turning on the interaction between the
impurity and the leads in the far past, at a time t0 < 0, and
then evolving the system in time to the present, t � 0. Thus
at t < to the system is described by a density matrix �o
describing two noninteracting leads (reservoirs) at differ-
ent chemical potentials �i and different temperatures Ti
and the uncoupled impurity. At time t � t0 the impurity is
coupled to the leads and evolves adiabatically according to
H � Ho � ��t� t0�e

�tH1. At a time t it is described by a
time-evolved density operator ��t� � U�t; t0��oUy�t; t0�,
where the evolution operator U�t; t0� corresponds to H�t�.
The nonequilibrium density matrix is used to compute
nonequilibrium expectation values hÔi � Tr��t�Ô.This
expectation value becomes time independent and a
steady state emerges if the leads are good thermal baths
and the system is open. Namely, both the number of
particles in the lead Ni and the size of the lead L are

infinite, with the limit taken ab initio. The establishment
of a steady state follows, in this language, from the exis-
tence of the open-system limit vF=L� 1=jtoj � �! 0,
with vF the Fermi velocity. In this case, the density ma-
trix becomes time independent [3]. We denoted it by �s.
Most treatments of the problem are based on calculat-
ing �s in various ways. A large class of theoretical treat-
ments uses Keldysh perturbation theory to calculate �s
[3,4], while others use Bethe-Ansatz based approaches
[5] or a recursive algorithm [6]. The scattering frame-
work recently proposed by the authors uses scattering
theory to calculate �s in a time-independent manner [7].
In all these treatments, the nonequilibrium density matrix
�s commutes with the Hamiltonian of the system. This
raises the intriguing question of how a density matrix that
commutes with the Hamiltonian captures defining charac-
teristics of the nonequilibrium physics, such as energy
and particle currents, energy dissipation, and entropy
production.

In an open system it is not necessary to include explicit
mechanisms, such as phonons, to allow the relaxation of
the high-energy electrons transferred between leads.
Instead, energy dissipation is implemented by the open-
system limit. Since the size of the system is much larger
than the turn-on time, the high-energy electrons transferred
between leads continue off to the edges of the leads and
‘‘dissipate’’ their energy infinitely far away. The limit also
ensures that once the electrons cross the impurity they
cannot return to the system, giving rise to time-reversal
symmetry breaking. In the language of Green’s functions,
the open-system limit induces the poles in the self-energy
to merge into a branch cut, leading to dissipative effects
[8]. Under these circumstances the nonequilibrium physics
is captured by scattering eigenstates—eigenstates of the
Hamiltonian H � H0 �H1 defined on the open system
with appropriate asymptotic boundary conditions [7].
Their existence follows in the open-system limit by the
Gellman-Low theorem [9].
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In the time-independent picture that emerges after taking
the appropriate limits, time has been traded for space [10].
It is convenient to follow the standard steps to express the
impurity problem in a one dimensional language and ‘‘un-
fold’’ the leads [11,12]. One then has only right movers,
with the incoming particles in the region x < 0 and the
outgoing particles in the region x > 0, while the impur-
ity is located at x � 0. In this picture, the far past corre-
sponds to the region x��l0 and the far future to the
region x� l0, where l0 is the length scale characterizing
the influence of the impurity. It is typically expressed as
l0 � vF=kBT0, with T0 being the low-energy scale, e.g.,
the Kondo temperature. The incoming and outgoing re-
gions can be neatly described by introducing the corre-
sponding asymptotic single-particle distribution functions
f�i [13,14] (Fig. 1). The distribution function of the in-
coming particles in lead i is given by the Fermi-Dirac
function f�i �p�� � fFD�p�;Ti; �i� at the temperature
and chemical potential appropriate to the lead. After scat-
tering off the impurity at x � 0, the outgoing particles in
lead i are asymptotically described by a distribution func-
tion f�i �p�� which is no longer the Fermi distribution
function but a nonequilibrium distribution function that
encodes information about scattering. The distribution
functions contain all the information about the nonequilib-
rium energy and particle currents since these are computed
from local single-particle operators. Note, these distribu-
tion functions can be computed perturbatively in the
Landauer-Büttiker approach [15].

We now discuss the entropy production in the system.
We begin with thermodynamic considerations, then refor-
mulate the problem in terms of nonequilibrium distribu-
tions which emerge naturally in the scattering formalism.
We then relate our expressions for entropy production to
information-theoretic quantities of the underlying nonequi-
librium distribution functions. This allows us to show that
the entropy production is due to two fundamental pro-
cesses, mixing and relaxation, for which we give explicit
expressions. Finally we prove that the rate of entropy
production is strictly positive in the NESS. As an applica-
tion of these concepts, we explore how strong correlations
manifest themselves in the entropy production of the
Kondo model.

The thermodynamic definition of the rate of entropy
production follows naturally from the observation that a
quantum impurity coupled to leads is a discontinuous
system: the two reservoirs are connected to each other by
a single impurity [16]. In such a system, all entropy is
produced in the leads and the entropy produced at the
quantum impurity itself is negligible. Recall that the dif-
ferential entropy of a system, dS, is related to �Q the heat
that flows into or out of the system via TdS � �Q with T
the temperature of the system. For a discontinuous system
with two leads, this allows us to define the rate of entropy
production � as

 � 	
dS
dt
	

1

T1

�Q1

dt
�

1

T2

�Q2

dt
; (1)

where �Qi is the heat that flows into lead i, and Ti is the
temperature of lead i. The heat produced by a lead is
related to the change in energy and particle number in
the lead by �Qi � dEi ��idNi. Furthermore, since nei-
ther particles nor energy can disappear at the
quantum impurity in a nonequilibrium steady state we
have the conservation laws dN1

dt � �
dN2

dt and dE1

dt � �
dE2

dt ,
and therefore, � � � 1

T1
� 1

T2
� dE1

dt � �
�1

T1
� �2

T2
� dN1

dt . Note that
an important ingredient in our consideration has been the
inclusion of implicit relaxation mechanisms (e.g., the
open-system limit or phonons) in each lead that equilibri-
ate high-energy electrons. This allows us to characterize
the lead i by a temperature Ti even in the presence of
nonequilibrium currents. As a result, we shall see that the
entropy production contains not only a mixing term but
also a term due to relaxation processes.

This expression can be related to the nonequilibrium
currents across the dot by noting that in a NESS, the rate
of change in energy of lead 1 is the expectation value of the
energy current across the dot, dE1

dt � hIEis, and the rate of
change in particle number in lead 1 is the expectation value
of the nonequilbrium particle current, dN1

dt � hINi. Thus, in
terms of the currents across the dot, the rate of entropy
production takes the form

 � � �
�

1

T1
�

1

T2

�
hIEis �

�
�1

T1
�
�2

T2

�
hINis: (2)

For the special case, when the temperatures of the two
leads are equal, T1 � T2 � T, one has � � VhIis

T where we
have defined the voltage V � �1 ��2. The term in the
numerator of the last expression is the familiar power of an
electrical circuit, P � hIisV. Thus, for any quantum-
impurity model where the two leads are at the same tem-
perature, the rate of entropy production has the simple
interpretation as the power across the circuit divided by
the temperature.

We now show how to define � directly in terms of
information-theoretic quantities involving the nonequi-
librium distribution functions f
i introduced above. We
first express the energy and particle currents in terms of
f
i . In a steady state the particle current hIiN can be
calculated in the time-independent picture using the rela-
tion hINi�

dN1

dt � limL!1
N1�L=2��N1��L=2�

L=vF
with N1�
L=2��P

p�f


1 �p�� the asymptotic particle number of the out-

going and incoming electrons (e.g., [17] and references
therein). In writing this expression, we have used the fact
that the leads are noninteracting and that in the time-
independent picture the far past (future) corresponds to
x! �1��1�. One can also define the energy current
in an analogous manner by the expression hIEi�

dE1

dt �

limL!1
E1�L=2��E1��L=2�

L=vF
where E�
L=2� �

P
p��p�f



i �p��
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measures the asymptotic energy of the incoming and out-
going particles and �p� is the energy dispersion for the free
electrons. Substituting these expressions into (2) and using
the conservation laws relating the energy and particle
number in the two leads, one can write the rate of entropy
production in terms of these distribution functions as

 � � lim
L!1

1

L

X
�

X
i�1;2

vF�f
�
i �p�� � f

�
i �p���

�p� ���

Ti
:

(3)

We proceed to interpret our results in information-
theoretic terms and rewrite � in terms of the Shannon
entropy current and the Kullback-Leibler distance of the
probability distributions f
i . The Shannon entropy,
SIT�q�x��, of a probability distribution q�x� measures the
uncertainty of a random variable X that takes discrete
values in the set fx	g with probability q�x� and is defined
as SIT�q� 	 �

P
	q�x	� lnq�x	� [18,19]. The relative en-

tropy or Kullback-Leibler (KL) distance between the dis-
tribution q�x� and s�x�,

 DKL�s�x� k q�x�� �
X
x	

s�x	� ln
s�x	�

q�x	�
; (4)

measures the inefficiency in assuming that the distribution
is q�x� when the true distribution is s�x� [19].

The entropy of a free electron bath, usually defined
thermodynamically using the partition function, can also
be defined by means of information-theoretic ideas as the
Shannon entropy of the Fermi-Dirac distribution function
fFD�p�� [20],

 SIT�fFD� � �
X
�

�1� fFD�p��� ln�1� fFD�p���

�
X
�

fFD�p�� lnfFD�p��: (5)

The advantage of the Shannon entropy as compared to
thermodynamic entropy is that it has a natural general-
ization to nonequilibrium systems, namely, the Shannon
entropy of the nonequilibrium distribution function.

To rewrite the rate of entropy production in terms of the
information-theoretic quantities defined above we make
use of the fact that the incoming particles from lead i are
distributed according the Fermi-Dirac distribution func-
tion, f�i �p�� � fiFD�p��. As a result, we know that we
can write ��p ��i�=Ti � lnf�1� f�i �p���=f

�
i �p��g.

Substituting this expression into (3) and using the defini-

tions (5) and (4) one gets
 

� � lim
L!1

1

L

X
i

vF�SIT�f
�
i � � SIT�f

�
i �� � vFDKL�f

�
i k f

�
i �

	
X
i

��i � vF lim
L!1

1

L

X
i

DKL�f�i k fiFD�; (6)

where in the second line we defined �i, the Shannon
entropy produced per unit time at lead i. The only assump-
tion we used is that the leads are noninteracting. Thus, this
expression is valid for all nonequilibrium quantum-
impurity models with noninteracting leads where no en-
tropy is produced at the impurity.

The two terms in (6) have clear physical meanings. ��i
measures the increase in the entropy per unit time of the
system due to the mixing of electrons between leads. In
information-theoretic terms, it measures the uncertainty
about electrons as they are being transferred between leads.
This term does not, however, take into account the extra
entropy produced in the physical system by the relaxation
to equilibrium of high-energy electrons transferred be-
tween leads. This is captured by the second term in (6),
the KL distance between the nonequilibrium distribution
function of the outgoing electrons of lead i and the thermal
equilibrium Fermi-Dirac distribution function. Thus, in
thermodynamic terms, we can interpret TiDKL�f

�
i k fiFD�

as the work that can be extracted when a system with the
nonequilibrium distribution function f�i �p� relaxes to
equilibrium at temperature Ti. A similar interpretation of
the KL distance has been suggested in the theory of non-
equilibrium chemical reaction [21]. In information-
theoretic terms, DKL�f�i k fiFD� measures the uncertainty
introduced by relaxation processes. Thus, even though we
have not included physical energy dissipation mechanisms
such as phonons in our system, we can still extract the
entropic effects produced by relaxation of high-energy
electrons to equilibrium. The separation between mixing
and relaxation, clear in the information-theoretic formal-
ism, is obscured in the thermodynamic language since the
energy and particle currents contribute to both relaxation
and mixing.

Expression (6) allows us to adapt Shannon’s original
proof that a communication device always increases the
entropy of a message [19] to prove that for a NESS,�> 0.
To do so, we view the scattering problem as a classical
communication device where a transmitter at x! �1
prepares a message—in this case the incoming particles
in each lead that are to be scattered—which is then trans-
mitted down the communication channel—in this case the
scattering of the incoming electrons off the impurity re-
sulting into outgoing particles. The receiver, at x! 1,
then receives the output of this message—the outgoing
electrons. Note that the messages sent by our classical
device utilize only the distribution functions and not the
full many-body aspects of the problem. Hence, we can
apply Shannon’s proof to conclude that ��  0 in (6),

N1

N2

(in) (out)

FIG. 1 (color online). Incoming and outgoing distribution
functions.
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with equality if and only if f�i � f�i . Furthermore, by the
definition of the KL distance, DKL�f

�
i k fiFD�  0 with

equality if and only if f�i � fiFD [19]. Thus it follows that
for a NESS, �> 0. Though evident on physical grounds,
mathematical proofs of positivity of entropy production are
generally rare and difficult (see [2]).

Quantum impurities typically develop strong correla-
tions on site. These correlations enter the rate of entropy
production through their effect on the nonequilibrium cur-
rents, (2). As an illustration we consider the entropy pro-
duction in the Kondo model and compare it to the entropy
produced in the quadratic resonance level model (RLM)
describing its strong coupling regime. In the experimen-
tally relevant case where the temperatures of the two leads
are identical the particle current in the high voltage regime
V � Tk is found to be hIis � V=log2��

������������������
V2 � T2
p

�=Tk�
[3,4]. Thus, �� V2=log2��

������������������
V2 � T2
p

�=Tk�. At very small
voltages T � V � Tk the problem can be treated by linear
response around the strong-coupling fixed point. The cur-
rent is [22], hIis � V �

3V3

2T2
k

and the entropy production

rate � 	 V2=T�1� 3V2

2T2
k
�. The RLM �i

R
 yi �x�@x i�x� �

t�dy i�0� � H:c:� � �ddyd, consists of a local level at-
tached to two leads of spinless electrons at different
chemical potentials. The entropy production rate follows
from (2): T1T2� �

R dp
2
 ��p��2��T1 � T2� � VT2��

�2

�p��d�2��2 �f1�p� � f2�p�� with � � �1=2�t2 [we set vF �

1, �F � 1=�2
�]. The entropy production rate reduces to
�� V2=T�1� V2

8
�2� (taking �1;2 � �d 
 V=2) at low
temperatures T1 � T2 � T � �. Thus from the point of
view of entropy production, the Kondo model at low
temperatures behaves essentially as a local level with
hybridization proportional to the Kondo temperature at
low voltages and temperatures. This observation extends
considerations, familiar in equilibrium theory, to a new
nonequilibrium context. At high voltages, however, the
correlations weaken, leading to an increase in the rate of
entropy production in both the mixing and relaxation
terms.

Nonequilibrium physics remains poorly understood. It is
our belief that thinking about nonequilibrium physics in
quantum-impurity models is likely to yield general con-
cepts applicable to a variety of systems.
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