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An ongoing debate in ecology concerns the impacts of ecological
drift and selection on community assembly. Here, we show that
there is a transition in diverse ecological communities between a
selection-dominated regime (the niche phase) and a drift-domi-
nated regime (the neutral phase). Simulations and analytic argu-
ments show that the niche phase is favored in communities with
large population sizes and relatively constant environments,
whereas the neutral phase is favored in communities with small
population sizes and fluctuating environments. Our results dem-
onstrate how apparently neutral populations may arise even in
communities inhabited by species with varying traits.

neutral theory | disordered systems | phase transitions | niche theory

he success of the neutral theory of biodiversity and biogeogra-

phy (1, 2) at explaining patterns in biodiversity has resulted in
a vigorous debate on the processes underlying the assembly, dy-
namics, and structure of ecological communities (1, 3-12). Starting
with the pioneering work of MacArthur (13-15), ecologists have
emphasized the roles of interspecific competition and environ-
mental interactions in community assembly and dynamics. These
niche-based models emphasize ecological selection as the driving
force of community assembly, whereas neutral models of bio-
diversity assume a functional equivalence between species and
emphasize the role of ecological drift (i.e., stochasticity) in com-
munity dynamics (1, 2, 16, 17). The success of both types of models
at explaining ecological data highlights the crucial need for un-
derstanding the impacts of ecological drift and selection in com-
munity ecology (18).

Hypothesis

We begin with a hypothesis that a diverse ecological community
with many species can be either neutral or nonneutral, depend-
ing on the state of its environment. We call the regime in which
a community is well described using neutral models the “neutral
phase” and the regime in which the community behaviors are
inconsistent with neutrality the “niche phase.” The dynamics in
the neutral phase are dominated by stochasticity whereas the
dynamics in the niche phase are dominated by selection. Our
goal in this paper is to demonstrate that these two phases nat-
urally emerge from simple probabilistic models of ecological dy-
namics and that a community may transition from one phase to
the other as its environment is altered (Fig. 1).

Historically, ecological neutrality is based on the assumption
of functional equivalence, which states that trophically similar
species are essentially identical in terms of their vital charac-
teristics, such as birth and death rates (19). Ecological neutrality,
however, is generally not a measurable feature of a community.
Therefore, we adopt a pragmatic definition of neutrality: We say
that a community is “statistically neutral” if its multivariate dis-
tribution of species abundances cannot be distinguished from a
distribution constructed under the assumption of ecological neu-
trality. In other words, the multivariate species abundance dis-
tributions of statistically neutral communities are indistinguishable
from those of communities of functionally identical species. Note
that ecological neutrality implies statistical neutrality, but statisti-
cal neutrality does not necessarily imply ecological neutrality. We
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can now restate our hypothesis more precisely: As the character-
istics of an ecosystem change (e.g., carrying capacity, immigration
rate), there will be a transition between a neutral phase where the
ecosystem behaves as if it is effectively neutral and a niche phase
where the multivariate species abundance distribution is in-
consistent with statistical neutrality.

Background on Phase Transitions in Disordered Systems

Our hypothesis that ecological systems are likely to exhibit mul-
tiple phases is based on an analogy with disordered systems in
physics. For this reason, we briefly provide some background on
phase transitions in disordered systems. A phase transition refers
to an abrupt change in the qualitative behavior of a system as one
of its characteristics, or a characteristic of its environment, is al-
tered (20). The most well-known example may be the behavior of
water, which can be found as a solid, liquid, or gas depending on
temperature and pressure. Disordered systems often display a
more complicated type of phase transition, labeled the freezing
transition, where the system configuration gets “frozen” into a
particular state.

One illustrative example of a disordered physical system is a
protein (21). A protein can be thought of as a disordered system
in which the different amino acids along the protein chain in-
teract heterogeneously. The diversity of interactions in a protein
distinguishes natural proteins from homopolymers and is what
allows some proteins to fold to a stable native structure, while
causing others (like prions or amyloids) to misfold. In ecology,
this is analogous to the observation that the diversity of inter-
actions between the species in a community distinguishes niche-
like communities from neutral communities. To continue our
analogy, at high temperatures, a typical polypeptide sequence
will be in an unfolded phase where it samples different config-
urations randomly. If the temperature is lowered below a critical
value, the polypeptide will freeze into a single structure (the
folded state). This phase transition occurs when the stochasticity
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Fig. 1. A schematic illustrating the intuition underlying our hypothesis for a phase transition between the neutral and niche regimes in ecology. (A) The
important ingredients of our model are a large pool of diverse species, implying a diversity of species interactions, subject to stochastic population dynamics.
(B) Stochastic ecological drift will dominate the dynamics of communities with small population sizes and/or fluctuating environments. (C) By contrast,
stabilizing selective forces will cause a community with a large population size and a constant environment to freeze into a unique, optimal configuration. (D)
We predict that there is a transition between a drift-dominated (neutral) phase and a selection-dominated (niche) phase. That is, the community behaves
exactly neutral when the inverse stochasticity is less than a critical threshold, and the deviation from neutrality rises quickly once the inverse stochasticity is
larger than the critical threshold. The red line represents an order parameter based on the distance from neutrality, the dashed blue line represents an order
parameter based on the niche phase, and the dashed black line denotes the critical stochasticity.

impacting the dynamics (i.e., the temperature) is smaller than
the energetic differences in the interactions of the amino acids
along the chain. If we take this analogy seriously, we should
expect to find a critical amount of stochasticity, compared with
the diversity of species traits, that separates neutral and niche
communities.

Theoretical Models for Studying Community Assembly

To test our hypothesis regarding the niche-to-neutral transition,
we analyzed two models of ecological dynamics: (i) a generalized
Lotka—Volterra (LV) system including immigration and sto-
chasticity and (if) a binary model for the presence/absence (PA)
of the species in a community. Each of these models has
advantages and disadvantages. The LV model is a widely used
and interpretable model of many ecological phenomena. How-
ever, in general, it is intractable to perform analytic calculations
using the LV model and one must rely on numerical simulations.
In contrast to the LV system, the PA model is amenable to ana-
Iytical arguments but this comes at the expense of ignoring species
abundances. Both models assume well-mixed populations, al-
though relaxing this assumption is an important avenue of future
research. These two models correspond to extreme cases of func-
tional responses (22, 23). The functional response in the PA model
is essentially a step function in which species interact only when
their abundances are above a threshold. By contrast, the LV model
corresponds to linear functional responses. We expect that real
communities lie somewhere in between these models.

Parameterizing Ecosystem Characteristics

To construct ecological phase diagrams, it is necessary to pa-
rameterize ecosystem characteristics. Because we are interested
in stochastic community assembly, we must introduce parameters
that reflect the impact of stochasticity as well as parameters that
capture variation in species traits. Due to the similarity of the
two models, we use the same symbols for analogous parameters
with an added tilde for parameters in the PA model (e.g., K
denotes carrying capacity in the LV model and K denotes car-
rying capacity in the PA model).

There are two potential sources of stochasticity in the ecolog-
ical dynamics: “demographic stochasticity” resulting from random
births and deaths in small populations and “environmental sto-
chasticity” caused by random variations in the environmental
conditions. Although there is no doubt that the origin of the
stochasticity is important for making quantitative ecological
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predictions (24), extensive numerical simulations suggest that the
qualitative phase diagrams are insensitive to these details (S7
Appendix). For this reason, we parameterize the amount of sto-
chasticity by a single parameter, the noise strength o (@).

We must also introduce parameters describing species traits. In
principle, each species in the community has a unique immigra-
tion rate, a unique carrying capacity, and some set of parameters
that describes how it interacts with other species. In the main text,
we restrict ourselves to the case where all species have the same
immigration rate, A (1), and the same carrying capacity K (K) (see
SI Appendix for relaxation of these assumptions). We assume that
the regional species pool is large so that there is a separation of
timescales between the dynamics of the local community and
those of the regional species pool. As a result our model does not
explicitly include speciation, even though speciation is ultimately
required to maintain diversity over longer timescales relevant to
the species pool. Following May’s seminal work (25), we ran-
domly draw symmetric interaction coefficients from a probability
distribution and focus on describing the average behavior of
ecosystems. Specifically, the interaction matrix C (C)—with ele-
ment ¢; (¢;) characterizing the strength of interaction between
species i and j—is drawn from a Gamma distribution with mean
u/S (i1/S) and variance or “interaction diversity”, 6%/S (57/5),
where S is the number of species (see SI Appendix for results with
other distributions).

Stochastic Lotka-Volterra Dynamics

The first model that we analyze is a system of stochastic LV
equations including immigration. Niche-based models of com-
munity assembly frequently use LV equations as a simplified
description of ecological dynamics within a well-mixed com-
munity (13, 26-28). Here, we study a system of LV equations
incorporating immigration and multiplicative noise (i.e., sto-
chasticity). The rate of change in the abundance (x;) of species
i=1,...,8is

dx;
E:ﬂﬁxi(l(—xi) - Zcijxixj +Voxin,(t). (1]

J#

The first term (A) is the rate that species i immigrates into the
local community from an infinitely large regional species pool.
The second term (x;(K — x;)) limits the population of species i to
its carrying capacity (K) in the absence of immigration and
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species interactions. The third term (3, c;xix;) describes the
effects that other species in the community have on species i
according to their interaction coefficients (c;). All of these de-
terministic terms (i.e., 4, K, and c;) collectively represent the
effects of ecological selection on the abundance of species
i. Ecological drift is incorporated into our model through the
last term ( \ox; i(t)), which represents stochasticity using a Gauss-
ian “white noise” #;(t), with mean (#;(t)) = 0, variance (n;(t);(t')) =
8;6(t — t'), and strength \/xw.

Dynamics of Presence/Absence Model

In the PA model, a species i is described by a binary variable s;
with s; = 1 if species i is present in a community and s; = 0 if it is
absent. The stochastic dynamics of species PA are defined by two
rates: the rate at which a species immigrates into a community
(i.e., the rate that s; = 0 becomes s; = 1) and the rate at which a
species becomes extinct once it is in the community (i.e., the rate
that s; = 1 becomes s; = 0). Thus, a species immigrates into a
community and lives there for some time before it dies out, only
to reimmigrate back into the community later, and so on. We
assume that the rate of immigration is simply 4, and we model
the rate of extinction as exp(—f{ (L=>2¢i87) /@). Therefore, in
the absence of any interactions a species goes extinct at a rate
that is exponentially slow in its carrying capacity exp(—K /@), and
competitive species interactions effectively decrease carrying
capacity through K (1 — Ejé,-jsj) (13). The master equation describ-
ing the dynamics of § with these rates is discussed in detail in ST
Appendix. After an initial transient period, the community reaches
a steady state where the immigration and extinction processes are
balanced. Due to the simplicity of this model, we can derive an
analytic expression for the steady-state probability distribution:

, (3)_6Xp(2i(k/ﬁ)+ln/~l)si—(k/Z&))ZW)Eijsisj) .
o 20k C.0) ~

Here, Z(A,K,C,®) is a normalizing constant such that the total
probability sums to one.

Measuring the Neutrality of a Community

To test our hypothesis that communities can exhibit a niche-to-
neutral transition, it is necessary to define “order parameters”
that distinguish the niche and neutral phases. By convention, an
order parameter is chosen so that it is zero in one phase and
greater than zero in the other. Recall that the dynamics in the
neutral phase are dominated by stochasticity and multivariate
species abundance distributions in this phase are indistinguish-
able from those obtained from a neutral model with functionally
equivalent species. By contrast, the niche phase is dominated by
interactions and multivariate species abundance distributions are
peaked around the equilibrium value they would have in the
absence of stochasticity.

Using these intuitions we can define order parameters for both
the LV model and the PA model. In the LV model, we define an
order parameter that measures the distance (i.e., Kullback—
Leibler divergence) between the multivariate species abundance
distribution resulting from LV dynamics and the multivariate
species abundance distribution resulting from purely neutral
dynamics (see below). This order parameter is zero in the neutral
phase and nonzero in the niche phase. For the PA model, it is
convenient to consider a different order parameter, the Shannon
entropy, of the steady-state PA probability distribution. The
Shannon entropy is zero in the niche phase and nonzero in the
neutral phase. We now discuss both of these order parameters in
more detail.

Fisher and Mehta

Measuring Neutrality in LV Models. Early studies attempting to
quantify the neutrality of a community focused on the shape of the
marginal species abundance distribution, i.e., a histogram indicating
the number of species with 10 individuals in the community, the
number of species with 20 individuals in the community, and so on.
However, recent studies have shown that both and neutral and
nonneutral ecological models give rise to similar marginal species
distributions (12). For this reason, to measure neutrality in the LV
model we use the multivariate species abundance distribution. In
contrast to previous studies on marginal species abundance dis-
tributions in niche and neutral communities (e.g., ref. 12), using the
multivariate species abundance distribution allows us to study
the effects of different species interactions on correlations in
species abundances.

In particular, we quantify statistical neutrality in our LV
simulations by measuring the distance between the steady-
state distributions of species abundances obtained from the
LV model (PLy(¥)) and purely neutral dynamics (Px(¥)). The
measure of distance that we use is called the Kullback-Leibler
divergence, KL(PLy||Pn) = [dXPLyv(X)In Pry(¥)/Px(X) (29). One
interpretation of KL(PLy||/Pn) is defined as the amount of in-
formation about the true multivariate species abundance distri-
bution [i.e., Pry(5)] that is lost by approximating the distribution
with one obtained from a neutral model [i.e., Px(¥)]. The KL di-
vergence ranges from zero to infinity, with KL(Ppy||Px) = 0 imply-
ing that the simulated distribution is identical to the distribution
obtained under the assumption of neutrality. We study the average
of the KL divergence over many random realizations of the species
interactions, ie., (KL(PLy||Pn)). We expect (KL(PLy||Pn)) ~ 0 in
the neutral phase, whereas (KL(Pyy||Pn)) > 0 in the niche phase.
Similar results are obtained with distance measures other than the
KL divergence (SI Appendix).

In principle, it is possible to use an explicit formula for Py(x)
from a specific neutral ecological model. However, many varia-
tions of neutral ecological models have been proposed and it is
unclear which neutral model to use to calculate our order pa-
rameter. To circumvent this problem, we exploit the observation
that the multivariate species abundance distributions of all neu-
tral models share several features. Because we have restricted
ourselves to considering LV systems where all species have the
same immigration rate, we also restrict ourselves to considering
neutral models where this assumption holds. The implications of
nonuniform immigration rates are discussed in S Appendix. With
this caveat in mind, we observe that ecologically neutral models
are also statistical neutral. Namely, the time-averaged moments
of the abundance of species i are the same as the time-averaged
moments of the abundance of species j. Moreover, the correlation
in the abundances of species i and j is the same as the correlation
in the abundances of species k and [ (SI Appendix). Simulations
shown in Fig. 24 demonstrate that this is the case, at least for
Hubbell’s neutral model (Materials and Methods), where the KL
divergence equals zero for all positive immigration rates. Finally,
we note that although ecological neutrality implies statistical
neutrality, statistical neutrality does not necessarily imply eco-
logical neutrality. Thus, our use of statistical neutrality is consis-
tent with the interpretation of ecological neutrality as a type of
null model that allows one to identify communities in which se-
lection is important.

Measuring Neutrality in the Presence/Absence Model. In the PA
model, we do not have access to species abundances. For this
reason, it is convenient to define a different order parameter that
measures the fluctuations in the binary vector of community
composition, s: the entropy, H[Ppa]=— ;Ppa(5)InPpa(S), of
the steady-state probability distribution Ppa (5). In the absence of
stochasticity, 5 will “freeze” into a unique configuration resulting
from ecological selection and H[Pps] = 0. In contrast, if the
dynamics are entirely random, then each species will randomly
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Fig. 2. Phase diagram of neutral and competitive ecosystems. (A) Communities simulated according to Hubbell’s neutral model are statistically neutral with

a KL divergence equal to zero for all positive immigration rates and community sizes (J). (B) Simulations of competitive LV communities with immigration
display two phases: a statistically neutral phase with (KL(P.y||Pn)) ~ 0 and a niche phase with (KL(P.y||Pn)) > 0. Note that the colors represent exponential
growth in the KL divergence. The critical stochasticity defining the phase boundary scales with interaction diversity (s). Simulations were performed with y =
1.0 and 2 = 0.01. (C) The phase diagram calculated from the presence/absence model has a statistically neutral phase and a niche phase and a phase boundary
that scales with interaction diversity (5). The phase diagram was calculated with 7=1.0 and @ In1=K/2.

flip between being absent and present in the community and
H[Ppa] = S In 2. For diverse ecosystems with S > 1, we can
define the boundary between the neutral phase and the niche
phase as the points where (H[Ppa]/S) = 0, with angular brackets
denoting averaging over random realizations of interaction
coefficients.

Phase Diagrams for Ecological Dynamics

Phase Diagrams. Armed with the order parameters discussed in
the previous section, we can construct phase diagrams for both
the LV and PA models. Fig. 2 shows the KL divergence and
entropy as a function of stochasticity and interaction diversity for
the two models. First, we note that the phase diagram deter-
mined using LV simulations is remarkably similar to the phase
diagram calculated using our PA model (compare Fig. 2 B and C),
which suggests that our results are fairly robust to model details.
Fig. 2B shows that there is a large neutral regime in which (KL
(PLv||Pn)) ~ 0 in the LV simulations. The distance from neutrality
rises once the stochasticity is lowered below a critical value. That
is, (KL(PLv||Pn)) increases for small /K; note that the colors in
Fig. 2B represent exponential growth in (KL(Ppy||PN))-

Fig. 2C shows the phase diagram for the PA model. In the
limit the number of species S becomes large, and the entropy is
strictly zero in the niche phase (blue shaded area) and different
from zero in the neutral phase (white area). In particular, we find
that the PA of the species in a community freezes into a small
number of configurations determined by the species traits if the
stochasticity (@) is lowered below a critical value. This freezing is
indicative of a phase transition from neutrality to niche-domi-
nated ecological dynamics in the PA model.

It is important to recall that the neutral phase refers to a regime
in which the multivariate species abundance distribution is well
described by a neutral model, even if the underlying community is
not ecologically neutral. For example, one special case that illus-
trates this relation is a community of species that have become so
differentiated that they do not interact at all; i.e., u = 0 and ¢ = 0.
Because there is no disorder, this community will reside in the
statistically neutral phase even though the species are all highly
differentiated. Nevertheless, the species in a community must be
differentiated for the community to reside in the niche phase.

Scaling Relation for the Niche-Neutral Phase Boundary. We can ex-

plicitly calculate the phase boundary separating the niche and
neutral phases, using the PA model. For diverse ecosystems with
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many species S > 1, the relation defining the phase boundary
can be derived by mapping the problem to the random energy
model in physics (30, 31) (SI Appendix). Using this mapping we
can derive a simple scaling relation that indicates when an eco-
logical community will transition between the niche and neutral
phases (SI Appendix):

stochasticity
carrying capacity

immigration X interaction diversity

mean interaction strength

The niche phase is favored when the interaction diversity is large
relative to the impact of stochasticity on the dynamics of the
population. By contrast, the neutral phase is favored when the
interaction diversity is small relative to the impact of stochasticity
on the dynamics of the population. This confirms the basic
intuitions about ecological dynamics that were suggested by the
analogy with protein folding discussed in the Introduction.

On the Nature of the Transition. The transition between the niche
and neutral phases in the PA model is sharp (Fig. 3). In the LV
model the distance from neutrality ((KL(PLy||Pn))) increases
when the stochasticity is lowered below the critical value. How-
ever, in the PA model, the derivative of the entropy with respect
to stochasticity is undefined along the phase boundary, the signa-
ture of a freezing phase transition in the theory of disordered
systems. Comparing the two models, the niche-to-neutral transition
in the PA model appears to be sharper than in the LV model.
Technically, a phase transition occurs at a point with an undefined
derivative, whereas the term “crossover” is used to describe tran-
sitions between qualitative regimes without this feature. Our nu-
merical results do not distinguish whether the transition in the LV
model is a crossover or a true phase transition. This difference
arises due to the differences in the functional responses of the two
models. These two models were chosen, in part, because they
represent the two extremes of possible species functional responses
(linear vs. step function). We expect the functional responses of
real ecological communities lie somewhere in between these two
models. For this reason, we expect that real ecological communities
will also exhibit a transition between the niche and neutral phases.

Ecological Implications

The Prevalence of Neutral and Niche Communities. Our model sug-
gests that neutral communities and niche-like communities both
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Fig. 3. The nature of the transition between the niche and neutral phases.
Note that the order parameters for the two models are different: The order
parameter for the PA model is zero in the niche phase and greater than zero
in neutral phase, whereas the order parameter for the LV model is greater
than zero in the niche phase and zero in the neutral phase. The average
entropy (H[Ppal/S), which is a measure of fluctuations in the community
composition, is positive in the neutral phase and zero in the niche phase,
illustrating the freezing transition in the PA model. (Inset) In LV simulations
the distance from neutrality (KL(P_y||Py)) is essentially zero in the neutral
phase and rises to large values in the niche phase. Parameters: i=1.0, 5~ 0.4,
@Ini=3K/2, p =10, 0~ 0.4, 2=0.01.

correspond to large volumes of the ecological phase diagram.
Moreover, our model is such that species always have real dif-
ferences in traits, but these differences in species traits leave
no trace on the equilibrium multivariate species abundance dis-
tributions in the statistically neutral regime. This does not preclude
the possibility that one could observe the effects of species trait
variation on other types of observations. This may explain the
success of neutral models at explaining many large-scale patterns in
ecology, even though selective forces are well documented, and
ubiquitous, on local scales. Furthermore, the crossover region sur-
rounding the phase boundary corresponding to “nearly neutral”

communities occupies only a small volume of the phase diagram.
As a result, we predict that nearly neutral communities should
actually be quite rare, as long as there is not an external force
(e.g., group selection) driving communities toward the niche—
neutral boundary.

Ecological Disturbances. One of our main predictions is that the
apparent neutrality of an ecological community is a function of
both the inhabiting species and the environment. As a result, it is
possible to drive a community between the niche and neutral
phases by changing the environmental conditions. As an exam-
ple, we consider the effects of selective logging on a population
of butterflies in a tropical forest on Buru, Indonesia (32). Through
habitat destruction, logging essentially moves the butterfly com-
munity from a position with high K/ to one with low K/w, tracing
a path along the stochasticity axis in the phase diagram (Fig. 44).
Our model predicts that when a diverse community within the
niche phase is placed under a stress that lowers K/w to the critical
value, it will undergo a transition to the neutral regime. LV sim-
ulations show that this transition results in a collapse of biodiversity
and leads to an increase in the skewness of the species abundance
distribution (SI Appendix). The increase in skewness of the species
abundance distribution calculated from LV simulations is evident
in a steeper curve in the rank-abundance plot for low K/w com-
pared with high K/w (Fig. 4B). Similarly, the observed data display
an increase in the skewness of the rank-abundance curve of the
logged forest relative to the unlogged forest, consistent with a loss
of biodiversity accompanying a niche-to-neutral transition (Fig.
4C). As our model predicts a transition in the shape of the rank-
abundance curve as a function of increasing stochasticity (or de-
creasing carrying capacity), observations of rank-abundance curves
as a function of deforestation, i.e., where the amount of de-
forestation varies continuously, could provide a more stringent test
of our model than only the two endpoints discussed here. Never-
theless, this example demonstrates the potential of ecological
phase diagrams for predicting the qualitative effects of community-
wide disturbances and for capturing the characteristics that con-
tribute to community resilience.

Conclusion

In summary, we have argued that the niche and neutral per-
spectives of ecology naturally emerge from stochastic models
for the dynamics of diverse populations as distinct phases of an
ecological community. Population dynamics in the niche phase
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Fig. 4. Temporal variation in stochasticity and biodiversity in disturbed habitats. (4) An environmental disturbance that decreases carrying capacity may
cause a community to shift from the niche phase to the neutral phase. (B) A community with a high carrying capacity (K = 1.0: blue) has a less skewed species
abundance distribution than a community with a low carrying capacity (K = 0.1: red), as shown by the steeper red curve in the rank-abundance plot obtained
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are dominated by ecological selection, whereas population dy-
namics in the neutral phase are dominated by ecological drift.
Furthermore, we have derived a simple scaling relation for de-
termining whether an ecological community will be well described
by neutral models.

Our hypothesis can be experimentally tested using synthetic
microbial communities in which the immigration rates, carrying
capacities, and interaction coefficients can be controlled to
search for a transition as one moves from one region of the phase
diagram to another (33). Alternatively, connections to island
biogeography discussed in SI Appendix suggest that our hypoth-
esis could be tested by calculating the KL divergence from the
multivariate species abundance distributions on a chain of islands
as a function of their distance to the mainland (34). Observation of
a transition in the shape of the rank-abundance curve of a com-
munity along a disturbance gradient would also provide evidence
of the niche-neutral transition.

In this work, we made some simplifications that are unrealistic
for natural ecological communities. For example, we restricted
our analysis to well-mixed communities with purely competitive
interactions. It will be necessary to generalize our results to in-
clude the effects of dispersal, mutualism, predator—prey inter-
actions, etc., to obtain a more quantitative model of natural
communities. Nevertheless, we conjecture that the presence of
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a niche—neutral phase transition is robust to these model per-
turbations. However, disordered systems with complex inter-
actions display additional phases (35), which suggests that more
complex ecological communities may also exhibit additional
phases with novel characteristics.

Materials and Methods

We simulated Hubbell’s neutral model with a local community of J individ-
uals connected to an infinitely large metacommunity containing S = 50
equally abundant species. In each time step, with probability 4, an individual
randomly drawn from the metacommunity replaced a randomly chosen in-
dividual in the local community, or with probability 1 — 4, one randomly
chosen individual in the local community replaced another randomly chosen
individual in the local community. The simulations were run for 5 x 107 steps.
Ten simulations were run for each set of parameters, and the results
were averaged.

LV simulations with S = 50 species were performed over the parameter
ranges specified in Figs. 1-4. In each case, the competition coefficients were
sampled randomly, and then the stochastic Lotka—Volterra equations (Eq. 1)
were forward integrated for 5 x 107 steps of size 6t = 0.005, using the
Milstein method. Ten simulations were run for each set of parameters, and
the results were averaged.
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SI Appendix

Presence/Absence Model

Dynamics: Master Equation. In this section, we introduce a pheno-
mological model describing the probability of observing various
combinations of species in a local community, which we assume is
attached to a large regional species pool. The presence (or ab-
sence) of species i € {1, ..., S} is described by a binary variable
s;, with s; = 1 if the species is present and s; = 0 if it is absent. The
probability of observing a particular set of present/absent species
§ at time ¢ is described by a probability distribution P;(s). The
probability distribution is described by a differential equation
called a master equation.

The master equation describing the time evolution of P(s) re-
quires us to specify two types of rates: the rate of immigration at
which s; =0 — s; =1 and the rate of extinction at whichs; =1 —s; =0.
The rate of immigration of species i, R! (5), is given by

RI(5)=

The rate of extinction of species i, RF(5), is given by

R; (5 )—CXP< ( ZKCUSJ)>

Here, /; is the rate of immigration of species i, K; is the carrying
capacity of species i, ¢; is an interaction coefficient that describes
the influence that species j has on species i, and @ describes the
impact of stochasticity on species extinction. Throughout this
article we use a convention in which ¢; =0 for the presence/
absence model and ¢; = 0 for Lotka—Volterra (LV) models.
The units of time have been set to the rate of extinction in the
limit that ® — oo.

The time evolution of the probability distribution is described
by a master equation:

dP,(5)

@ =2 { (Rf F+e)P(s+e)-R (5P, (§)> (1-s,)

+ (RE- )P~ 2) ~REOP() ) ).
[s1]

Here, ¢; is a vector with element i = 1 and all other elements
equal to zero.

The first line of Eq. S1 describes the rate of change in the
probability of a community with s; = 0. The positive term,
RE(5+7¢/)P,(5+¢), reflects the process by which the probability
of this state increases due to extinction events where s; =1 —s; = 0.
The negative term, R!()P;(5), reflects the process by which the
probability of this state decreases due to immigration events
wheres; =0 - s, = 1.

The second line of Eq. S1 describes the rate of change in the
probability of a community with s; = 1. The positive term,
RI(s—¢)P,(s—¢), reflects the process by which the probability
of this state increases due to immigration events where s; = 0 —
s; = 1. The negative term, RE (5)P;(5), reflects the process by which
the probability of this state decreases due to extinction events
where s5; =1 - 5, = 0.

Fisher and Mehta www.pnas.org/cgi/content/short/1405637111

There is no general method for solving this equation, although
it can be simulated using Gillespie’s algorithm (1). Below, we
show that an equilibrium solution for P;(s’) can be obtained in the
limit that t - .

Connection to MacArthur-Levins. Before describing the solution for
the equilibrium distribution of Eq. S1 we first explain the in-
tuition for the rates of our phenomological presence/absence
model. First, it is helpful to recount the famous results on species
invasion in Lotka—Volterra communities due to MacArthur and
Levins (2).

Deterministic models of ecological dynamics typically take the
form dx; /dt = %; +x;f;(X). Here, 4; is the rate of immigration and
fi(¥) is the ecologrcal fitness of species i, which is a function of
the population ¥. The LV equations describe communities with
linear ecological fitness f;(¥) =K; —x; — 3_,c;x;. In general, f;(X)
may be a complicated function due to nonlinear functional re-
sponses or other phenomena. Regardless of the exact form of f;(¥),
the ecological fitness can always be linearized near an equilibrium
point, x*, in which case the ecological dynamics are approximately
described by LV equations.

MacArthur and Levins (2) considered an equilibrium point

—

(x*) Where x; ~ 0 and the linearized ecological fitness of species i
is fi(x )NK >cix; - If a small number of species i attempt to
invade the communrty, they will be successful if K; —>_.c;x; >0
but will be unsuccessful if K; — > c,,x] <0. If the commumty has
only two species, then xJ =K; and the relationships are K; —
K;C; > 0 for successful invasion and K; — K;C; < 0 for un-
successful invasion.

The qualitative results should be similar in the case of a stochastic
LV dynamics. In the absence of sp_e}cies i the species abundances

fluctuate about their mean values (x*). If a small number of species
i attempt to invade the community, they are most likely to be
successful if K; — . c,,x] > 0, i.e., the mean extinction time will be
long, but will be unlikely to be successful if Ki =3 e <0, ie.,
the mean extinction time will be short.

Now, let us take a look at our proposed immigration and
extinction rates. That the rate at which an absent species with
s; = 0 becomes a present species with s; = 1 is simply the rate of
immigration 4; is straightforward In the case of extinction, the
rate of extinction is controlled by K; — > Kcys;, for fixed w. This
can be compared with K; — Z]c,,x} which controls the rate of ex-
tinction in the MacArthur-Levins model. If we make a con]ecture
that, all other thlngs being equal, x;' scales proportionally with K]
then we can write x; = Kjy;c;s; whére 7; is 51mply the constant of
proportlonalrty describing the scaling of x;° with K;. Finally, we
simply define ¢ Cj=7jcj 10 arrive at our proposed extlnctlon rate.
The behavior is such that if K;— —>_Kicysi > 0, then the rate
at which species i goes extinct in the Tocal community will be very
slow, whereas if K, — - K;¢;s; < 0, it will be fast. This behavior is
quahtatlvely similar to the MacArthur and Levins analysis of spe-
cies invasion in LV communities (2).

Equilibrium Distribution. In general, there is no way of solving Eq.
S1 to find P,(s"). However, it is possible to solve for the steady-
state equilibrium distribution Ppa (5)(PA, presence/absence), i.c.,
the distribution such that dP/dt = 0, if we 1mpose the followrng
symmetry conditions: 4 =2, K; =K, and ¢ ¢;j =cji. The symmetry
conditions ensure that transition rates satisfy the principle of de-
tailed balance (Fig. S1).

Mathematically, it is clear from Eq. S1 that if we can find
a distribution Ppa (5) such that RF (5 + &, )Ppa (5 + € ) = R (§)Ppa(5)

10f 10
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if s; = 0 and R/ (§— & )Ppa(S— &) =RE(5)Ppa(S) if 5; = 1, then
dP,/dt evaluated at Ppa (5) equals zero. Thus, Ppa (5) isa flxed point
of the master equation. Moreover, it is possible to show that this fixed
point is unique.

This equilibrium distribution is given by

3 eXP(Z (K/@+1n2)si - (K/za))zmcyslsj>
Pea(5) = Z08.6.9) . IS2]

Here, Z(4,K,C,®) is a normalizing constant such that the total
probability sums to one. It is straightforward to verify the detailed
balance relations, e.g., RE (5 + € )Pp4 (5 + € ) = R! (5)Pp4(5), by plug-
ging in Egs. S1 and S2. For example,

RE(5+¢/)Ppa(5+e) =R (5)Pea (5)

=
exp<—(1~<—2jl~<é,~js,)/w)exp< (K /‘7’+ln’~1)si‘(i{/zﬁ’)z(m@y‘sisj)
Z(L.K.C.&)
ze:)cp(z,;E (K/o+In2)si— (K/20) Y i) C,qsks})
- (A,K,C,a))
=
(K ZKC!/S})
exp| _

-+ Z < +In ﬂ) S; — % Z CijSiSj

(i)

K K
=exp(Ini+ Z( +1n/1> — cksks

=

K K
exp| Ini+ > +ln/1 Sji—=—= CkiSkSj
( e ] 20 ];” adias}
=exp <lnl+ Z( +1nl>s/ - Z ckjsks/)

i# @ (i)

Generality of the Presence/Absence Model. Our analysis of our pres-
ence/absence model in this work depends only on the properties of
the steady-state distribution, PPA( ). Under our symmetry as-
sumptions PPA( ) =Ppa(5), although this is not the case in gen-
eral. Nevertheless, we can generally expand the logarithm of the
steady-state distribution in terms of its moments as

=InZ+ Z h;s; + ngslsj + Z]Uks,sjsk +-

ijk

lI‘leA

where the As and Js are appropriately chosen coefficients. Thus,
one way to view our analysis is that we have taken such a series
and truncated it after the pairwise term; although there are some
subtleties that arise in using statistical mechanics to analyze a
steady-state distribution rather than an equilibrium distribution.
Moreover, the form of the equilibrium distribution that we ana-
lyze (Eq. S2) can be viewed as a statistical maximum entropy
model, also known as binary Markov random fields in the statistics
and machine-learning literature (3—6). These statistical modeling
approaches have been used to model phenomena across many
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different fields. The appearance of phase transitions in these types
of models is quite general.

Quenched Disorder and the Average Free Energy. For a particular
choice of 4, K, @, and ¢;;, the distribution of the presence/absence
of the species in a community is described by the equilibrium
probability distribution

q_exp( (K/a)+ln/1)s, (K/Z&))Z<,J)c,js,sj>
alf) = z(3.K,C,0) ’

where Z(4,K, C,®) is a normalizing constant such that the total
probability sums to one. However, in this work we are not in-
terested in understanding the behavior of the system for a partic-
ular choice of parameters, but we instead want to understand the
average behavior of the system over many random realizations of
the parameters. We approach this problem by studying the av-
erage behavior of InZ(1,K, C,®) in the limit that the number of
species S goes to infinity.

In physics, the logarithm of the normalization constant of an
equilibrium distribution, e.g., InZ(1,K, C, ), is called the free
energy of the system. The free energy is an important, and
useful, quantity because its derivatives provide the moments
of the distribution (i.e., average, variance, etc.). Phase tran-
sitions correspond to points where one of the derivatives of
the free energy (often with respect to stochasticity) is unde-
fined (7).

There are two ways that one could compute the average free
energy: the “annealed” average equal to In (Z) or the “quenched”
average given by (In Z). Jensen’s inequality immediately implies
that In (Z) > (In Z). Analyzing the quenched average of the free
energy corresponds to analyzing the properties of typical commu-
nities for which the species interactions are drawn from a given
probability distribution. Thus, our goal is to calculate the quenched
average of nZ(4, K, C, ®).

In principle, the quenched average free energy can be calcu-
lated using “the replica trick” (8):

lim ;<an>— hm lim <Z )=

S—o0 n—oo n

However, it is sufficient for our purposes to calculate the quenched
average free energy using a random energy model approxima-
tion (9-11).

Deriving the Phase Diagram with the Random Energy Model. Just to
be precise, the goal of our random energy model calculation is to
compute the quenched average free energy,

lim 1<F>= Slim é(an>,

where the angular brackets denote an average over random real-
izations of the species interactions. The definition of free energy
in thermodynamics is F = U — TH, where U is the “internal
energy” (described below), H is the “entropy,” and T is the
“temperature.” For a discrete probability distribution, the en-
tropy can be calculated using the Shannon-Gibbs formula H =
>_pilnp;, where p; is the probability of the ith state. That is, the
entropy is a measure of fluctuations. We show that there is
a freezing transition in the random energy model, where

1
Jim 5 (H)=0.

The calculation follows that in refs. 9-11.
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The random energy approximation. First, we define a function called
the internal energy (or just the energy) as

U(5) =—Z(1+A)Si+% X;Ei,-siSJ, [S3]
W

L

where A=@Inl/K is called the immigration potential. This al-
lows us to rewrite the equilibrium distribution as Ppa(s) =Z~!
exp(—KU(5)/@). So far, we have done nothing except rewrite the
equilibrium distribution, i.e., Eq. S2, in a different form that is
the typical convention in physics with the identification of tem-
perature T =a/K.

Each of the interaction coefficients, ¢, is treated as an inde-
pendent random variable with mean (¢;) =//S and finite vari-
ance <El-2j) - (é,y)z =4%/S. For example, the interaction coef-
ficients could be randomly drawn from a Gamma distribution as
in the LV simulations presented in the main text. Note, however,
that the precise form of the distribution does not matter for the
random energy model calculation. Each of the interaction co-
efficients in the energy is a random variable and, as a result, the
energy itself is also a random variable. In fact, because the en-
ergy is a sum of many independent and identically distributed
random variables with finite variances, we know that it must be
approximately normally distributed according to the central limit
theorem. Let M =3 s5; be the number of species present in the
community. Because we are interested in the limit where S is
large, we keep only terms O(S). The moments of Eq. S3 are

. 1_M>
(U) = ~(A+ )M+~ [S4]
and
2
(U¥) - (U)? :%52]% [S5]

It is helpful to simplify our notation by introducing related quan-
tities that do not scale with the number of species, S. These
“intensive” quantities are

m="s [S6]
u(m):@:—([\+l)m+%ﬂm2 [S7]
u'(m) =j—::l——([\+ 1) +jim
PG

Here, m = M/S is the “species saturation”; i.e., the fraction of species
in the regional species pool that are present in the community.

The energies are approximately normally distributed, so they
have a probability density function given by

2

28v(m)
The approximation in using the random energy model to derive
the phase diagram for our presence/absence model comes from
an assumption that all of the energies are independently distrib-
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uted. In reality, the correlation between the energies of two con-
figurations of the community, §(!) and §?), is a function of their
“overlap,” 5V .52, These correlations decay as the order of the
species interactions is increased; e.g., the correlation is smaller if
we include interactions between three species than if we consider
only pairwise interactions. Thus, our approximation is to neglect
these correlations even though we have included only pairwise
species interactions. This approximation has been used exten-
sively to model protein folding.

The entropy. The next step in the calculation is to compute the
average number of energy levels, (n(U)) in the region [U, U + dU].

This is given by
M=S
(n(U))= (A“Df(U!%l) [S9]

M=0

Now, we take the limit of a large number of species. When S is
large, the binomial coefficient becomes peaked around a maxi-
mum value and the sum is dominated by a single term. We take
the logarithm of Eq. S9, using Stirling’s approximation (e.g., In S! ~
S In §), drop all terms O(In S), and pull the S out front,

{ (u—u(m))z}
In(n(U))=8 max { —-mInm—(1-m)in(1—m) ————=",

O<m<1 2v(m)

[S10]

where u = U/S. The maximization over m results from the state-
ment that a single term dominates the sum in Eq. S9.

The Boltzmann formula for the microcanonical entropy, H(U)
tells us that H(U) = In (n(U)). Combining this with the thermo-
dynamic relation

oH

U [S11]

_1_
==

ST

allows us to determine the free energy. Specifically, we have

oH  (u—u(m)) 1
T v T [S12]

Solving for u gives u = u(m) — v(m)/T. Plugging this result into
Eq. S10, we obtain the entropy

H(m) _ 1v(m
and the free energy
%:u(m) —% L;”_F% (mInm+ (1-m)In(1-m)). [S14]

The typical species saturation m is found by minimizing the
free energy.

The freezing transition. The entropy in the random energy model (Eq.
$13) is a sum of two terms: —m Inm — (1 —m) In(1 — m) > 0 and
—1v(m) <0. Thus, there is a possibility that H(m)/S < 0 if the
variance in the energies (that is the variance in the species inter-
actions) is large enough: v(m) > 2(—m Inm — (1 — m) In(1 — m)).
However, the thermodynamic entropy is a nonnegative quantity,
so the line H(m)/S = 0 defines a “freezing” phase transition. The
phase boundary can be parameterized as a critical temperature:

[S15]

_ \/ v(m)
“N2(=mlnm-(1-m)in(1-m))’
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Above this critical temperature (which is stochasticity/carrying ca-
pacity) the presence/absence of the various species in the commu-
nity fluctuates randomly. Below this critical temperature the
presence/absence of the various species in the community freezes
into a particular configuration determined by the species traits.
Now, we derive the scaling relation presented in the main text
from Eq. S15.

Scaling Relation for the Phase Boundary. A simple scaling argument
captures the main features of the freezing phase boundary. Before
proceeding, it is useful to find a simple scaling for the magne-
tization (species saturation) m. Differentiating Eq. S14 with re-
spect to m and setting the equation equal to zero yields

1 11 11
m=> <1+tanh(—2 U (m) +y Y (m))>

For large ji, we find that m ~ A/ji. We can combine this relation to
derive a scaling relation for the niche-to-neutral phase boundary.

To do so, note from Eq. S11 that we can define a critical
stochasticity

[S16]

On the other hand, because v(71) ~ 6> m* and —m logm — (1 — m)
log (1 — m) is order 1, Eq. S15 yields the scaling relation

T.~om.
Setting the two equations above equal to each other yields

@ GxA

K u
or, in words,

stochasticity immigration X interaction diversity
carrying capacity mean interaction strength

This result is illustrated in Fig. S2. In both numerical simulations
and analytic calculations, the niche phase is favored when the car-
rying capacity and interaction diversity are high. By contrast, the
neutral phase is favored at low carrying capacities, high stochastic-
ity, and low interaction diversity. These data illustrate that selection
dominates community assembly in the niche phase, whereas eco-
logical drift dominates community assembly in the statistically neu-
tral phase. Immigration shifts the phase boundary between the two
phases, with high rates of immigration increasing the size of the
niche phase relative to the neutral phase.

Freezing in Lotka-Volterra Communities. The Lotka—Volterra model
that we study in the main text (and below) is also a stochastic
model of population dynamics. It is important to be clear about
the effect that the freezing transition has on these dynamics. The
abundances of the species in the community always stochastically
fluctuate—even in the frozen (niche) phase. However, if the
fluctuations in the abundance of a species (x?) — (x;)* are much
smaller than its mean abundance (x;), then the presence/absence of
that species is essentially frozen. These effects are clear even when
comparing species abundance distributions across different levels of
stochasticity in a single-species LV model (Fig. S3), although
there are important differences between a community with many
species and a community with only one species.

In a diverse community with many species, the niche-to-neutral
transition coincides with increase in skewness of the marginal
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species abundance distribution as a result of the “unfreezing” of
the species presences/absences (Fig. S4). When the stochasticity
increases beyond a critical value, the marginal species abundance
distribution transitions from a distribution peaked around K to
one peaked at 0. As a result, the niche-to-neutral transition is
accompanied by a loss of biodiversity when the stabilizing se-
lective forces are dominated by stochastic effects.

Measuring Neutrality from Abundance Distributions

To test our hypothesis that communities can exhibit a sharp niche-
to-neutral phase transition, it is necessary to define an “order
parameter” that distinguishes the niche and neutral phases. By
convention, an order parameter is chosen so that it is zero in one
phase and greater than zero in the other. Recall that the dy-
namics in the neutral phase are dominated by stochasticity and
species abundance distributions in this phase are indistinguish-
able from those obtained from a neutral model with functionally
equivalent species. By contrast, the niche phase is dominated
by interactions and species abundance distributions are peaked
around the equilibrium value they would have in the absence of
stochasticity.

We quantify statistical neutrality in our LV simulations by
measuring the distance between the steady-state distributions of
species abundances obtained from the LV model (PLy(¥)) and
purely neutral dynamics (Px(¥)). The measure of distance that
we use in the main text is called the Kullback-Leibler divergence,
KL(PLVnPN) = jﬁPLv(f)lnPLv(f)/PN(f) (12) One interpreta-
tion of KL(PLy||Pn) is defined as the amount of information
about the true multivariate species abundance distribution [i.e.,
Py (5)] that is lost by approximating the distribution with one
obtained from a neutral model [i.e., Pn(X¥)]. The KL divergence
ranges from zero to infinity, with KL(Ppy||Pn) = 0 implying that
the simulated distribution is identical to the distribution ob-
tained under the assumption of neutrality. We study the average
of the KL divergence over many random realizations of the species
interactions, i.e., (KL(PLy||Pn)). We expect (KL(PLy||Pn)) ~ 0 in
the neutral phase, whereas (KL(PLy||Px)) > 0 in the niche phase.

The KL divergence is not a true distance metric because it is
asymmetric and does not satisfy the triangle inequality. There are
many alternative measures of discrepancy between probability
distributions. One example is the Jensen—Shannon divergence
(JSD) given by (13)

1 1
JSD(PLV7PN)=§ (KL(PLV|§(PLV +PN))

+KL(PN||§<PW+PN>)>.

The JSD is symmetric and bounded by 0 < JSD(Pyy, Pn) <1, and
although it does not directly satisfy the triangle inequality, its square
root (1/JSD(PLy, Px)) does (14). To demonstrate that our results
are not very sensitive to our choice of metric, Fig. S5 illustrates the
phase diagram and the sharpness of the niche-neutral transition,
using JSD(PL\/, PN) instead of KL(PL\/HPN)

Discussion on Unequal Immigration Rates and Carrying
Capacities

In the main text and in our presence/absence model calculations,
we have assumed that all of the species in the community have
equal immigration rates and carrying capacities so that species
interactions are the only source of variation. The assumption of
equal immigration rates is equivalent to assuming that all species
are equally abundant in the regional species pool. Of course, this
is not generally the case; for example, Hubbell’s neutral model
results in a regional species pool with abundances that are dis-
tributed according to a log-series distribution (15, 16). Additional
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simulations discussed below demonstrate that small deviations
from the assumption of equal immigration rates and carrying
capacities do not affect our main conclusions (Fig. S7). However,
it is important to extend our results to apply in the more general
case. In this section, we provide a brief sketch of how our results
can be generalized, but an extensive treatment of the subject is
left for future work.

The order parameter that we proposed for measuring neu-
trality based on multivariate species abundance distributions, i.e.,
KL(PLy||Px) = [ dXPry(¥)In PLy(X)/Pn(X), is applicable regard-
less of parameters of the model. In principle, one could explicitly
calculate Px(¥) from a specific neutral model (15-18). However,
because the parameters of the Lotka—Volterra system and neu-
tral models are different, it is not entirely clear to which neutral
distribution the comparison should be made. One potential option
for quantifying statistical neutrality in communities with unequal
immigration rates is to use the fact that, in a neutral model, the
Pearson correlation coefficient between the abundances of spe-
cies i and j is equal to the correlation coefficient between the
abundances of species k and / regardless of the immigration rates.
Thus, a distribution with equal correlation coefficients can stand
in as a proxy for measuring statistical neutrality.

Alternatively, we can consider the effects of unequal immigra-
tion rates or carrying capacities on the phase diagram of species
presence/absence. In general, the stochastic process describing the
dynamics of the presence/absence of the species in a community in
which the species have unequal immigration rates (or carrying
capacities) will not satisfy detailed balance and, thus, never reaches
equilibrium. Nevertheless, we can typically assume that there is a
steady-state distribution Ppa (s’) defined as

PPA(S“) = ;lir?oPPA(i I).

In general, we can expand the logarithm of the steady-state dis-
tribution in terms of its moments as

In PPA (3) =InZ+ Z his; + ZJL']'S[SI‘ + ZJiij,*SjSk + .
i ij ijk

Thus, we can define something like an “energy” given by

U(E') = Zh[s,- + Zfijsisj + ZL’ijiSjsk +
i ij

ijk

and proceed with a calculation analogous to the random energy
model. To do so, we have only to relate the means and variances
(and potentially covariances) of the /s and Js to the distributions
of 4;, K;, and ¢; and to w. This is a difficult problem to solve
exactly, but we can conjecture on the general behavior. For ex-
ample, we expect that the mean of # monotonically increases
with the mean immigration rate and the mean carrying capaci-
ties, but monotonically decreases with increasing w. Likewise,
the variance of 4 should monotonically increase with the vari-
ance in the immigration rates and the variance in the carrying
capacities, but should decrease monotonically with increasing w.
Relations of this form provide a general ansatz for studying
complex communities and can be verified numerically. This is
an important avenue for future work.

Additional Lotka-Volterra Simulations

The qualitative conclusions of our paper hold for a diverse choice
of distributions for the LV interaction coefficients. In this section,
we present simulations of the LV system (Eq. S17) in which the
parameters (K;, 4;, and c;) are quenched random variables drawn
from various distributions.
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Low-Rank Interaction Matrix. Low-rank approximations are often
used for inferring matrices because they are less sensitive to noise
and overfitting than their full-rank counterparts. Here, we consider
a low-rank interaction matrix c; = S_lg,gj, where the g; are in-
dependent, Beta-distributed random variables on the interval (0, 1)
with mean (g;) = u and variance (g2) — (g)* =pu(1 —,u)/(zl +v).
With this parameterization (c;) = $~'4” and (c2) — (cy)* ~ S~
24 (1—u)/(1+v). Note that the interaction coefficients (c;) are
not independent as in the main text, but are actually correlated.
The phase diagrams, as a function of y, obtained from LV sim-
ulations and PA calculations with the low-rank interaction matrix
are shown in Fig. S6.

A similar phase diagram is obtained even if we perturb 4, K;,
and c¢;; with multiplicative noise drawn from N (1, ¢). (Fig. S7). In
this case, the interaction matrix is not symmetric and not nec-
essarily strictly competitive. Moreover, the immigration rates
and carrying capacities are no longer equal; that is, 4; # 4; and
K; £ K;.

Exponentially Distributed Interaction Coefficients. In Fig. S8, we
present simulations with constant carrying capacity K; = K,
constant immigration rate J; = 4, and exponentially distributed
interaction coefficients Sc; ~ EXPO(o). The interaction co-
efficients have mean (Sc;) = o, variance (Sc;) — (Scj)? =%, and
probability density function

1 /o
f(Sey)=e Sl

Pareto-Distributed Interaction Coefficients. In Fig. S9, we present
simulations with constant carrying capacity K; = K, constant
immigration rate 4; = A, and Pareto-distributed interaction co-
efficients Sc; ~ PARETO(o). The interaction coefficients have
mean (Scj) ~o/(1+0—0%/2), variance (Sc;)— (Scj)* ~ 62, and
probability density function

24067 ~0/2
(1 +SCij)3+o’l—G/2'

f(Seq) =
We require o <+/2 for this distribution to have a finite second
moment.

Island Biogeography

The qualitative features of the equilibrium behavior of a com-
munity are described by its position on the phase diagram just as
the state of water can be characterized as a solid, liquid, or gas,
depending on pressure and temperature. The ecological con-
sequences of the niche-to-neutral transition can be illustrated by
comparing communities that correspond to different regions of
the phase diagram or by the studying how the characteristics of a
community change in response to a disturbance that moves the
community from one phase to another.

According to the theory of island biogeography, the rate of
immigration to an island decreases with its distance from the
source population such that A ~ —distance (19). Therefore, a
chain of islands at different distances from the mainland traces a
path along the immigration axis of the phase diagram (Fig.
S104). The percentage of species from the source population
that inhabit an island, its “saturation” 100x ) ;s;/S, decreases
with the distance of the island from the mainland. As shown in
Fig. S10 B and C, our model can reproduce the qualitative trend
in saturation as a function of distance famously observed for
islands off the coast of New Guinea (19). In addition, our model
predicts that there is a distance that defines a sharp niche-to-
neutral transition.
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Methods Used in Numerical Simulations

We simulated Hubbell’s neutral model with a local community of
J individuals connected to an infinitely large metacommunity
containing S = 50 equally abundant species (15). In each time
step, with probability 4, an individual randomly drawn from the
metacommunity replaced a randomly chosen individual in the
local community or, with probability 1 — 4, one randomly chosen
individual in the local community replaced another randomly
chosen individual in the local community. The simulations were
run for 5 x 107 steps. Ten simulations were run for each set of
parameters, and the results were averaged.

We studied well-mixed, competitive communities described by
a system of stochastic LV equations given by

dx;(t
dg )=zi +x; (K,— —x - Zc,-,x,-) + (). [S17]

J#

LV simulations with § = 50 species were performed over the
parameter ranges specified in the relevant figure legends. The
system of equations (Eq. S17) was forward integrated using
the Milstein method, as

xi(t+6t) =x;(t) + 26t +x;(t) (Ki —x(0) = ey (t)) st

J#
+ax (1) oW +% <(5W)2 - &),

where 6W ~+/8tN'(0,1), and N'(0, 1) denotes a standard nor-
mally distributed random variable. In each case, the competition
coefficients were sampled randomly, and then the stochastic
Lotka—Volterra equations (Eq. S17) were forward integrated for
5 x 107 steps of size 8 = 0.003, using the Milstein method (20).
Ten simulations were run for each set of parameters, and the
results were averaged.
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Quantifying Statistical Neutrality. The degree of statistical
neutrality, KL(PLy||Pn), was measured using Gaussian ap-
proximations for Pry(¥) and Pn(¥). The mean abundance of
species i was calculated from a simulation of length , using
(x;) =7713°1=0 x;(¢), and the covariance between species i and j
was Cj=7"13"120 (x4 (£) — () (x;(£) = (x;)). The corresponding sta-
tistically neutral moment estimates were ¥=S"13"=3(x;), C; =
S5 Cy, and G =2871(S—1)7'Y, .;Cjj for the mean, variance,
and covariance, respectively. Thus, Pry(¥) [or Px(X)] is a multi-
variate Gaussian distribution with mean (x¥) (or X) and covariance
matrix C (or C). The KL divergence was calculated as

KLy Py =5 ((C7€) ~1k(C) (- () € (- )

- In}C}Jr +In}a+.
[S18]

Here, |M|, denotes the pseudodeterminant of the matrix M, M’
denotes its transpose, M* denotes its pseudoinverse, and rk(M)
denotes its rank. The pseudodeterminant and inverse were used
because, in Hubbell’s model, the constraint that the number of
individuals in the local community is fixed reduces the degrees of
freedom by 1. To calculate the degree of statistical neutrality for
a set of parameters for the competition coefficients, we averaged
the KL divergence over 10 independent draws of the interaction
coefficients (cj).
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i‘ Fig. S1. Equilibrium and detailed balance. (A) In a system that satisfies detailed balance, the flows of probability into and out of all of the states are equal so
that the system remains in equilibrium. (B) In a system without detailed balance, there is a nonzero flow between the different configurations of the com-
" munity, even when the probability distribution reaches a steady state.
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Fig. S2. Slices through the niche-neutral phase diagram demonstrate the scaling relation @ ~ K In As/u. (A-C) The KL divergence measured during LV sim-
ulations while varying interaction diversity (c), the mean interaction strength (i), and the immigration rate (2). (D-F) Phase diagrams calculated from the
presence/absence model while varying interaction diversity (), the mean interaction strength (i), and the immigration potential (A).
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Fig. S3. Species abundance distributions computed from a single-species LV model with different amounts of stochasticity.
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Fig. S4. Species abundance distributions from LV simulations. (A) Species abundance distributions with x = 1.0, 6 = 0.1, and 1 = 0.01. (B) Skewness of the
species abundance distribution increases beyond the critical stochasticity.
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Fisher and Mehta www.pnas.org/cgi/content/short/1405637111 8 of 10


www.pnas.org/cgi/content/short/1405637111

PNAS

0.0
0.0

0.2 0.4

Average Interaction (p)

0.0
0.0

0.6 0.8 1.0 0.2

0.4

0.6
Average Interaction ()

a b
T 03 o 03F
2 02t >02F
= =
EJ 0.1 g 0.1+
2 >
O o0 0 oo
1.0F

. 0.8F
g X L KL(Puv|Pn)
3 3 Statistically Neutral (nats)
= 2 06F 8.0
g 2 <8.0
= o <4.0
8 5 o4r <20
8 % <1.0
7 <0.5
@ 02

08 1.0

Fig. S6. Phase diagram with low-rank interactions. (A) Simulations of competitive LV communities with immigration rate 1 = 0.01 (/nset 1 = 0.1) display two
phases: a statistically neutral phase with (KL(P.y||Pn)) ~ 0 and a niche phase with (KL(P.y||Py)) > 0. The critical stochasticity defining the phase boundary is
approximately proportional to interaction diversity (s). (B) The phase diagram calculated from the PA model with high (A=1.5; solid line) and low (A = 0.5;
dashed line) immigration potentials has a statistically neutral phase and a niche phase. The niche phase is largest for communities with high interaction di-
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In all cases, the immigration rate was 1 = 0.1.
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Fig. S8. Phase diagram of competitive ecosystems with exponentially distributed interaction coefficients. The critical stochasticity scales with functional di-
versity () as predicted from theory, even though the interaction coefficients are drawn from a different distribution. The immigration rate was 4 = 0.1.
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Fig. $10. Spatial variation in immigration and island biogeography. (A) Islands at different distances from the mainland are located in different regions of the
phase diagram because the immigration potential (A) decreases with distance from the source population. (B) The percentage of species inhabiting an island
(its saturation) decreases with distance (—f\) from the source population in the PA model. The PA model calculations are for z=0.5, =0.5, and &)/k=0.3. (@]
Similarly, species saturation decreases with distance from the source population in islands off the coast of New Guinea (19).
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