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We show that the traditional classification of quantum inpurity models based on thermodynamics is insuf-
ficient to probe the nature of their low-energy dynamics. We propose an analysis based on scattering theory,
dividing Fermi liquids into regular Fermi liquids and singular Fermi liquids. In both cases electrons at the
Fermi energy scatter elastically off the impurity, but in the case of regular Fermi liquids the scattering has
analytical properties in the vicinity of the Fermi energy, while for singular Fermi liquids it does not, resulting
in a breakdown of Nozières’ Fermi-liquid picture and singular thermodynamic behavior. Using the Bethe
ansatz and numerical renormalization group, we show that the ordinary Kondo model is a regular Fermi liquid
whereas the underscreened Kondo model is a a singular Fermi liquid. Conventional regular Fermi liquid
behavior is reestablished in an external magnetic field H, but with a density of states which diverges as 1/H.
Our results may be relevant for the recently observed field-tuned quantum criticality in heavy electron
materials.
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I. INTRODUCTION

Quantum impurity models have been classified, conven-
tionally, into one of two categories, Fermi liquid1 !FL"
and non-Fermi-liquid !NFL" depending on their low-
temperature specific-heat behavior. In particular, systems
with singular dependence on temperature are usually called
NFLs. In this paper, we show that thermodynamics is insuf-
ficient to probe the nature of the low-energy dynamics and a
more subtle analysis based on electron-impurity scattering
theory is required. We illustrate our ideas using recent as
well as established results on the underscreened Kondo
model !UKM".

In a Fermi liquid, electrons at the Fermi level scatter elas-
tically off the impurity, i.e., both the ingoing and outgoing
states consist of a single electron with momentum k.2 By an
electron we mean an eigenstate of the noninteracting Hamil-
tonian H0, to be distingushed from quasi-particles, the eigen-
states of the fully interacting Hamiltonian H. In a generic
non-Fermi liquid impurity system, this is not the case. Even
when the incoming electrons are on the Fermi surface they
can scatter inelastically: an incoming electron state does not
scatter into a single outgoing electron state, but instead, ex-
cites a large variety of collective modes including particle-
hole excitations. In the extreme case of the two-channel
Kondo model, e.g., the out-going scattering state does not
include any single electron component after scattering with
the impurity.3

This difference between Fermi liquids and non-Fermi-
liquids is clearly captured through the energy- and magnetic
field-dependent properties of the single particle matrix
elements of the many-body S matrix. For the sake of

simplicity, let us consider a nondegenerate interacting ground
state and postpone the discussion of degenerate interacting
ground states to Sec. II. In the nondegenarate case the single
particle matrix elements of the S matrix are defined as
#k! , in$Ŝ$k!!! , in%, where k and k! denote the momenta of
incoming and outgoing electrons with respect to the Fermi
momentum and !, !! denote the rest of their quantum num-
bers !spin, flavor, angular momentum, etc.". The matrix ele-
ments depend only on "=k=k! where " denotes the energy
of incoming particle measured with respect the Fermi energy
!vF=#=1", and the S matrix simplifies to
#k! , in$Ŝ$k!!! , in%=2$%!k−k!"S!!!!"". In the absence of
magnetic field, symmetry guarantees that S!!!!""
=%!!!S!"", where unitarity requires S!"" to be a complex
number with modulus less than or equal to 1.

We shall call a system a “Fermi liquid” if $S!"=0"$=1,
the condition implying that at the Fermi level the inelastic
scattering cross section vanishes and hence single particle
scattering is completely characterized by phase shifts. Elec-
trons on the Fermi are in this case well defined quasi-
particles. On the other hand, we shall call a model non-
Fermi-liquid if $S!"=0"$&1. NFLs have a nonvanishing
many particle scattering rate and a finite inelastic scattering
cross section at the Fermi surface. As a result conduction
electrons are not well-defined quasiparticles even on the
Fermi level.

However, even when a quantum impurity is a Fermi liquid
in the sense described above one may still find singular ther-
modynamic behavior. This would occur when the eigenval-
ues of the S matrix for electron impurity scattering approach
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the unit circle nonanalytically as the electron energy " ap-
proaches the Fermi level. This would lead to a singular den-
sity of states and therefore impact thermodynamics. For this
reason, we propose to divide Fermi liquids into two types:
regular Fermi liquids !RFLs" and singular Fermi liquids
!SFLs". In the former, the eigenvalues of the single particle S
matrix approach the unit circle analytically, whereas in the
latter, they approach it singularly. For both types of fixed
points, the single particle S matrix is unitary at the Fermi
energy, implying that an incoming electron at the Fermi sur-
face scatters elastically off the impurity. However, the two
types of FLs exhibit very different phenomenological prop-
erties. A regular Fermi liquid exhibits the usual properties
associated with FLs, and hence, by an abuse of notation, we
shall often omit the term “regular” when referring to this
class of fixed points. On the other hand, SFLs exhibit a wide
variety of behavior not ordinarily associated with Fermi liq-
uids such as extreme sensitivity to applied fields and a diver-
gent specific heat. This classification scheme and the main
properties of the three impurity classes are summarized in
Fig. 1.

An example is provided by the striking difference in the
low-temperature physics of the ordinary Kondo model
!KM" and the underscreened Kondo model !UKM" !see
Ref. 4, and references therein". The UKM describes the
antiferromagnetic interaction of a magnetic impurity of
spin S'1/2 with a sea of conduction electrons. At low
temperatures, the impurity spin is partially screened
from spin S to spin S*=S−1/2. What distinguishes the UKM
from the ordinary Kondo model is the residual magnetic
moment that remains even after screening. This residual
moment couples ferromagnetically to the remaining conduc-
tionte electrons. Though the ferromagnetic coupling is
irrelevant, it tends to zero very slowly. As a result, there
is a subtle interplay between the residual moment and the
electron fluid that leads to radically different physics from
the ordinary KM at the strong-coupling fixed point of the
UKM.

A Bethe ansatz and a large N analysis of the under-
screened Kondo model show that at zero field, this system
exhibits singular behavior, with a divergent specific heat co-
efficient Cv /T at zero field.5,6 In a finite field, the linear spe-

cific heat coefficient is found to diverge as 1/ $H$ln2!TK / $H$".
To decide wheter this singular behavior corresponds to a
NFL or a SFL we need study the scattering properties of the
model. We reexamine it using Bethe-ansatz and numerical
renormalization group !NRG" methods. From the Bethe-
ansatz solution, we find that at zero magnetic field the sact-
tering matrix elements tend to the unitary limit, albeit in a
singular manner,

%s!",H = 0" =
$

2
+ &S −

1
2
' $

2 ln
Tk

"

+ ¯ . !1"

At finite field it becomes analytic, yet showing a singular
behavior as the magnetic field scales to zero:

%s!" = 0,H" =
$

2
+ &S −

1
2
' $

2 ln
Tk

H

+ ¯ . !2"

The singular nature of the phase shifts energy dependence
results in the breakdown of Nozières’ picture of the
strong coupling fixed point and indicates that the physics
of the UKM and the ordinary Kondo model are quite
different. These results are confirmed using the numerical
renormalization group !NRG" calculations on a S=1
UKM, where we can directly compute the phase shift of
spin 1/2 electron excitations from the finite size spectrum.
Such a calculation has been carried out earlier in the absence
of the magnetic field by Cragg et al.,7 who found that
the NRG spectrum can be described in terms of phase shifts
$ /2 !apart from the presence of a decoupled residual
spin S*". Here we also determine the phase shifts for a S=1
model in the presence of a local magnetic field H and
confirm that they scale as %±($ /2±$ / )4 ln!TK / $H$"*
for small magnetic fields, in agreement with the Bethe
ansatz results. Thus the fixed point finite size spectrum
of the UKM is that of a Fermi liquid, i.e., scattering at the
Fermi energy can be simply characterized in terms of phase
shifts.

The analysis we present here may also be relevant to
heavy fermion systems: application of the behavior of Re-

FIG. 1. Sketch of the renormalization group flows of the eigenvalues of the single particle S matrix in the simplest case of nondegenerate
interacting ground states. The eigenvalues are within the unit circle. Particles at high enough energies !"→(" do not see the impurity,
therefore S→0 in this limit. Inelastic scattering processes are allowed whenever $S!""$&1. In Fermi liquids at the Fermi energy
$S!"=0"$=1, implying the absence of inelastic scattering of electrons. For non-Fermi-liquids $S!"=0"$&1, while for singular Fermi liquids
S!"" approaches the unit circle nonanalytically as "→0.
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cent experimental studies on heavy electron materials fine-
tuned away from an antiferromagnetic quantum critical point
!QCP" using a magnetic field8,9 revealed that parameters of
the heavy Fermi liquid can be field-tuned. In particular, the
temperature-dependent properties of the system near the
QCP were shown to depend only on the ratio T / !B−Bc". This
behavior is strikingly reminiscent of the field tuned change in
behavior of the UKM.

The paper is structured as follows. In Sec. II, we discuss
the general classification of regular and singular Fermi liq-
uids and the application of this classification scheme for
Kondo models in more detail. In Sec. III, we use the Bethe
ansatz to calculate the DOS and find that it is singular in the
absence of a magnetic field. In Sec. IV, we present numerical
renormalization group calculations confirming our Bethe-
ansatz results. In Sec. V, we discuss the breakdown of
Nozières Fermi-liquid picture for the UKM. Some details of
the Bethe-ansatz calculations are given in a longer version of
this draft.

II. SINGULAR FERMI LIQUIDS AND NON-FERMI-
LIQUIDS

The nature of the low-temperature dynamics and thermo-
dynamics of a quntum impurity system can be most easily
captured, as mentioned above, through the many-body S ma-
trix, which we shall discuss in detail in this section. We shall
analyze a general quantum impurity problem described by
the following Hamiltonian:

H = − i+
!
, dx:)!

† !x,t"!x)!!x,t": + Hint. !3"

Here the fields )! are chiral one-dimensional fermions, and
usually represent radial excitations in some three-
dimensional angular momentum channel coupled to
the impurity. The label ! represents those discrete internal
degrees of freedom !spin, flavor, crystal field, angular
momentum indices, etc." that may couple to the impurity.
The precise form of the impurity-fermion interaction, Hint
is of no importance for the purpose of our discussion
below.

A. Nondegenerate ground state

Let us first discuss the simplest case, when the interacting
ground state of Eq. !3" is nondegenerate. The central quantity
we are interested in is the many-body S matrix Ŝ defined in
terms of incoming and outgoing scattering states $a%in and
$b%out as !see, e.g., Ref. 10"

#b,out$a, in% - #b, in$Ŝ$a, in% . !4"

The “in” and “out” states are eigenstates of the total Hamil-
tonian, Eq. !3", satisfying the boundary conditions that they
tend to plane waves ( more precisely, to the eigenstate of H0,
ck,!

† $G%=. exp!ikx")!
† !x , t"$G%) in the t→−( and t→( lim-

its, respectively. In the interaction representation, the explicit
form of the S matrix is given by the well-known expression
Ŝ=T exp/−i.−(

( Hint!t"dt0, where T is the time ordering opera-

tor, and the interaction Hint!t" is adiabatically turned on and
off during the time evolution.

The unitarity of the S matrix poses severe constraints on
the single particle matrix elements of the S matrix !see
above",

#k!, in$Ŝ$k!!!, in% = 2$%!k − k!"S!!!!"" . !5"

Indeed, the eigenvalues of of S,

s*!"" - r*!""ei2%*!"" !6"

must be within the unit circle

$s*!""$ = r*!"" + 1. !7"

The phase shift %*!"" above corresponds to the phase
shift picked up by elastically scattered particles of energy ",
and is relevant for interference effects. In the case of the
single channel Kondo model, e.g., r*!""(1−C"2 /TK

2 , but
%*!""($ /2+ C̃" /TK for small energies, with C and C̃
constants of order unity.

To distinguish between eleastic and inelastic processes it
is convenient to consider the T matrix defined through,

Ŝ = 1̂ + iT̂ .

We can then define the on-shell T matrix T!""!!! analogous
to Eq. !5", and the corresponding eigenvalues are simply
given by

,*!"" = − i)s*!"" − 1* . !8"

As discussed in Ref. 13, the knowledge of the single particle
matrix elements of the many-body T matrix enables us to
compute the total scattering cross section off the impurity in
the original three-dimensional impurity problem through the
optical theorem as

-tot = -0+
*

2$.*!""$2 Im/,*!""0 , !9"

where -0=$ /kF
2 with kF the Fermi momentum, and .*!""

denotes the wave function amplitude of the incoming elec-
tron in scattering channel *. Elastic scattering off the impu-
rity can be defined as single particle scattering processes
where the outgoing state consists of a single outgoing elec-
tron. The elastic scattering cross section is simply propor-
tional to the square of the elements of the T matrix, and is
given by

-el = -0+
*

$.*!""$2$,*!""$2. !10"

Having determined both -tot and -el, we can define the in-
elastic scattering cross section off the impurity as the differ-
ence of these cross sections26 -inel=-tot−-el, which simpli-
fies to

-inel = -0+
*

$.*!""$2)1 − r*!""2* . !11"

It is clear from this expression that if S has an eigenvalue
that is not on the unit circle, this implies that one can con-
struct an incoming single particle state which with some
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probability scatters inelastically into a multiparticle outgoing
state.

B. Degenerate gound states

The above discussions can be easily generalized to the
case of an impurity model with a degenerate ground state.
Let us denote a basis set within the ground state multiplet by
$G%, where G=1, . . . ,NG. The only difference in this case is
that S aquires new indices

S!!! → SGG!
!!! .

Let us consider a given state within the ground-state multi-
plet $/%-+G/G$G% and the corresponding single-particle S
matrix

S/
!!! - +

G,G!

/G
* SGG!

!!!/G! .

This scattering matrix measures the amplitude of those single
particle processes, where the ground state has not been al-
tered during the scattering process.

Starting from S/
!!! and following the lines of the previous

subsection, we can trivially define T/
!!!!"" and the elastic

and inelastic scattering amplitudes provided that the system
is in ground state $/% before the scattering. Note that even for
degenerate ground states and non-Fermi-liquid systems, one
can apply a small external perturbation H !tiny local mag-
netic field, e.g." which selects a unique !usually Fermi liquid"
ground state. One can then consider the H→0 limit by keep-
ing " finite.

C. Classification of fixed points

We are now ready to give a precise definition of a non-
Fermi liquid: We define a quantum impurity model to be of
non-Fermi-liquid type if there exist eigenvalues of the single
particle S matrix S/

!!!!"", which are not on the unit circle in
the "→0 limit for some state $/% within the ground state
multiplet. By Eq. !11" this immediately implies that non-
Fermi-liquid models have the unusual property that even
electrons at the Fermi energy can scatter off the impurity
inelastically with a finite probability.

Typical examples of non-Fermi-liquid models are given
by various versions of over-screened multichannel Kondo
models. In the two channel Kondo model, e.g., it has been
shown in Refs. 11 and 12 using bosonization methods that
the single particle matrix elements of the S matrix identically
vanish at the Fermi energy, immediately implying that r*

=0 and thus -el=-inel=-tot /2 at the Fermi energy.13,14

As opposed to non-Fermi-liquids, we define a model to be
a Fermi liquid if all the eigenvalues of the single-particle S
matrix S/

!!!!"" fall on the unit circle in the "→0 limit for
any state $/% within the ground-state multiplet. It is not too
difficult to show, that this definition is equivalent to the re-
quirement that

SGG!
!!!!" → 0" - %G,G!S0

!!!, !12"

with S0
!!! a unitary matrix.

Inelastic scattering processes may, in particular, involve
scattering within the interacting ground-state multiplet. Con-
sider for example the ferromagnetic anisotropic Kondo
model. It is not a Fermi-liquid model by this definition. This
can be understood very easily as follows: For the ferromag-
netic anisotropic Kondo model the fixed point Hamiltonian
consists of a simple coupling of the z component of the spins

Hint
* =

Jz
*

2
Sz+

-

)!
† !0"-!!!

z )!!, !13"

where we assume now that S is a spin 1/2 impurity. In this
case, at the fixed point the scattering of conduction electrons
can be described simply by phase shifts, which, however,
depends on the relative spin of the incoming electron and the
impurity %!!Sz"=%02Sz!. Now suppose that we prepare the
impurity in the eigenstate of Sx and we look at the scattering
of a spin up electron. Applying the formalism above, we
immediately find that the inelastic scattering rate is nonvan-
ishing and is proportional to -inel11−cos2!2%0". The physi-
cal reason for this is very simple: The impurity experiences
the spin field of the conduction electron in course of the
scaterring process through the exchange coupling. As a re-
sponse to this field, the impurity spin is rotated around the z
axis by an angle 2%0, and has only an overlap cos!2%0" with
the initial impurity spin state. This change in the “environ-
ment” is the ultimate reason for inelastic scattering. !Inter-
estingly enough, while this process does not seem to destroy
week localization corrections, it definitely destroys
Aharonov-Bohm oscillations."

This simple non-Fermi-liquid nature of the ferromagnetic
anisotropic Kondo model may seem to be surprising at a first
sight, since we know that by changing the anisotropy J! /Jz
within the ferromagnetic Kondo model one gradually ap-
proaches the isotropic ferromagnetic Kondo fixed point of
singular Fermi-liquid nature. But this is not very surprising
and indeed in many ways this is analogous to the way one
approaches the critical point of a ferromagnet from the fer-
romagnetic side: for T&TC the magnetization has a jump as
a function of external magnetic field, corresponding to a first
order transition, but this jump gradually vanishes as one ap-
proaches the the critical end point, T=TC where the thermo-
dynamical quantities exhibits power law behavior, governed
by the critical end point.

In the ferromagnetic Kondo problem at T=0 a somewhat
analogous quantum phase transition occurs as a function of
J/! /Jz: For J/! /Jz&1 the impurity magnetization exhibits
a jump as a function of magnetic field, and the effective
interaction strength Jz

* in Eq. !13" gradually vanishes as one
approaches J/! /Jz=1. For J/! /Jz'1, on the other hand,
the model has a Fermi-liquid ground state, and the impurity
magnetization does not jump as a function of magnetic
field. In this sense the singular Fermi-liquid point is just a
critical endpoint. Note, however, that unlike the ferromag-
netic phase transition mentioned above, in case of the Kondo
model SU!2" symmetry usually guarantees that J!=Jz, and
therefore one is doomed to approach the singular Fermi-
liquid state.

The FL condition implies that electrons at the Fermi en-
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ergy scatter completely elastically off the impurity, and
that this scattering can be characterized in terms of simple
phase shifts. In fact, most impurity models, such as screened
or underscreened Kondo models, the Anderson impurity

model, the resonant level model, or overscreened models
in an external field, fall in the category of Fermi liquids,
since in all these cases the single particle S matrix satisfies
Eq. !12".

The structure of the energy dependence of the s*!""’s,
i.e., the renormalization group flow of the eigenvalues of the
single particle S matrix, however, does depend on the spe-
cific Fermi-liquid model, and allow for further classification:
We can define as singular Fermi liquids those models, where
the convergence to the "=0 Fermi-liquid fixed point is sin-
gular in ", while we shall call regular Fermi liquids those
where the convergence is analytical. By these terms, the
standard spin 1/2 Kondo model is a regular Fermi liquid,
while the underscreened Kondo models studied in this paper
belong to the class of singular Fermi liquids. We shall see
below that singular Fermi liquids have singularities in the
low-energy thermodynamic properties while having only
elastic !albeit singular" scattering on the Fermi surface.

III. BETHE ANSATZ CALCULATION OF THE DENSITY OF
STATES FOR THE UNDERSCREENED KONDO

MODEL

We proceed to show that the UKM is an example of a
singular FL by studying its scattering properties. We show
that in zero magnetic field the phase shift and resulting DOS
is a singular function of electron energy. We also show that
while $s!""$→1 as "→0 the limit is approached in a singu-
lar manner. Finally, we study the effect of a magnetic field
and show that the singularity in the DOS is cut off by a finite
field.

The Hamiltonian for the UKM can be mapped to the fol-
lowing one-dimensional Hamiltonian:

HUKM = − i+
a
, dx)a

†!x"!x)a!x" + J)a
†!0"-ab

! )b!0" · S! ,

where )a
†!x" is the creation operator of an electron with spin

a and S! is a localized spin at the origin coupled to the elec-
tron sea by an antiferromagnetic coupling J. In this equation
the left-moving chiral Fermions )a

†!x" in regions x'0 and
x&0 simply represent the incoming and outgoing parts of
the conduction electrons’ s-wave function in the three-
dimensional problem.

The spectrum of the UKM can be determined from the
Bethe-ansatz solution.15–17 The excitations consist of un-
charged spin-1 /2 excitations, spinons, and spinless charge
excitations, holons. In the spinon-holon basis, the wave func-
tion for the electron can be written as a sum of products of a
spin wave function and a charge wave function. Since the
Kondo interaction affects only the spin sector, we will ignore
the charge sector in the analysis that follows.

In the spin sector, an electron !not an eigenstate of the full
hamiltonian" can be expressed as a superposition of spinons
and antispinons. Formally, this is done through a form-factor
expansion of the electron onto the spinon basis. At low en-
ergies, the coefficients of the the multispinon terms in the
form factor expansion tend to zero. For this reason, at suffi-
ciently low energies, it is a reasonable to approximate the

FIG. 2. !Color online" !a" The impurity induced !spinon" DOS
of the S=1/2 Kondo model and the S=1 underscreened Kondo
models as a
function of the logarithm of the quasi-particle !spinon" energy. !b"
The same quantities in a finite magnetic field H. For S=1/2,
the impurity induced DOS is always finite. For the S=1 under-
screened Kondo model, however, the DOS diverges in zero mag-
netic field as the energy of the excitation goes to zero. The presence
of H cuts off the singularity of the DOS of the underscreened
Kondo model.
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electron by a spinon.18 Since we are interested in the low-
energy properties of the UKM, we will employ this approxi-
mation. The validity of this approximation will be checked
by comparing our results at the Fermi energy with those of
the numerical renormalization group !NRG".

From the Bethe-ansatz solution, we can calculate
the phase shift %s!k ,H" of a spinon with momentum k
when it is scattered off the impurity in the presence of a
magnetic field H. The phase shift, in turn, is intimately re-
lated to the DOS of spinons at the impurity through the Frie-
del sum rule, which states that the spinon DOS Ns!"" is
proportional to the derivative of the phase shift with respect
to the energy:19

Ns!",H" =
1
$

d%s!",H"
d"

. !14"

Note that as the energy of the spinon is linear in its momen-
tum we shall use the symbols for momentum k and energy "
interchageably !we have chosen units where vF=1, so "=k".

To calculate the phase shift, we place our physical system
in a finite ring of length L. The momentum k of a free spinon
will satisfy k= !2$ /L"n, but in the presence of a impurity, by
definition, the momentum will be shifted from its free value
by twice the phase shift

k =
2$

L
n + 2%s!k = ",H"

1
L

. !15"

Since one can, using the Bethe-ansatz solution, determine
spinon momenta to accuracy O!1/L", the phase shift can be
exactly determined directly from the Bethe-ansatz
spectrum.20–23

To solve for the spectrum of the UKM and to determine
the phase shifts, it is necessary to solve a set of coupled
integral equations called the Bethe-ansatz equations
!BAEs".24 The BAEs are written in terms of the spin rapidi-
ties 0 and a spinon magnetic field 0B !related to H, see
later". Each set of /00’s and 0B which solve the BAE give
rise to a set of physical momenta /k0 and physical magnetic
field H.

In the thermodynamic limit, instead of examining specific
solutions of the BAE, it is sufficient to study the density of
solutions. Let -!0" denote the density of solutions of the
BAE in an interval d0 !not to be confused with the scatter-
ing cross section". A spinon excitation corresponds to remov-
ing a 0=0h from the ground state, i.e., to adding a density of
“holes” -h!0"=%!0−0h".25 The “hole” position 0h deter-
mines the spinon momentum k!0h" and its phase shift
%s)k!0h" ,H*. It should be noted that the hole density is
“dressed” by the back flow of the Fermi sea, which corre-
sponds to a small change in the ground state density 1-!0".
It is essential to take this back flow into account when cal-
culating the excitation energy E=+ j=1

Ne
!2$ /L"nj

+D.d0-!0")2!20−2"−$*, where D=Ne /L denotes the
energy cutoff and 2!x"=−2 tan−1!x /c".

In terms of these densities, the BAE can be written as

-!0" + -h!0" = f!0" − ,
0B

(

K!0 − 0!"-!0!"d0!

with

f!x" =
Ne

$

c/2
!c/2"2 + !x − 1"2 +

Ni

$

!cs"
!cS"2 + x2 ,

K!x" =
1
$

c

c2 + x2 ,

where S is the spin of the impurity, Ne is the number of
electrons, Ni is the number of “dilute” impurities, and c the
coupling constant.16 The coupling c is related to the original
coupling J, however, the precise relation between these two
couplings depends on the specific scheme used to regularize
the local interactions.27 Using the chain rule, we can write
the spinon DOS as

Ns!"" =
1
$

d%s

d"
=

1
$
& d"

d0h'−1 d%s

d0h , !16"

where " is calculated from the expression for the energy.
To proceed, we note that the density of solutions in the
presence of a spinon excitation -!0 ,0h" can be written
as

-!0,0h" = -o!0" + 1-!0,0h" , !17"

where -o is the density in the ground state !with no holes
present" and 1- is the change in the density due to the ex-
citation !presence of the hole 0h". We can further divide -0
into two terms -el, the electron contribution to the ground
state and -im, the impurity contribution to the ground state. It
is known that the derivative of the phase shift as a function
0h ,d%s /d0h, is precisely the impurity contribution of to
ground-state density of solutions evaluated at 0h ,-im!0h"
!see Ref. 21". Note that -im!0" depends only on the ground
state and does not know about the presence of the spinon.
The information about the spinon in the DOS comes only
through the spinon excitation energy ". Finally, it should be
noted that since we are interested in the behavior around
H=0, the results we present here are valid only for magnetic
fields much smaller than the Kondo temperature temperature
H /Tk31.

The details of the explicit solution of the BAE and the and
computation of the DOS Ns!"" are given in cond-mat/
0404122. The final results read

Ns!"" =
1

2$
2 1

" + H!
4&S + i

1
$

ln)!" + H!"/Tk*'
+

H

2$!" + H!"24&S + i
1
$

ln!H!/Tk"'3 !18"

with H!= !e /2$"1/2H and 4!x" defined to be

4!x" =
1
2

Re4)& x + 1
2

' − )& x

2
'5 , !19"

with )!x" the digamma function.
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In Fig. 2, the DOS versus energy is plotted for
the UKM. Notice that for the UKM, the DOS is
singular in the absence of a magnetic field. As a result,
characteristics of quasiparticles are not analytic near the
Fermi surface leading to singular thermodynamical behavior.

Note that the singular behavior is cut off by a finite
field magnetic field. To compare with numerical RG,
we must explicitly calculate the phase shift. To do so,
we integrate the above expression with respect to "
to get

%!",H" =
$

2
+

1
2i

ln652S +
1
2

+
i

$
ln&" + H!

Tk
'352S −

i

$
ln&" + H!

TK
'3

52S +
1
2

−
i

$
ln&" + H!

Tk
'352S +

i

$
ln&" + H!

TK
'37 −

H!
82$e!" + H!"

Re24&S + i
1
$

ln!H!/Tk"'3 .

The integration constant could be fixed by noting that the
expression for the DOS is valid for any spin S allowing us to
compare it to a spin-1 /2 calculation carried out in Ref. 17.
As a further check, note that for S=1/2 and zero magnetic
field, the above expression can be simplified using various
gamma function identities and yields

%S=1/2!"" = $/2 − tan−1& "

Tk
' !20"

in agreement with earlier calculations.21

For small energies and magnetic field, the above expres-
sion can be simplified using Stirlings approximation and
yields

%s!",H = 0"
$

= 0.5 + &S −
1
2
' 1

2 ln
Tk

"

+ ¯ ,

%s!" = 0,H"
$

= 0.5 + &S −
1
2
' 1

2 ln
Tk

H

+ ¯ . !21"

Thus, when H=0, the quasiparticle !spinon" phase shift
approaches a unitary value, a hallmark of FL. However, as
promised earlier, it does it in a singular manner. Furthemore,
note that this singular behavior disappears for the ordinary
Kondo model when S=1/2. For these reasons, we classify
the UKM as a singular Fermi-liquid !SFL" state. This singu-
larity has interesting consequences for the phenomenological
strong coupling picture developed by Nozières for the
S=1/2 Kondo model.

IV. NUMERICAL RENORMALIZATION GROUP

In this section we shall use Wilson’s numerical renormal-
ization group !NRG" method to compute the magnetic field
dependence of the phase shift of the quasiparticles and com-
pare these numerical results with those of the Bethe ansatz.28

An early NRG study of the underscreened Kondo model has
been carried out by Cragg and Lloyd.7 However, Cragg and
Lloyd have not discussed the case of a finite magnetic field,

which we analyze here. As we argued earlier, although this is
not true in general, at the Fermi energy the phase shifts of the
spinons obtained from the Bethe ansatz should coincide with
that of electrons.

In Wilson’s NRG technique one maps the original Hamil-
tonian of the impurity problem to a semi-infinite chain
with the magnetic impurity at the end of the chain. The
hopping amplitude decreases exponentially along the
chain, tn,n+110−n/2, where 013 is a discretization param-
eter and n labels the lattice sites along the chain. As a next
step, one considers the Hamiltonians HN of chains of length
N, and diagonalizes them iteratively to obtain the approxi-
mate ground state and the excitation spectrum of the
infinite chain

¯ → HN−1 → HN → HN+1 → ¯ .

The Hamiltonian HN in this series simply describes the
spectrum of HL, the original Hamiltonian, in a finite one-
dimensional box of size L10N/2. The spectrum of HN is
rather complicated in general, however, in the vicinity of a
low-energy fixed point the finite size spectrum HL becomes
universal, implying that the spectrum of the fixed point
Hamiltonian

H* - 0N/2HN 1
L

2$
HL !22"

does not depend on the iteration number N apart from an
even-odd oscillation, due to the change of boundary condi-
tions with N.

A typical finite size spectrum in zero magnetic field is
shown in Fig. 3. Only the spectra of even iterations
corresponding to periodic boundary conditions in the
non-interacting problem are shown. For N'5 the excitation
spectra approach very slowly !11/N" a universal spectrum.7

This universal spectrum is identical to that of a free
residual spin S*=1/2 and the spectrum of the following
Hamiltonian:
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H* =
L

2$
+
-=±

,
−L/2

L/2

dx)̃-
†!x")− i!)̃-!x"* , !23"

where, in contrast to the original fields, the free fermionic
fields )̃-!x" obey now antiperiodic boundary conditions

)̃-!− L/2" = − )̃-!L/2" . !24"

Thus in the absence of a magnetic field fermions at the
Fermi energy simply acquire a phase shift $ /2. As a conse-
quence, the spectrum of Eq. !23" is gapped for a finite system
size, and the ground state of the system is only twofold de-
generate due to the presence of the residual spin S*. As
shown in Fig. 3!b", in the presence of a small magnetic field
H a new scale 1H emerges, below which the fluctuations of
the residual spin are frozen out, and the ground-state degen-
eracy is lifted. Below this scale the spectrum can be
described simply by Eq. !23" with the modified boundary
conditions

)̃-!− L/2" = − e−i2%-!H")̃-!L/2" , !25"

where %-!H" denote field-dependent phase shifts. Note that
these phase shifts are the phase shifts of charged excitations,
i.e., from the NRG spectrum we determine directly the phase
shifts of the electrons at the Fermi energy.

We can thus determine the magnetic field dependence of
the phase shifts directly from the NRG spectrum. As shown
in shown in Fig. 4, the phase shifts %-!H" approach $ /2 as
0.25/ ln!TK /H" in good agreement with the Bethe-ansatz re-
sult for S=1 Eq. !21". In the inset of Fig. 4 we plotted the
derivative of the phase shift too, that we computed by nu-
merically differentiating the NRG results. This derivative is
proportional to the quasiparticle density of states at the Fermi
level, and indeed diverges approximately as 11/H for
H→0.

V. THE BREAKDOWN OF NOZIÈRES’ FERMI-LIQUID
PICTURE FOR THE UKM

In his seminal papers,1 Nozières argued that one could
perform a “Fermi-liquid expansion of phase shifts” at strong
coupling. He argued that since the impurity is frozen into a
singlet at strong coupling, the only remaining degrees of
freedom in the problem were those of the Fermi liquid. He
showed that all the physics could be captured by examining
the phase shifts of quasiparticles as they pass the impurity.
We shall now argue that this picture is valid for RFL but fails
in the case of SFL.

Nozières’ prescription to describe a Fermi liquid is to as-
sume that the phase shift for a quasiparticle of energy " and
spin - has the general form

%-!"" = %-)",/n-!!"!"0* , !26"

where /n-!!"!"0 denotes the occupation number of all other
quasiparticle states. It is not clear from Nozières original

FIG. 3. !Color online" Finite size spectrum of the S=1 under-
screened Kondo problem in the even sector in the absence !a" and
presence !b" of a magnetic field. In the absence of a magnetic field
the fixed point spectrum is that of a free Fermion field twisted by a
phase shift $ /2, and a residual spin S*=1/2. In a magnetic field a
second scale appears below which the fluctuations of the residual
spin S*=1/2 are frozen, and the spectrum can be characterized by a
single, field-dependent phase shift %!H".

FIG. 4. !Color online" Magnetic field dependence of the phase
shifts extracted from the NRG finite size spectrum. The phase shifts
scale to $ /2 as 11/ ln!TK / $H$". Inset: The derivative of the phase
shift diverges as 1/ $H$ for $H$3TK.
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paper how exactly the phase shift can be defined for a
particle of finite energy, which scatters generically inelasti-
cally off the impurity. Implicitly, Nozières’ prescription
assumes, that sufficiently close to the Fermi surface the
inelastic scattering of a quasiparticle of energy " is
suppressed as 1"2, and thus quasiparticles are indeed well
defined. With this assumption, and assuming further that in
the strong coupling fixed point everything is analytic near
the Fermi surface one can proceed and expand the phase shift
in powers of " and the change of quasiparticle occupation
number %n as

%-!"" = %0!"" + +
"!,-!

6-,-!!","!"%n-!!"!" ,

%0!"" = %0 + /" + 4"2, !27"

where for the sake of simplicity we assumed H=0. These
equations are the main constituents of Nozières’ Fermi-liquid
theory. The assumption that %0!"" is analytical in " implies
that the impurity-induced DOS remains finite at the Fermi
energy with /11/TK.

Our Bethe ansatz solution, however, shows that in the
absence of a magnetic field the spinon phase shifts take the
form

%s!"" =
$

2
+ 7

sgn!""

ln&TK

"
' + ¯ , !28"

leading to the singular density of states for the spinon exci-
tations shown in Fig. 2,

Ns!"" =
1
$

!%s

!"
=

7

$$"$2ln&TK

"
'32 . !29"

As a results the conventional Fermi-liquid expansion of the
phase shift can not be carried out.

Another essential feature of the Nozières Fermi-liquid
approach, is the assumption of adiabaticity—that the
excitations of the interacting system can be mapped onto
the excitations of a corresponding noninteracting impurity
problem. Since the interacting and noninteracting systems
contain the same quasiparticles, the difference between
the two situations can only be due to scattering by a one-
particle potential.

We are thus lead to ask whether there is adiabaticity in the
UKM. In light of the above observation, we can phrase the
question in an alternative manner—is there any noninteract-
ing scattering potential that can give rise to the observed
energy-dependent spinon phase shift? In a conventional im-
purity scattering problem, the scattering potential and the
phase shift are related by the relation

%!"" = tan−1)− $V!""8* , !30"

where V!"" is the bare scattering potential at energy ",29

so that

V!"" = −
1

$8
tan %!"" . !31"

In the Nozières expansion, we have

% =
$

2
+ /" !32"

so that the corresponding potential is given by

V!"" =
1

$8/

1
"

. !33"

A 1/" phase shift indicates the formation of single bound-
state inside the Kondo resonance. In fact, the scattering po-
tential !33" is the same as that of a simple resonant level
model with a resonance of width 51/−11TK positioned
right at the Fermi energy, 9d=0, implying that we can indeed
map the excitations of the fluid onto a noninteracting Ander-
son impurity model.

If we now carry out the same procedure on the phase shift
of the UKM, we find that

V*!"" =
1

$87
2ln&TK

"
'3sgn!"" . !34"

This singular elastic scattering potential can not be replaced
by a simple scattering pole, but would require a singular
distribution of noninteracting scattering resonances for
its correct description. Thus the singular Fermi liquid
of the underscreened model can not be obtained from the
adiabatic evolution of a simple, noninteracting impurity
model.

VI. CONCLUSION

The underlying mechanism for the singular behavior in
the singular Fermi-liquid models is the slowness of approach
of the coupling to the fixed point. In this respect also
the ferromagnetic Kondo model is a SFL with a particularly
simple fixed point.30 Another example to study in detail
would be fixed points of screened multichannel Kondo
models.

Finally, in the spirit of the Nozières picture, Affleck and
Ludwig have analyzed the low energy behavior of Kondo
impurity models in the framework of boundary conformal
field theory !BCFT".31 In this method, the various fixed
points correspond to different conformally invariant bound-
ary conditions. Although the overscreened and exactly
screened Kondo models were analyzed in great detail, the
UKM were never properly examined, and it is still an open
question how to incorporate the SFL behavior of the UKM
we have found in terms of BCFT.

Let us finally make a remark on our distinction between
non-Fermi-liquid and Fermi-liquid models. In this paper we
defined an impurity model to be of non-Fermi-liquid type
whenever at T=0 temperature a conduction electron at the
Fermi energy can scatter in an inelastic way, i.e., by chang-
ing its environment in course of the scattering process. De-
pending on the way one tries to measure this inelastic scat-
tering, one may, however, get rather different answers. The
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Aharonov-Bohm !AB" interference mentioned before is,
e.g., always destroyed by the inelastic scattering defined
in this paper, and it provides therefore a reliable way to dis-
tinguish between singular Fermi liquids and non-Fermi-
liquids: In a non-Fermi-liquid the AB interference is de-
stroyed even at T=0 temperature, while in a singular Fermi
liquid it is not.

However, we may sometimes get different results if we
try to use weak localization to detect inelastic scattering. In
the rather special case of the Hamiltonian, !13", e.g., the AB
oscillations are trivially destroyed even at T=0 temperature,
however, the weak localization corrections are not. This
simple but important example should alert us that various

ways to measure inelastic scattering processes may be in-
equivalent.
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