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I. DETAILS OF OUR MATHEMATICAL MODEL

We begin by considering a more mechanistic, biologically plausible model of Treg-mediated adaptive immunity. As
in the main text, we will always use the convention that T cells to refer to non-regulatory T cells (i.e. conventional
T cells). The basic elements of our model are as follows:

A. Assumptions and basic dynamics of the model

• λi are clone sizes of “conventional” T cells (specifically, CD25−CD4+ helper T cells).

• wα are clone sizes of Tregs.

• vx is the abundance of antigen-presenting cells (APC’s) displaying antigen x. In general, x can represent any
antigen displayed by a class II MHC, including neoantigens, but in this work we focus on the scenario where all
displayed antigens are self-peptides.

• ILx is the average local concentration of interleukin 2 (IL-2) in the vicinity of APC’s displaying antigen x.

• pcix (“cross-reactivity function”) is the probability that a conventional T cell from clone i that encounters an
APC displaying antigen x will bind and activate. The cross-reactivity function is determined by the binding
affinity ∆Gix between the T cell receptor and the antigen, via some model of the binding and activation kinetics.
For example, a simple two-state equilibrium model would give pcix = 1/(1+e−∆Gix/kBT ). In the present work, we
do not attempt to relate pcix to ∆Gix, but instead sample pcix directly from one of three probability distributions
described in Section IV below.

• prαx is the probability that a Treg from clone α that encounters an APC displaying antigen x will bind and
activate. See above for explanation of relationship to binding affinity.

• IL-2 stimulates proliferation of both Tregs and normal T cells, with the growth rate some saturating functions
gr(ILx), gc(ILx) of the local IL-2 concentration ILx.

• T cells deplete IL-2 at a rate proportional to the level of growth stimulation, with constants of proportionality
ε−1
c and ε−1

r (notation comes from analogy with the efficiency of resource conversion into biomass).

• Activated T cells produce IL-2 at rate a.

• Activated Tregs directly suppress growth of nearby activated T cells, with each Treg cell decreasing the growth
rate of T cells in its vicinity by an amount b.

• Tregs only suppress conventional T cells bound to the same APC, as suggested by the experiments of [1].

• Each antigen x is displayed on a small fraction f � 1 of the total population of APC’s. This implies that a Treg
binding to antigen x suppresses a conventional T cell bound to a different antigen y only on a much smaller
fraction f2 � f of APC’s. Under these conditions, we can neglect cross-antigen suppression, and consider only
the suppression that occurs between Tregs and conventional T cells that are activated by the same antigen x.

• Both Tregs and conventional T cells circulate rapidly through the body, so that the total populations (including
both activated and unactivated cells) are evenly distributed over all APC’s.

• In the absence of extracellular IL-2, activated T cells proliferate at a basal rate ρ.

• Extracellular IL-2 is degraded by some external mechanisms, and has a lifetime τ in the absence of T cells.

These statements result in the following set of differential equations:

dλi
dt

= λi
∑
x

vxp
c
ix

[
ρ+ gc(ILx)− b

∑
α

wαp
r
αx

]
(S1)

dwα
dt

= wα
∑
x

vxp
r
αx [gr(ILx)−m] (S2)

dILx
dt

= a
∑
i

λip
c
ix − ε−1

c

∑
i

λip
c
ixgc(ILx)− ε−1

r

∑
α

wαp
r
αxgr(ILx)− τ−1ILx. (S3)
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B. Considering limit of fast interleukin dynamics yields minimal model in main text

To derive the minimal model in the main text, we assume that interleukin dynamics is fast compared to Treg and
T cell proliferation. In this case, we can make a quasi-adiabatic approximation by setting dILx/dt = 0. We further
assume that the responses of the T cells and Tregs to interleukin concentrations are far from saturation so that we can
approximate the growth rates using linear functions gc(ILx) = ccILx, gr(ILx) = crILx. With these two assumptions,
one gets that steady-state concentration of interleukins near antigen x takes the form

ILx =
a
∑
i λip

c
ix

τ−1 + ε−1
c cc

∑
i λip

c
ix + ε−1

r cr
∑
α wαp

r
αx

. (S4)

We will work in the regime where Tregs are the main sink for IL-2, and dominate the denominator of this expression.
This results in the following dynamics for the two populations:

dλi
dt

= λi
∑
x

vxp
c
ix

ρ+
ccεra

cr
∑
α wαp

r
αx

∑
j

λjpjx − b
∑
α

wαp
r
αx

 (S5)

dwα
dt

= wα
∑
x

vxp
r
αx

 εra∑
β wβp

r
βx

∑
j

λjp
c
jx −m

 . (S6)

If we additionally assume that cc/cr small (consistent with the assumption of Treg-dominated interleukin consump-
tion), we can ignore the positive feedback term in the first equation, yielding the system of equations:

dλi
dt

= λi
∑
x

vxp
c
ix

[
ρ− b

∑
α

wαp
r
αx

]

dwα
dt

= wα
∑
x

vxp
r
αx

 εra∑
β wβp

r
βx

∑
j

λjp
c
jx −m

 , (S7)

which are identical to the dynamics in the main text (where for notational simplicity we write εra simply as a).

C. Rewriting our dynamics in terms of overlap kernels

We now describe the approximation mentioned in the main text that is required to rewrite the above dynamics in
terms of overlap kernels. As stated in the main text, the overlap kernels are defined by (see Fig. S1):

φαβ =
∑
x

vxp
r
αxp

r
βx

φiα =
∑
x

vxp
r
αxp

c
ix

ri =
∑
x

pcixvx. (S8)

Rearranging Eq. S7 yields a set of equations where the cross-reactivity function and antigen concentrations almost
always appear within an overlap expression:

dλi
dt

= λi

(∑
y

vyp
c
iy

)[
ρ− b

∑
α,x vxp

r
αxp

c
ixwα∑

y vyp
c
iy

]
(S9)

dwα
dt

= wα

εra∑
j,x

vxp
r
αxp

c
jxλj∑

γ wγp
r
γx

−m
∑
β,x

vxp
r
αxp

r
βxwβ∑

γ wγp
r
γx

 . (S10)

The final step requires an uncontrolled approximation, whereby we ignore the correlations between the numerators
and denominators in the dynamics of wα, and sum over x separately for both sides of the fraction. This approximation
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FIG. S1. Defining the overlaps. The cross-reactivity functions prαx and pcix define a network of interactions, with edges
connecting Tregs and conventional T cells to antigens that can bind to their TCR, and edge weights representing the affinity of
the interaction. The strength of the indirect interaction between two T cells can be quantified in terms of the product of their
affinities for the same antigen, summed over all antigens and weighted by the antigen abundance. This procedure gives rise
to three “overlap kernels”: (A) φαβ for (competitive) effective interactions between Tregs, (B) φij for (mutualistic) effective
interactions between conventional T cells, and (C) φiα for effective interactions between conventional T cells and Tregs. Note
that φij only appears in the positive feedback term of the full dynamical model defined in the first section of the SI. This term
may be important at later stages of the immune response, when conventional T cell populations become large, but is neglected
in the present analysis of the initial proliferation dynamics.

is strictly justified only in the emergent tiling regime, where the denominator
∑
γ pγxwγ is the same (equal to ρ/b) for

all x. But in numerical simulations it appears to work well even outside of this regime, as well as during the transient
on the way to an emergent tiling fixed point (see Fig. S2).

Using this approximation along with the overlap definitions provided above, we obtain the dynamics stated in Eq.
4 of the main text:

dλi
dt

= λiri

[
ρ− br−1

i

∑
α

φiαwα

]

dwα
dt

=
wα∑
β wβ p̄β

εra∑
j

φjαλj −m
∑
β

φαβwβ

 (S11)

where p̄β ≡
∑
x p

r
βx.

II. TREG DYNAMICS AS OPTIMIZATION

We now show the dynamics above have a natural interpretation in terms of constrained optimization. To do so,
we make use of the duality between the steady states of the equations above and constrained optimization. For
completeness, we briefly explain this duality here. Please see our earlier papers [2, 3] for a detailed discussion.
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FIG. S2. Comparing full dynamics and overlap kernel approximation. (a) Sample trajectories of Treg abundances wα
and conventional T cell abundances λi using the approximate dynamics of Eq. S11. Cross-reactivity functions were generated
using the one-dimensional shape space described in the final section of the SI (“Details on numerical simulations”), with cross-
reactivity width σ = 8, and the other parameters set to Na = 100, Nc = 100, Nr = 50, ρ = a = b = m = 1. Initial abundances of
Tregs and conventional T cells were sampled from a lognormal distribution with logarithmic mean 0 and logarithmic standard
deviation σ = 2. (b) Trajectories of the full dynamics of Eq. S7, using the same cross-reactivity functions, parameter values
and initial conditions as the previous panel. (c) Comparison of exact and approximate dynamics from the previous two panels.
Each point represents the abundance of a single Treg or conventional T cell lineage at a single time point in the two simulations.
(d) Histogram of final Treg abundances in the simulation of the full dynamics from panel b. Note that the horizontal axis is
the base-10 logarithm of the abundance.

Notice that the steady states of Eq. S13 satisfy the following equations

0 = λi

[
ρ− br−1

i

∑
α

φiαwα

]

0 =

εra∑
j

λjφjα −m
∑
β

wβφαβ

 . (S12)
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Let us define λ̃i = εrari
mb λi. Then we can rewrite the equation above as

0 = λ̃i

[
ρ− br−1

i

∑
α

φiαwα

]

0 =

−∑
j

λ̃jbr
−1
j φjα −

∑
β

wβφαβ

 . (S13)

If we define the functions

gi({wα}) =

[
ρ− br−1

i

∑
α

φiαwα

]
(S14)

and

f({wα}) =
1

2

∑
β

wβφαβwα, (S15)

then the steady-state equations take the form

0 =
∑
j

λ̃j
∂gj({wα})

∂wα
− ∂f({wα})

∂wα

0 = λ̃jgj({wα}), (S16)

We recognize the equations above as precisely the Karush-Kuhn-Tucker (KKT) conditions for constrained opti-
mization with f({wα}) the function being optimized and the functions gj({wα}) specifying the constraints. Thus, the
steady-states of the equations above coincide with the solutions of the following constrained optimization problem:

argmin
w

1

2

∑
α,β

wαφαβwβ

subject to :

r−1
i

∑
α

φiαwα ≥
ρ

b
. (S17)

wα ≥ 0 (S18)

As an aside, this is very nearly single-class SVM, with training data r−1
i φiα. It finds a hyperplane that separates

all the data from the origin while maximizing the distance between the plane and the origin. It would be exactly a
single-class SVM if φαβ were the identity matrix and the wα ≥ 0 condition was not enforced. The wα ≥ 0 slightly
changes the geometrical interpretation of the 1-class SVM. Specifically, the requirement that wα ≥ 0 forces the simplex∑
α wαφα − p to have all positive coordinate intercepts. See [4] for more details on this interpretation.

III. EMERGENT TILING AS SOLUTION TO OPTIMIZATION PROBLEM

In the previous section, we stated the optimization problem in terms of the overlap kernels φiα and φαβ , which
integrate over the whole antigen space. The emergent tiling conditions in the main text, however, involve the antigen
space explicitly (Eq. 6). In this section, we exploit dual formulations of the optimization problem to highlight the
role of the antigen space and make the connection to the emergent tiling conditions more transparent.

Before proceeding, it will be useful to collect some of the basic definitions that we stated above through out the
text: Denote the dimension of the T-cell space Nc and the dimension of the Treg space Nr. Furthermore, denote the
“naive” dimension of antigen space by Na. This is essentially the number of x we sum over. However, if the matrix pcix
and prαx are structured so that there are lots of correlations between the different antigens x, than this naive counting
might be quite misleading, and we should really thing about the effective dimension of the antigen space N eff

a . If all
the x are uncorrelated, then of course N eff

a = Na.

Also, in this section we will drop the tilde from λ̃i (defined in the previous section), with the understanding that
the solutions obtained for λi must be multiplied by mb/(εrari) in order to give the actual T cell populations.
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We will now write the optimization in Eq. S18 in a slightly different way, and in the process gain more physical
insights about what we mean by these conditions. We begin by noting that plugging in the first line of Eq. S8 and
flipping signs results in the trivial rewriting

argmax
w

− 1

2

∑
x

vx

(∑
α

prαxwα

)2

subject to :

r−1
i

∑
α

φiαwα ≥
ρ

b
.

wα ≥ 0. (S19)

A. Reformulation 1

It is now straightforward to check that

argmax
w

− 1

2

∑
x

vx

(∑
α

prαxwα

)2

(S20)

is the same as the following max-min optimization

argmin
{sx}

argmax
w

∑
x

s2
x

2vx
−
∑
α,x

sxp
r
αxwα (S21)

To see this note that we can differentiate this with respect to sx and set this expression to zero to get that the
optimum over the new auxiliary variable is

sopt
x =

∑
α

prαxwαvx, (S22)

and plugging this into Eq. S21 gives the original optimization problem Eq. S19. Thus, we see that soptx just measures
the total coverage of antigen x by Tregs.

Another useful manipulation is to note that∑
α

φiαwα =
∑
x

pcix
∑
α

vxp
r
αxwα =

∑
x

sopt
x pcix (S23)

Combining this with the last line of Eq. S19 we can rewrite the constraint r−1
i

∑
α φiαwα ≥

ρ
b as

∑
x

pcixvx

(∑
α

prαxwα −
ρ

b

)
=
∑
x

pcix

(
sopt
x − vx

ρ

b

)
≥ 0 (S24)

Notice that one way of satisfying this constraint is by requiring sopt
x /vx =

∑
α p

r
αxwα = ρ

b . Here we see that the idea
is that we will make sure that each site x gets the same amount of coverage, set by ρ/b. This is precisely the emergent
tiling we are seeking.

This might not always be possible since in general the dimension of antigen space, Na may be larger than the
dimension of the T-cell space Nc and the dimension of the Treg space Nr. However, if the matrix prαx is structured
such that the number of Tregs is much larger than the effective dimension of antigen space N eff

a then this can be
inverted. More generally, the existence of a solution is governed by a Gardner like transition analogous to that of
perceptrons [5–7].

B. Reformulation 2: Langrange multipliers instead of inequality constraints

In this section, we will reformulate the problem again and get even more insight into how we can view the problem
in the antigen space. This will also lead to important clues about where some unexpected properties of this solution
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come from. Let us start with Eq. S26 and rewrite it in terms of pcix, prαx, and vx using expressions in Eq. S8:

argmax
{λi}

argmin
w

∑
x

vx
2

(∑
α

prαxwα

)2

−
∑
x

vx

(∑
i

λip
c
ix

)(∑
α

pxαwα

)
+
∑
i

λi ri
ρ

b
(S25)

subject to :λi ≥ 0, wα ≥ 0 (S26)

Let us focus on the quantity we are optimizing. Notice that by completing the square and changing sign we can
rewrite this as

vx
2

[(∑
α

prαxwα

)
−

(∑
i

λip
c
ix

)]2

− vx
2

(∑
i

λip
c
ix

)2

(S27)

Let us introduce two new auxiliary variables Ax and Bx that will couple to each of these square terms. Then notice
the expression above can be written as

vx
2

[(∑
α

prαxwα

)
−

(∑
i

λip
c
ix

)]2

− vx
2

(∑
i

λip
c
ix

)2

= argmax
{Ax}

−A2
x

2vx
−Ax

[(∑
α

prαxwα

)
−

(∑
i

λip
c
ix

)]
− vx

2

(∑
i

λip
c
ix

)2

argmax
{Ax}

argmin
{Bx}

−A2
x

2vx
−Ax

(∑
α

prαxwα −
∑
i

λip
c
ix

)
+
B2
x

2vx
−Bx

∑
i

λip
c
ix (S28)

With all these manipulations we can rewrite the original optimization problem as

argmax
{Ax}

argmin
{Bx}

argmax
{λi}

argmin
{wα}

∑
x

[
−A2

x

2vx
−Ax

(∑
α

prαxwα −
∑
i

λip
c
ix

)
+
B2
x

2vx
−Bx

∑
i

λip
c
ix

]
+
∑
i

λi ri
ρ

b

subject to :λi ≥ 0, wα ≥ 0 (S29)

It doesn’t look like we have done much right now. But one nice thing about this new optimization function is that it
is linear in the wα and λi. We can then take derivatives with respect to all four quantities to get a set of optimization
equations. Taking the derivative with respect to Bx yields

Bopt
x =

∑
i

vxp
c
ixλ

opt
i . (S30)

In other words, Bopt
x just measures the coverage of antigen site x by all conventional T cells. Taking the derivative

with respect to Ax gives

Aopt
x =

∑
i

vxp
c
ixλ

opt
i −

∑
α

vxpxαw
opt
α

= Bopt
x −

∑
α

vxpxαw
opt
α (S31)

This equation say that Aopt
x is just the difference between the Tcell and Treg coverages at antigen site x. Taking the

derivative with respect to wα yields ∑
x

pxαA
opt
x = 0. (S32)

To understand the meaning of this equation, it is useful to combine this with Eq. S31 and use Eq. S8 to rewrite this
as ∑

i

φiαλ
opt
i −

∑
β

φαβw
opt
β = 0, (S33)
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which is simply the statement that the growth rate of Treg α must be zero. Finally, taking the derivative with respect
to λi gives the equation ∑

x

(Bopt
x −Ax)pcix = ri

ρ

b
. (S34)

Plugging in Eq. S31 and using Eq. S8 it is easy to see that this equation just states that the Tcell growth rates
should be zero.

C. Ansatz for solution to optimization problem

Thus, far we haven’t gained much. But we will focus on what particularly interesting set of potential solutions to
this problem. If the number of antigens Na is very large compared to the number of T cells Ni, then we can in general
easily find solutions to

∑
xB

opt
x pcix = ri

ρ
b . However, we will make an even stronger ansatz. Notice that ri =

∑
x p

c
ixvx

so that the following ansatz is a solution to Eq. S34

Bopt
x = vx

ρ

b
Ax = 0. (S35)

In order for these to be good solutions, from Eq. S31 and Eq. S30 we must have that there exist solutions for wα and
λi satisfying the following set of equations. ∑

α

prαxw
opt
α =

ρ

b∑
j

pjxλ
opt
j =

ρ

b
. (S36)

In general, these equations may not be solvable since the naive number of antigens Na could be larger than the
number of T cells, Nc, or number of Tregs Nr. But as long as the “effective” dimensionality of the antigen space
(accounting for correlations between antigen binding affinities) satisfies Neff

a � Nc, Nr, then we should be able to
find such a solution. In fact, such a criteria has recently been derived in the statistical physics literature [7]. When the
cross-reactivities are i.i.d, in the thermodynamic limit where Na, Nr, Nc � 1, there is a phase transition between a
regime where such a solution exists and does not depending on the ratios of Nr/Na and Nc/Na. This phase transition
corresponds exactly to the Gardner solution to the perceptron problem [5–7].

D. Relation to Gardner Transition in Perceptrons

Here, we give a brief overview of the Gardner transition in perceptrons and discuss the relationship to the problem at
hand (see books by Nishimore and Engel for details about perceptrons and statistical learning) [6, 8]. The perceptron
problem is concerned with “storing” P boolean patterns ξu, with each pattern µ consisting of N input bits Sµi = ±1
for 1 ≤ i ≤ N . Each pattern is assigned a value Rµ = ±1 according to the rule Rµ = sgn(

∑
i JiS

µ
i ). A natural

question one can ask is what is the maximum number of patterns such a function can classify correctly, where we are
allowed to choose the N parameters Ji,

It was found that if the patterns were chosen randomly, that the maximum number of patterns that any function
of this form could classify correctly was exactly equal to P = 2N . For P > 2N generically, there existed no choice of
J that will classify all P patterns correctly. This “phase transition” marks a boundary to the regime where there are
no solutions for the N variables Ji to the P equations

Rµ = sgn(
∑
i

Jiε
µ
i ). (S37)

If P < 2N , there exists a set of Ji that solve these equations. On the other hands, if P > 2N , there exists no solutions
to this problem

As can be clearly seen, this system of equations are isomorphic to the kinds considered in our immunological
problems with N playing the role of the Treg dimension, P the antigen dimension, and wopt

α playing the roles of
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FIG. S3. Simulation with rapidly oscillating vx. The full dynamics of Eq. (S7) were integrated with the antigen abundances
vx varying in time as vx = v0x sin2(ωt). The oscillation amplitudes v0x were sampled from a uniform distribution between 0 and
1, and the oscillation frequency was ω = 0.5. The other parameters and initial conditions sampling were identical to those of
Figure S2b above. Abundances of conventional T cells and Tregs are shown as a function of time, along with the time-varying
antigen abundances vx and the Treg coverage nonuniformity 〈δQ2

x〉.

Ji. Thus, if the Treg dimension is at least twice the antigen dimension, we will have solutions to the equations for
emergent tiling derived above. Since technically, we need to solve two such set of equations, we also need the diversity
of conventional Tcells to be at least twice that of the antigen dimension. However, we make the implicit, biologically
realistic assumption that the conventional Tcell diversity is always larger than the Treg diversity. This correspondence
between perceptrons and ecology was also noted in a replica calculation in [7].

E. Insensitivity to antigen concentrations

Such a solution if it exists has some amazing properties, namely the T cell and Treg growth rates are insensitive to
the antigen concentrations vx ensuring that the Tregs exhibit an emergent tiling over the T cells:

• It balances conventional T cell and Treg activity at every antigen site x independently since Ax = 0.

• The growth rates of the T cells and Tregs become insensitive to changes in the vx.

To see this latter point, notice that we can define “growth rates” for T cells gi and Tregs gα as

dλi
dt
≡ λigi =

1

b
λi

[
riρ−

∑
α

φiαwα

]
(S38)

dwα
dt
≡ wα∑

β wβ p̄β
gα =

wαb

ρ

εra∑
j

λjφjα −m
∑
β

wβφαβ

 . (S39)
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FIG. S4. Random sampling of cross-reactivity functions pcix and prαx. Representative samples from the three cross-
reactivity function ensembles described in SI Section IV are shown as heat maps. In all simulations, cross-reactivity functions
for conventional T cells and Tregs were drawn from the same distribution. (a) Bernoulli distribution, in which a randomly
chosen T cell and antigen have a probability p (here equal to 0.1) of interacting, and all interactions are assigned independently.
(b) One-dimensional shape space, where a given T cell can bind to antigens whose shape coordinate is within a tolerance σ (here
equal to 4) of a randomly assigned optimal shape. (c) High-dimensional shape space, where antigens and TCR’s are randomly
assigned coordinates in a shape space of specified dimension (here equal to 5), and the binding probability is determined by
the pairwise distances.

A straightforward calculations using the definitions above then yields:

∂gi
∂vx

=
∑
x

pcix

[vxρ
b

+Ax −Bx
]

= 0

∂gα
∂vx

=
∑
x

prαxAx = 0 (S40)

IV. DETAILS ON NUMERICAL SIMULATIONS

To generate Figure 3 of the main text, we generated random cross-reactivity functions according to two different
protocols, and then used the optimization formulation of the equilibrium conditions (Eqs. 5 of the main text) to effi-
ciently obtain equilibrium populations of Tregs and conventional T cells for each realization. Scripts for generating the
matrices, solving the optimization problem and plotting the results can be found in the accompanying github reposi-
tory https://github.com/Emergent-Behaviors-in-Biology/immune-svm. Optimization was performed using the
Python package CVXPY [9].

In the first protocol, the elements of prαx and pcix were sampled from Bernoulli distributions, with success probability
equal to 0.1, 0.2 or 0.3. 30 realizations were generated for 20 values of Nr ranging from 100 to 300. The other
parameters were Na = 100, Nc = 1, 000, ρ = m = a = b = cr = vx = 1.

In the second protocol, the elements of prαx and pcix were chosen in a correlated way, encoding a one-dimensional
“shape space.” Specifically, we generated a Gaussian cross-reactivity shape centered at the midpoint of the shape

https://github.com/Emergent-Behaviors-in-Biology/immune-svm
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FIG. S5. Emergent tiling transition in high-dimensional shape space. Same as Figure 3 of the main text, but with
the cross-reactivity functions prαx and pcix sampled using a five-dimensional shape space as illustrated in Figure S4 above and
described in SI Section IV. The effective antigen diversity was defined as the number of singular values of pαx exceeding a cutoff
threshold of ε = 10−5.

space, given by

px = e−(x−Na/2)2/2σ2

(S41)

for a given cross-reactivity width σ, and then shifted it by a random offset xα for each Treg and xi for each conventional
T cell. The shifts were performed with periodic boundary conditions, so that all Tregs and T cells still had the same
overall binding capacity. 10 realizations were generated for each of 100 values of σ, ranging from 10 to 100. For each
sampled cross-reactivity matrix prαx, we defined an effective number of distinguishable antigens N eff

a by counting the
number of singular values above an empirically determined numerical cutoff threshold of ε = 10−6. The horizontal
axis in the right-hand panels of Fig. 3 is given by Nr/N

eff
a . The true number of antigens was Na = 5, 000, and the

other parameters were Nc = 500, ρ = m = a = b = cr = vx = 1.
We also ran simulations with cross-reactivity functions generated in a higher-dimensional shape space. Following

[10], we assigned shape coordinates ax and ri (or rα for Tregs) in a space of dimension D to the antigens and TCR’s,
respectively. We then calculated the cross-reactivity functions as

pcix = e−
||ri−ax||2

2σ2 (S42)

prαx = e−
||rα−ax||2

2σ2 (S43)

where a small distance in shape space corresponds to a good fit between TCR and antigen, while larger distances
produce bad fits that do not bind. The parameter σ sets the radius of the region of shape space that is compatible
with a given TCR. We randomly sampled all the shape coordinates (ri, rα and ax) from unit normal distributions.
For the simulations shown in Figure S5, we sampled Nr = 100 Tregs, Nc = 100 conventional T cells and Na = 1000
antigens. We chose a shape space of dimension D = 5, following dimensionality estimates derived from analysis of
hemagglutination inhibition assays for influenza [11]. We varied the cross-reactivity width σ from 5 to 20 in order to
sweep the ratio of the Treg diversity to effective antigen diversity through the emergent tiling threshold.
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