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Abstract
There is increasing experimental evidence that cells can utilize biochemical noise to switch
probabilistically between distinct gene-expression states. In this paper, we demonstrate that
such noise-driven switching is dominated by tails of probability distributions and is therefore
exponentially sensitive to changes in physiological parameters such as transcription and
translation rates. Exponential sensitivity limits the robustness of noise-driven switching,
suggesting cells may use other mechanisms in order to switch reliably. We discuss our results
in the context of competence in the bacterium Bacillus subtilis.

1. Introduction

Recent experiments indicate that cells can use noise in gene
expression to switch probabilistically between distinct gene-
expression states [1]. For example, in the phenomenon
of competence, the soil-dwelling bacterium Bacillus subtilis
utilizes noise in gene expression to switch probabilistically
between a vegetatively growing state and a competent state
where a bacterium can take up exogenous DNA [2–6]. Noise is
also likely responsible for the phenotypic heterogeneity found
in mycobacteria [7] and the bistable behavior of B. subtilis in
nutrient-rich media where genetically identical cells are found
in two distinct phenotypes: motile swimmers and immobile
chains [8]. Recent experiments also suggest that a noise-driven
switch is at least in part responsible for the ability of both yeast
[9] and the human fungal pathogen Candida albicans [10, 11]
to exist in two distinct phenotypes. The role of stochastic
fluctuations in many other biological phenomenon such as the
lytic-lysogeny decision during bactriophage infection is still
the subject of current debate [12–14].

In this paper, we demonstrate that in standard models
of noise-driven switching [15–26] many biologically relevant
quantities, such as the switching rate, exhibit an exponential
sensitivity to physiological parameters. The root cause
of this exponential sensitivity is that switching properties
are dominated by rare concatenations of biochemical events

[23, 24]. Consequently, great care must be taken when
calculating switching properties using coarse-grained models
[26]. In particular, we show that sources of noise often ignored
in theoretical treatments, such as protein bursting [28–31],
are extremely important for noise-driven switches. However,
provided mRNA lifetimes are short, we show that switching
can still be accurately simulated using protein-only models of
gene expression.

The exponential sensitivity of switching may also have
important biological consequences. For example, under
many physiological conditions, B. subtilis cells can become
competent only during a window of opportunity at the end
of exponential growth [2, 3]. Thus, in standard models of
switching, small changes in physiological parameter are likely
to lead to large variations in the percentage of cells that become
competent. It is then natural to ask if and how cells can achieve
robust switching. We address this issue by discussing several
alternative switching models that are more robust to changes
in kinetics parameters.

2. Basic model of bistability

Perhaps the simplest example of a genetic switch is a genetic
network in which a protein induces its own expression
(see figure 1). If this feedback is nonlinear, e.g. if multiple
copies of the protein are required to induce expression, such
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Figure 1. (a) Schematic of a simple genetic network in which a
protein activates its own transcription and (b) the phase portrait of
the network dynamics. In mean-field theory, this network can
exhibit bistable behavior with two stable fixed points (A and C), an
intermediate unstable fixed point (B) and a separatrix (solid green
curve) dividing the basins of attraction of the stable fixed points.
Noise in transcription (gene → mRNA) and translation (mRNA →
protein) can drive transitions between A and C. Inset: as discussed
in the main text, switching is analogous to thermally-driven barrier
crossing in a double well potential.

a network may be bistable with two distinct steady states,
a low-expression state where the protein is present in small
numbers and a high-expression state where the protein is
present in large numbers. Noise from the inherent stochasticity
in biochemical reactions can probabilistically switch a cell
between these two gene-expression states [32, 33]. Such
a simple bistable network is at the core of many noise-
driven systems in biology [8, 10, 11]. For example, in
competence, the master-regulator protein ComK promotes
its own expression through a positive-feedback loop with
noise in gene-expression switching bacteria from a low-
ComK vegetative state to a high-ComK competent state in
response to stress. It is worth noting that under certain
physiological conditions, the high-ComK competent state is
actually transient. However, since we are concerned only with
entrance into competence this will not be important to our
arguments below.

The average number of mRNAs, m̄, proteins, p̄, in
such a genetic network can be described by the deterministic
differential equations

dm̄

dt
= fm(p̄) − τ−1

m m̄ (1)

dp̄

dt
= αpm̄ − τ−1

p p̄ (2)

where fm(p) is of the Hill form and is given by

fm(p) = α0m +
αmpq

K
q
d + pq

, (3)

with α0m being the basal rate of mRNA transcription and
the second term representing positive feedback. Equation (1)
describes the change in the mean number of mRNAs due to
mRNA transcription and degradation. Equation (2) describes
the change in the mean number of proteins due to protein
translation and degradation. In the bistable regime, these
equations have two stable fixed points divided by a separatrix
containing an unstable intermediate fixed point (see figure 1).

The deterministic differential equations (1) and (2) ignore
fluctuations in mRNA and protein numbers. To capture the
effects of these fluctuations, we employ the exact Master
Equation for the probability, P(m, p), of finding m mRNA
molecules and p protein molecules [34]. Define shift
operators, E±

s=m,p, which act on an arbitrary function g(m, p)

according to E±1
m g(m, p) = g(m ± 1, p) and E±1

p g(m, p) =
g(m, p ± 1). In terms of these operators, the Master Equation
describing our simple bistable switch is
∂P (m, p, t)

∂t
=

[(
E−1

p − 1
)
αpm +

(
E+1

p − 1
)
τ−1
p p

+
(
E−1

m − 1
)
fm(p) +

(
E+1

m − 1
)
τ−1
m m

]
P(m, p, t). (4)

The terms in equation (4) have the same biological meaning
as the corresponding terms in equations (1) and (2). However,
the Master Equation describes the full probability distributions
P(m, p) and not just the mean numbers of mRNAs and
proteins. In writing this equation, we have assumed that the
noise in the system is due to intrinsic noise in transcription
and translation [28] and we have ignored other sources of
noise. In particular, we have modeled both protein and mRNA
production with a simple Poisson model. This approximation
may not hold in many biological systems where, in particular,
transcription of mRNA may occur in bursts [35–37].

3. Exponential sensitivity of switching

An important property of biological switches is the mean
first-passage time (MFPT)—in our case, the average time it
takes to switch gene-expression states. The MFPT is also
inversely related to the mean switching rate for a population.
As discussed in the introduction, in competence the MFPT is
directly related to the number of cells in a bacterial population
that become competent during a window of opportunity at
the end of exponential growth [2, 3]. We have calculated
the MFPT for the simple positive-feedback network described
by equation (4) by performing 5000 independent Gillespie
simulations for each set of parameters and averaging the first-
passage times (FPTs). (The Gillespie algorithm is a dynamic
Monte Carlo method that numerically generates trajectories
of a stochastic Master Equation [38].) The FPT for each
simulation was calculated by initializing the system at the
low-protein-number fixed point and calculating the time the
trajectory took to reach the deterministic separatrix. Figure 2
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Figure 2. Mean first-passage time (MFPT) from the
low-protein-number fixed point (A) to the separatrix (cf figure 1) as
a function of the transcription-rate coefficient αm. The MFPT is
shown for two distinct regimes: continuous protein synthesis
(dashed purple curve) where mRNA lifetimes and protein lifetimes
are equal (τm/τp = 1) and bursty protein synthesis (solid red curve)
where mRNA lifetimes are much shorter than protein lifetimes
(τm/τp = 1/16) so that proteins are made in bursts. All times are in
minutes and rates in inverse minutes. Each MFPT was obtained by
averaging the first-passage time from 5000 simulations, with
parameters τp = 8, α0m = 0.5, Kd = 100, q = 3, b̄ = αpτm = 10.
Inset: typical stochastic trajectory for protein number from a
Gillespie simulation with bursty protein synthesis with αm = 2.6.

shows the MFPT for two different ratios of the mRNA and
protein lifetimes, holding the mean protein number fixed.
When τm/τp = 1/16 # 1, mRNAs are short-lived and
typically many proteins are produced in a rapid burst from
each mRNA molecule. In contrast, when τm/τp = 1, proteins
are produced nearly continuously. In the two simulations, the
mean number of proteins at the fixed points is identical. This is
achieved by varying αp with τm so that b̄ = αpτm, the average
number of proteins made per mRNA, is fixed.

Note that the MFPT is exponentially sensitive to
the transcription-rate coefficient αm. Similar sensitivity is
observed with respect to other parameters such as the protein-
degradation rate (data not shown). The MFPT in figure 2 also
shows a strong dependence on the ratio of mRNA and protein
lifetimes though the mean protein number is held fixed. In
particular, the MFPT is significantly shorter when proteins are
produced in bursts (τm/τp # 1). Bursty protein production
increases protein fluctuations, and as a result lowers the MFPT
for switching. This dramatic reduction in MFPT due to
bursting has also been observed in the context of a dimerizing
genetic switch [27]. The increase in protein fluctuations due
to bursts of production can be quite large. For example, the
variance of the number of proteins for a fixed rate of mRNA
transcription is given in the bursting limit by [28–31]

〈δp2〉/p̄2 = 1 + b̄

p̄
, (5)

where b̄ = αpτm & 1 is the mean burst size, i.e. the mean
number of proteins made from each mRNA. This should
be contrasted with the case where proteins are produced
continuously and 〈δp2〉/p̄2 = 1/p̄ # (1 + b̄)/p̄.

In the bursting limit (τm # τp), gene regulation is
often approximated using protein-only models. In these
approximations, time derivatives of the mRNA species are set
equal to zero, and the resulting mean mRNA concentrations
are substituted into the equations describing protein dynamics.
For our network, such a procedure yields the reduced equation

dp̄

dt
= αpm̄ − τ−1

p p̄ = b̄fm(p̄) − τ−1
p p̄. (6)

It is worth noting that since these approximations fail when
τm ! τp, switching properties cannot be accurately described
by protein-only models in the continuous protein synthesis
regime.

4. Incorporating translational bursting in
protein-only models

Even in the bursting regime, commonly used protein-only
models often fail to accurately reproduce switching kinetics
since these models neglect or oversimplify noise sources such
as protein bursting [27]. Stochastic fluctuations are often
included in protein-only models by assuming that proteins
are produced probablistically one at a time. This assumption
leads to the master equation

∂P (p, t)

∂t
=

[(
E−1

p − 1
)
b̄fm(p) +

(
E+1

p − 1
)
τ−1
p p

]
P(p, t).

(7)

We have calculated the MFPT for switching between the low-
expression and high-expression states for this Master Equation
using the Gillespie algorithm and the result is shown in
figure 3. Note that the MFPTs calculated in this way can be
nearly four orders of magnitude longer than those calculated
using the full mRNA-protein model, demonstrating that
protein bursting significantly increases the rate of switching.

In fact, it is straightforward to include protein bursting in
protein-only models in the bursting regime [39]. Since mRNA
degradation and protein translation from an mRNA molecule
are independent Poisson processes, it can be easily shown that
the protein-burst size b (defined as the number of proteins
produced from a single mRNA molecule) is geometrically
distributed with mean burst size b̄ = αpτm and distribution

G(b) = 1
1 + b̄

(
b̄

1 + b̄

)b

. (8)

We consider two different approximations for
incorporating bursting in a protein-only model. In the
first, once an mRNA is produced, translation proceeds
deterministically and b̄ proteins are produced. In the second,
b proteins are produced from a single mRNA molecule with
the geometric distribution, G(b). Both these approximations
assume τm # τp since all the proteins from a single mRNA
molecule are considered to be produced instantaneously.
The MFPTs computed within these two approximations are
shown in figure 3. As for the full mRNA-protein model, the
protein-only MFPTs are exponentially sensitive to changes
in the transcription-rate coefficient αm. The MFPT computed
using the geometric distribution of protein-burst sizes agrees
well with the MFPT from the full mRNA-protein model.
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Figure 3. Comparison of mean first-passage times (MFPTs)
between the full mRNA-protein model and various protein-only
models. The mean protein level at the fixed point is the same for all
models and the MFPT is the average of 5000 independent
simulations: (solid red curve) MFPT for bursty mRNA-protein
model from figure 2; (dotted green curve) MFPT for a model where
proteins are produced in bursts of size b, where b is drawn from a
geometric distribution with mean b̄ = 10; (dashed blue curve)
MFPT for a protein-only model where proteins are produced in
bursts of size b = 10; (dot-dashed curve) MFPT for a model where
proteins are produced without bursting (b = 1).

However, the protein-only model where proteins are produced
with a fixed burst size b̄ is inadequate for calculating the
MFPT even though this approximation correctly yields
equation (5) for the variance in protein number at a fixed rate
of mRNA transcription. Note that the MFPT computed within
the geometric-burst-size approximation is smaller than that
computed using the fixed-burst-size approximation. This is
expected since geometrically distributed burst sizes increase
the fluctuations in protein production.

5. Discussion

A qualitative understanding of our simulation results can be
obtained from the Fokker–Planck approximation to the Master
Equation (7). Gaussian approximations such as the Fokker–
Plank and Langevin equations generally fail to accurately
capture switching properties since they underestimate rare
fluctuations [23], but nonetheless they allow us to identify the
regime of exponential sensitivity. The Fokker–Plank equation
that approximates our genetic network is [34]

∂P (p, t)

∂t
= − ∂

∂p
[a1(p)P (p, t)] +

1
2

∂2

∂p2
[a2(p)P (p, t)],

(9)

where a1(p) = b̄fm(p)−τ−1
p p and a2(p) = b̄2fm(p)+τ−1

p p.
In deriving (9), we assumed that the state of the system is
described by a single reaction coordinate, protein number, and
have ignored fluctuations such as transcription-factor binding
and unbinding. Additionally, we have made the simplifying

approximation that proteins are produced in bursts of size b̄.
We can calculate the MFPT using equation (9) and obtain [40]

MFPT ∝ exp
(

U(p̄B) − U(p̄A)

a2(p̄A)

)
≡ exp

(
UBA

D

)
, (10)

where we have defined an effective potential U(p) using
the equation ∂U

∂p
= −a1(p) and where p̄A(B) is the mean

number of proteins at the low-expression stable fixed point
(intermediate-expression, unstable fixed point). The result is
derived assuming the constant-diffusion approximation where
we replace a2(p) by its value at the low-expression fixed point
a2(p̄A) and performing a saddle-point approximation. As
expected, this approximate Fokker–Plank equation correctly
determines the regime of exponential sensitivity but does
not quantitatively reproduce the MFPT. Note that the MFPT
resembles the FPT for barrier crossing by a particle moving
in a potential U(p) with the effective diffusion constant
D = a2(p̄A) and the barrier height UBA [41]. The analogy
between barrier crossings and biochemical switches was
discussed earlier in [19, 20]. We have extended this analogy to
include protein bursting and shown that the burst size changes
both the barrier height and the effective diffusion constant.
When UBA/D & 1, i.e. when the barrier height is large,
the MFPT is exponentially sensitive to changes in the kinetic
parameters that determine U(p) and D. Thus, exponential
sensitivity indicates that switching is dominated by the tails
of a probability distribution and the central limit theorem no
longer applies. Thus, aspects of gene regulation, such as
protein bursting which may not be important when considering
small fluctuations around mean protein levels, may still play
an important role in governing switching rates.

6. Conclusion and outlook

There is increasing evidence that the dynamic properties of
bistable genetic switches are extremely sensitive to the details
of gene regulation. This work, as well as others [25–27],
shows that small changes in parameters can lead to large
changes in the dynamics of switching. We have argued
that this sensitivity occurs because the dynamics of switching
depends exponentially on the effective barrier height and the
effective diffusion coefficient for switching. Such exponential
sensitivity has important theoretical implications for coarse-
grained descriptions of biochemical networks [25]. For
example, many sources of noise, such as mRNA bursting [35–
37] and protein dimerization [16, 25, 26], likely play important
roles in determining switching rates in some biological
systems. Thus, great care must be taken theoretically when
integrating out sources of noise [25]. This work complements
and extends earlier theoretical studies by showing that when
mRNA lifetimes are short, protein fluctuations can be correctly
incorporated using protein-only models. In addition, it
provides a simple understanding of exponential sensitivity
using intuition from the statistical mechanics of barrier
crossings.

The exponential sensitivity of genetic switches also has
important physiological consequences. In recent experiments,
Maamar et al [2, 3] showed that protein bursting is a major
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source of the noise driving the induction of competence.
Furthermore, they were able to change the noise-driven
switching rate (the inverse of the MFPT) in the B. subtilis
competence system, while keeping mean protein numbers
fixed, by manipulating transcription and translation rates. This
suggests that evolution can tune switching rates while keeping
mean protein levels fixed. (Note, however, that switching
rates are also likely to be influenced by additional factors
such as temperature, pH, fluctuations in the number of cellular
components important for transcription and translation such
as polymerases and ribosomes, and extra-cellular factors such
as chemicals present in the environment.)

By our analysis, switching—because it is like barrier
crossing in statistical mechanics—is likely to be exponentially
sensitive to all these factors. Indeed, this may be one of
the causes for the large variations observed in experiments
on the number of swimming cells and chains in a cultures
of B. subtilis [8]. However, it is then natural to ask if,
and how, cells can achieve robust switching. For example,
robust switching may be achieved using alternative switching
mechanisms such as all-or-none events that switch the cell
between the low- and high-expression states [42]. Such an
all-or-none event could correspond to the disassembly of an
entire repressor complex bound to the promoter of a gene,
allowing multiple mRNA molecules to be made rapidly. If
switching is dominated by these all-or-none events and not the
tails of probability distributions, then switching is no longer
necessarily exponentially sensitive to changes in parameters.
This scenario may be relevant to competence since a repressor
complex is known to be important in regulating the master
competence regulator ComK [43]. Alternatively, cells could
switch robustly by actively tuning noise to control switching
rates. Recent experiments suggest that this may indeed be
the case in mycobacteria [7]. A final possibility is that
large variations in the switching rate may be acceptable
or even desirable for cells living in certain environments
[44, 45]. Thus, cells may exploit the exponential sensitivity
of noise-driven switching to increase their fitness. It will be
interesting to better understand the ecological and evolutionary
implications of noise-driven switching.
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Glossary

Competence. A physiological state that allows a bacterial
cell to take up exogenous DNA.

Master equation. A mathematical equation that describes
the time evolution of a probability distribution.

Mean first-passage time (MFPT). In our context, the
average time it takes for a bistable genetic switch to transition
from one gene-expression state to another due to fluctuations.
The MFPT is inversely related to the switching rate.
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