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Bias-variance decomposition of overparameterized regression with random linear features
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In classical statistics, the bias-variance trade-off describes how varying a model’s complexity (e.g., number of
fit parameters) affects its ability to make accurate predictions. According to this trade-off, optimal performance
is achieved when a model is expressive enough to capture trends in the data, yet not so complex that it overfits
idiosyncratic features of the training data. Recently, it has become clear that this classic understanding of the bias
variance must be fundamentally revisited in light of the incredible predictive performance of overparameterized
models—models that avoid overfitting even when the number of fit parameters is large enough to perfectly fit
the training data. Here, we present results for one of the simplest examples of an overparameterized model:
regression with random linear features (i.e., a two-layer neural network with a linear activation function). Using
the zero-temperature cavity method, we derive analytic expressions for the training error, test error, bias, and
variance. We show that the linear random features model exhibits three phase transitions: two different transitions
to an interpolation regime where the training error is zero, along with an additional transition between regimes
with large bias and minimal bias. Using random matrix theory, we show how each transition arises due to small
nonzero eigenvalues in the Hessian matrix. Finally, we compare and contrast the phase diagram of the random
linear features model to the random nonlinear features model and ordinary regression, highlighting the additional
phase transitions that result from the use of linear basis functions.
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I. INTRODUCTION

One of the core concepts in modern statistics and super-
vised learning is the bias-variance decomposition. It states
that the test error, the predictive performance of the model on
new data, can be decomposed into three parts: bias, variance,
and noise [1–3]. The bias captures errors due to underfitting,
resulting from the inability of a statistical model to sufficiently
express statistical relationships present in the data distribution.
The variance, on the other hand, characterizes errors that
result from overfitting unrepresentative aspects of the training
data set that do not generalize (e.g., label noise). Finally, the
noise describes irreducible errors in a test data set due to
randomness in the data-generating process.

In classical statistics, the bias-variance trade-off suggests
that optimal predictive performance is achieved by utilizing
statistical models with intermediate model complexities, bal-
ancing errors due to bias and variance. While increasing a
model’s complexity (e.g., increasing the number of fit pa-
rameters) reduces bias, it comes at the price of increasing
variance. One of the most interesting and surprising empirical
results to emerge from deep learning over the last five years
is the realization that this basic intuition is fundamentally
incomplete; it does not apply to overparameterized models
where the number of fit parameters is large enough to perfectly
fit the training data (i.e., achieve zero error on the training data
set) [4].

While the classic bias-variance trade-off still holds in the
underparameterized regime (i.e., for models that have too few

fit parameters to achieve zero training error), once a model’s
complexity is increased past the interpolation threshold—
the point at which the training error goes to zero—the test
error once again decreases. The resulting combination of a
U-shaped test error in the underparameterized regime and the
subsequent decrease in test errors in the overparameterized
regime is now commonly referred to as a double-descent curve
[5,6]. This double-descent behavior seems to be a generic
property of all overparameterized supervised learning models
and, for this reason, has become a major area of research.

An important open question in the field is to understand
the double-descent phenomena in terms of classical ideas of
bias and variance. One fruitful approach has been to analyze
analytically tractable models that exhibit the double-descent
phenomena [7–35]. Among the most popular of these models
are linear regression (ridge regression without basis functions)
and the random nonlinear features model (a two-layer neural
network with an arbitrary nonlinear activation function where
the top layer is trained and parameters for the intermediate
layer are chosen to be random but fixed) [35]. Here, we build
upon this previous work by examining a random features
model for the special case of a linear activation function
(i.e., the random linear features model). Using the zero-
temperature cavity method, we derive analytic expressions for
the bias-variance decomposition and relate these results to the
eigenvalue spectrum of the Hessian matrix.

The training and test errors of the random linear features
have been computed analytically [8,9,15,28,34], with a sub-
set of these studies attempting to carry out bias-variance
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decompositions [9,28,34]. However, these studies use non-
standard definitions of bias and variance that deviate from the
traditional textbook definitions [1,2]. This choice of definition
can lead to qualitatively different and difficult to reconcile
results. For example, the authors of Ref. [9] found that the
bias diverges at the interpolation threshold, while the authors
of Ref. [28] find no such divergence (see Ref. [35] for an in-
depth discussion). For this reason, here we utilize the standard
definitions and carry out the bias-variance decomposition in a
manner consistent with traditional definitions of these quanti-
ties in the underparameterized regime, allowing us to identify
which properties stem from the model architecture versus
random sampling of the data. In addition, we use the zero-
temperature cavity method to provide an alternative derivation
of the spectrum of the Hessian matrix of the random linear
features model (i.e., the spectrum of a Wishart product matrix
calculated previously in Ref. [36]), allowing us to directly
relate the eigenvalues of the Hessian to the double-descent
phenomenon.

A. Summary of major results

We briefly summarize our major results:
(1) We derive analytic expressions for the test (generaliza-

tion) error, training error, bias, and variance for the random
linear features model with a nonlinear data distribution using
the zero-temperature cavity method.

(2) We find that the behavior of this model is characterized
by three distinct regimes: (i) an underparameterized regime
with finite training error and large bias, (ii) a second underpa-
rameterized regime with minimal, constant bias, and (iii) an
overparameterized, or interpolation, regime with zero training
error.

(3) We find that the three regimes are separated by three
phase transitions with two transitions to the interpolation
regime, each characterized by a divergence in the test error,
and one transition between the large bias and minimal bias
underparameterized regimes. Importantly, we find that the
variance, but not the bias, diverges at the phase transition to
the interpolation regime.

(4) We explain how each phase transition arises as a re-
sult of small nonzero eigenvalues in the Hessian matrix and
demonstrate how this phenomenon is captured by susceptibil-
ities.

(5) We explain how the presence of linear features leads
to an additional interpolation phase transition not present in
an analogous model with nonlinear activation functions. We
use random matrix theory to argue that the underlying reason
for this difference is that nonlinear basis functions implicitly
regularize small eigenvalues in the design matrix.

II. THEORETICAL SETUP

In this paper, we focus on the supervised learning task of
using relationships learned from a training data set, consisting
of labels and associated input features, to accurately predict
the labels of new data points from their input features. Here,
we closely follow the theoretical formalism previously de-
scribed in Ref. [35].

A. Data distribution (teacher model)

We consider data points (y, �x), each consisting of a contin-
uous label y paired with a set of Nf continuous input features
�x. We assume that the relationship between the input features
and labels (the data distribution or teacher model) can be
expressed as

y(�x) = y∗(�x; �β) + ε, (1)

where ε is the label noise. The unknown function y∗(�x; �β)
represents the true labels and depends on a set of Nf ground
truth parameters �β, characterizing the correlations between
the features and labels. Here, we restrict ourselves to a teacher
model of the form

y∗(�x; �β) = σβσX

〈 f ′〉 f

(
�x · �β
σX σβ

)
, (2)

where the function f is an arbitrary nonlinear function and

〈 f ′〉 = 1√
2π

∫ ∞
−∞ dhe− h2

2 f ′(h) is a normalization constant cho-
sen for convenience with prime notation used to indicate a
derivative. Note that Eq. (2) reduces to a linear teacher model
y∗(�x) = �x · �β when f (h) = h.

We draw the input features for each data point indepen-
dently and identically from a normal distribution with zero
mean and variance σ 2

X /Nf . We consider ground-truth param-
eters �β and label noise ε that are drawn independently from
normal distributions with zero mean and variances σ 2

β and σ 2
ε ,

respectively. Furthermore, we assume the labels are centered
so f has zero mean with respect to its argument.

B. Module architecture (student model)

We consider a student model of the form

ŷ(�x) = �z(�x) · ŵ, (3)

where ŵ is a vector of Np fit parameters. For the random linear
features model, the vector of hidden features �z(�x) takes the
form

�z(�x) = W T �x, (4)

where W is a random transformation matrix of size Nf × Np,
whose elements are drawn independently from a normal dis-
tribution with zero mean and variance σ 2

W /Np.

C. Fitting procedure

We train each model on a training data set consisting of M
data points, D = {(ya, �xa)}M

a=1. For convenience, we organize
the vectors of input features in the training set into an observa-
tion matrix X of size M × Nf and define the length-M vectors
of training labels �y, training label noise �ε, and label predic-
tions for the training set ŷ. We also organize the vectors of
hidden features evaluated on the input features of the training
set, {�z(�xa)}M

a=1, into the rows of a hidden feature matrix Z of
size M × Np.

Given a set of training data D, we solve for the optimal
values of the fit parameters ŵ by minimizing the standard
ridge regression loss function composed of the mean-squared
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label error with L2 regularization,

L(ŵ;D) = 1

2
||��y||2 + λ

2
||ŵ||2, (5)

where the notation || · || indicates an L2 norm, ��y = �y − ŷ is
the vector of residual label errors for the training set, and λ

is the regularization parameter. The exact solution for the fit
parameters resulting from this loss function are

ŵ = [λINp + ZT Z]−1ZT �y. (6)

We will often work in the ridgeless limit, where we take the
limit λ → 0. In this limit, we refer to the matrix ZT Z in the
above expression as the Hessian matrix.

D. Model evaluation

To evaluate a model’s prediction accuracy, we measure the
training and test (generalization) errors. We define the training
error as the mean squared residual label error of the training
data:

Etrain = 1

M
||��y||2. (7)

We define the interpolation threshold as the model complexity
(number of fit parameters Np) at which the training error
becomes exactly zero (in the ridgeless limit). Analogously, we
define the test error as the mean-squared error evaluated on
a test data set, D′ = {(y′

a, �x′
a)}M ′

a=1, composed of M ′ new data
points drawn independently from the same data distribution as
the training set,

Etest = 1

M ′ ||��y′||2, (8)

where ��y′ = �y′ − ŷ′ is a length-M ′ vector of residual label
errors between the vector of test labels �y′ and their predicted
values ŷ′. Furthermore, we define the ensemble-averaged
training and test errors, 〈Etrain〉 and 〈Etest〉, respectively, by
taking averages of the above definitions with respect to all
sources of randomness (e.g., X , �ε, �β, etc.).

E. Bias-variance decomposition

The bias-variance decomposition separates test errors into
components stemming from three distinct sources: bias, vari-

ance, and noise. Here, we utilize the standard definitions of
bias and variance [1,2],

Bias[ŷ(�x)] = ED[ŷ(�x)] − y∗(�x), (9)

Var[ŷ(�x)] = ED[ŷ2(�x)] − ED[ŷ(�x)]2
, (10)

where �x is an arbitrary test data point and subscript D denotes
the sampling average with respect to the training set (i.e., with
respect to the input features X and label noise �ε, but not the
ground-truth parameters �β).

To incorporate other sources of randomness (e.g., �β and
W ), we define the more general ensemble-averaged squared
bias and variance, respectively, as

〈Bias2[ŷ]〉 = E�β,W,�x[Bias[ŷ(�x)]2], (11)

〈Var[ŷ]〉 = E�β,W,�x[Var[ŷ(�x)]]. (12)

Using these definitions, we define the ensemble-averaged
bias-variance decomposition of the test error,

〈Etest〉 = 〈Bias2[ŷ]〉 + 〈Var[ŷ]〉 + σ 2
ε , (13)

which we utilize throughout this paper.

F. Derivation of closed-form solutions

Following the derivations in Ref. [35], we utilize the
zero-temperature cavity method to derive closed-form expres-
sions for the training error, test error, bias, and variance. In
this derivation, we work in the thermodynamic limit, where
Nf , M, Np → ∞, but their ratios α f = Nf /M and αp = Np/M
remain finite. Our results are exact in this limit. Furthermore,
we utilize the procedure described in Ref. [37] to reproduce
the closed-form solution for the eigenvalues spectrum of the
Hessian matrix for this model. We refer the reader to the
Appendix for further details on these calculations.

III. ANALYTIC EXPRESSIONS

We find that the closed-form solutions for the random lin-
ear features model are characterized by three distinct regimes,
each defined by which of the following three quantities is the
smallest: the number of input features Nf , the number of fit
parameters (hidden features) Np, or the size of the training set
M. In terms of α f = Nf /M and αp = Np/M, the expressions
for the ensemble-averaged training error, test error, bias, and
variance are

〈Etrain〉 =

⎧⎪⎪⎨
⎪⎪⎩

(
σ 2

ε + σ 2
δy∗

)
(1 − α f )

σ 2
βσ 2

X
(1−αp)(α f −αp)

α f
+ (

σ 2
ε + σ 2

δy∗
)
(1 − αp)

0

if Nf < Np, M

if Np < Nf , M

if M < Nf , Np,

(14)

〈Etest〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
σ 2

ε + σ 2
δy∗

)
1

(1−α f )

σ 2
βσ 2

X
(α f −αp)
α f (1−αp) + (

σ 2
ε + σ 2

δy∗
)

1
(1−αp)

σ 2
βσ 2

X
αp(α f −1)
α f (αp−1) + (

σ 2
ε + σ 2

δy∗
) (α f αp−1)

(α f −1)(αp−1)

if Nf < Np, M

if Np < Nf , M

if M < Nf , Np,

(15)
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FIG. 1. Random linear features model (two-layer linear neural network). Analytic solutions plotted as a function of αp = Np/M with fixed
α f = Nf /M for (a) less input features than training data points (α f = 1/2) and (b) more input features than training data points (α f = 4).
Shown are the ensemble-averaged training error (blue squares), test error (black circles), squared bias (green triangles), and variance (red
diamonds). Analytic solutions are indicated as dashed lines with numerical results shown as points. In (a), a black dashed vertical line marks
the boundary between the large bias and minimal bias underparameterized regimes at αp = α f , while in (b), a similar line marks the boundary
between the under- and overparameterized regimes at αp = 1. Analytic solutions as a function of αp and α f are also shown for the the ensemble-
averaged (c) training error, (d) test error, (e) squared bias, and (f) variance. Results are shown for a linear teacher model y(�x) = �x · �β + ε, a
signal-to-noise ratio of σ 2

β σ 2
X /σ 2

ε = 10, and have been scaled by the variance of the training set labels σ 2
y = σ 2

β σ 2
X + ε2. In each panel, black

dashed lines indicate boundaries between different regimes of the solutions depending on which is the smallest of the quantities M, Nf , or Np.
See Appendix for additional numerical details.

〈Bias2[ŷ]〉 =

⎧⎪⎪⎨
⎪⎪⎩

σ 2
δy∗

σ 2
βσ 2

X
(α f −αp)

α f
+ σ 2

δy∗

σ 2
βσ 2

X
αp(α f −1)2

α f (α f αp−1) + σ 2
δy∗

if Nf < Np, M

if Np < Nf , M

if M < Nf , Np,

(16)

〈Var[ŷ]〉 =

⎧⎪⎪⎨
⎪⎪⎩

(σ 2
ε + σ 2

δy∗ ) α f

(1−α f )

σ 2
βσ 2

X
αp(α f −αp)
α f (1−αp) + (σ 2

ε + σ 2
δy∗ ) αp

(1−αp)

σ 2
βσ 2

X
αp(α f −1)(α f −1+αp−1)

α f (αp−1)(α f αp−1) + (σ 2
ε + σ 2

δy∗ ) (α f −1+αp−1)
(α f −1)(αp−1)

if Nf < Np, M

if Np < Nf , M

if M < Nf , Np,

(17)

where we have taken the limit λ → 0 (with leading order
terms of order λ2 reported in the Appendix for quantities
reported here as zero). The quantity σ 2

δy∗ is the statistical
variance of the nonlinear components of the true labels, mea-
sured via their deviation from a linear teacher model, σ 2

δy∗ =
E�x[(y∗(�x) − �x · �β)2]. In the thermodynamic limit, we find that
this quantity evaluates to

σ 2
δy∗ = σ 2

βσ 2
X � f , � f = 〈 f 2〉 − 〈 f ′〉2

〈 f ′〉2 ,

〈 f 2〉 = 1√
2π

∫ ∞

−∞
dhe− 1

2 h2
f 2(h),

〈 f ′〉 = 1√
2π

∫ ∞

−∞
dhe− 1

2 h2
f ′(h). (18)

In Figs. 1(a) and 1(b), we plot the training error, test error,
bias, and variance as a function of αp = Np/M for fixed α f =
Nf /M for the two cases α f < 1 and α f > 1, respectively. To
gain a better grasp of the full set of solutions, we also plot all
quantities in Eqs. (14)–(17) as a function of both αp and α f

in Figs. 1(c)–1(f). All solutions are shown for a linear teacher
model y∗(�x) = �x · �β (σ 2

δy∗ = 0).
The three regimes we observe in the closed-form solutions

are separated by three distinct phase transitions. Examining
the training error in Fig. 1(c), we find that it goes to zero at
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two of the transitions, αp = 1 with α f � 1 and α f = 1 with
αp � 1, giving rise to an interpolation boundary. On one side
of this boundary, where αp < 1 or α f < 1 (there are less data
points M than fit parameters Np or input features Nf ), the
model is underparameterized, while beyond this boundary the
model is overparameterized and in the interpolation regime.
We note that the interpolation transition for this model is
markedly different from that of the random nonlinear features
model (nonlinear activation function) where the interpolation
threshold occurs at αp = 1 independently of α f (see Sec. V
and Ref. [35]).

We find that the test error and variance diverge along the
entire interpolation boundary, while the bias remains finite.
This is in contrast with previous studies which employed
nonstandard definitions of bias and variance and found that
both variance and bias diverge at the interpolation threshold
[9]. Examining Figs. 1(a) and 1(b), we find that the test error
(and similarly, the variance) exhibits very different behavior as
a function of αp, depending on whether α f < 1 (less input fea-
tures than training data points Nf < M) or α f > 1 (more input
features than training data points Nf > M). When α f > 1,
the test error diverges at αp = 1 and decreases monotonically
in the overparameterized regime. In contrast, when α f < 1,
the test error monotonically decreases to a small, constant
value at αp � α f . Although this model does not display the
full canonical double-descent behavior in either case, the test
error in the overparameterized regime is always at least as
small as—if not smaller than—that of the underparameterized
regime for fixed α f .

Examining the bias in Fig. 1(c) reveals that there is an
additional phase transition in the underparameterized regime
located at the boundary α f = αp for αp � 1 and α f � 1 (i.e.,
when the number of input features Nf equals the number of
hidden features Np, with both Nf and Np less than the number
of data points M). This transition divides the noninterpolation
solutions into two pieces. When αp < α f (less fit parame-
ters than input features Np < Nf ), the model exhibits a large
bias because there are not enough fit parameters (or hidden
features) to fully express the input features in the data [see
Eq. (16)]. In contrast, when αp > α f (more fit parameters than
input features Np > Nf ), the only contribution to the bias is a
small constant σ 2

δy∗ stemming from the nonlinear components
of the labels. For the special case of a linear teacher model
shown in the figures, the bias is identically zero in this regime.

Interestingly, we also observe that σ 2
δy∗ appears as an ad-

ditive component to the label noise σ 2
ε in the training error,

test error, and variance, indicating that the model interprets
the nonlinear components of the labels as effective noise [35].

IV. PHASE TRANSITIONS, SUSCEPTIBLITIES,
AND EIGENVALUE SPECTRA

In the previous section, we found that the analytic solu-
tions for the random linear features model are characterized
by three distinct regimes separated by three different phase
transitions. As a natural byproduct of our cavity derivations,
we find that each of these phase transitions is marked by a di-
verging susceptibility. In particular, setting the gradient of the
loss function in Eq. (5) equal to a small nonzero field �η, such
that ∂L/∂ŵ = �η, we define the susceptibility matrix ∂ŵ/∂�η.

This quantity measures the sensitivity of the fit parameters
to small perturbation in the gradient and can be shown to be
equivalent to the inverse Hessian of the loss function. Taking
the trace of this matrix, we define the scalar susceptibility

ν = 1

Np
Tr

∂ŵ
∂�η

∣∣∣∣
�η=0

= 1

Np
Tr[λINp + ZT Z]−1. (19)

In the small λ limit, we make the approximation
ν ≈ λ−1ν−1 + ν0. In exact matrix form, we find that the
two coefficients are

ν−1 = 1 − 1

Np
rank(ZT Z ), ν0 = 1

Np
Tr[ZT Z]+, (20)

where + denotes a Moore-Penrose pseudoinverse.
In Figs. 2(a) and 2(b), we plot the analytic closed-form ex-

pressions for these two quantities in the thermodynamic limit
as a function of α f and αp (see Appendix for expressions).
We find that the first coefficient ν−1 counts the fraction of
fit parameters that go beyond the minimum needed to attain
minimal training error. In contrast, the second coefficient ν0

diverges along each phase boundary. Based on the exact ma-
trix form of ν0 in Eqs. (20), we infer that these divergences
can be attributed to small eigenvalues in the Hessian matrix
ZT Z .

To illustrate this connection between the eigenvalues of
the Hessian and the susceptibility ν, we note that for this
problem, the inverse Hessian is equivalent to the Green’s
function and can be used to extract the eigenvalue spectrum
[37] (see Appendix for derivation). In Fig. 2(c), we show the
analytic solution for the minimum nonzero eigenvalue σ 2

min of
ZT Z . Consistent with ν0, we find that σ 2

min goes to zero along
each phase transition. In Figs. 2(i)–2(ix), we also plot the
eigenvalue distributions for the points indicated in Fig. 2(c).
While ν0 captures the distribution of nonzero eigenvalues,
ν−1 captures the weight of the delta function at zero in the
overparameterized and minimal bias regimes. In each regime
and along each phase boundary, these distributions are qual-
itatively similar to the Marchenko-Pastur distribution [38].
Along each phase transition, the gap in the distribution goes
to zero, while the gap is finite away from each boundary. The
presence of this eigenvalue gap was previously shown to be
the root cause of the decrease in variance in the overparame-
terized regime [35].

To understand the source of these small eigenvalue gaps,
we note that the types of random matrices we consider in this
paper typically exhibit infinitesimally small eigenvalues in the
thermodynamic limit if they contain an equal number of rows
and columns. This fact allows us to identify which matrix is
the root cause of each transition. Since Z is a product of X and
W , this phenomenon arises in two forms. First, Z can exhibit a
small eigenvalue if either X or W is square and the expression
of its input feature space is not limited by its product with
the other matrix (e.g., if X is square and Np � Nf = M or
W is square and M � Nf = Np). This behavior explains the
interpolation transition at α f = 1 which arises due to small
eigenvalues in X , but does not extend below αp = 1 when the
rank of W becomes too low to preserve every direction in the
space of input features encoded in X . Similarly, the minimal
bias transition at α f = αp occurs due to small eigenvalues in
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FIG. 2. Susceptibilities and eigenvalue spectra. (a), (b) Analytic solutions for the susceptibility ν which measures the sensitivity of the fit
parameters to small perturbations in the gradient. In the small λ limit, ν ≈ λ−1ν−1 + ν0. (a) The coefficient ν−1 counts the fraction of unutilized
fit parameters, or the fraction of parameters beyond that needed to attain minimal training error. (b) The coefficient ν0 diverges at each phase
transition when ZT Z has a small eigenvalue. (c) Analytic solution for the minimum nonzero eigenvalue σ 2

min of the Hessian matrix ZT Z . (i)–(ix)
Examples of the full eigenvalue spectrum are shown for each of the corresponding points in (c). See Appendix for additional simulation details.

W , disappearing above α f = 1 when the rank of X is too low
to fully express the input feature space of W . Second, Z can
exhibit a small eigenvalue if it is square and full rank, giving
rise to the transition at αp = 1, but only when α f � 1.

Interestingly, we observe that the test error only diverges at
the two phase transitions to the interpolation regime, but not
at the minimal bias transition, despite σ 2

min going to zero in all
three cases. This lack of divergence is explained by the fact
that the minimal bias transition arises due to small eigenvalues
in W , which is used to transform both the training data and the
test data. Since both data sets are transformed in the same way,
predictions by the model for the test set based on the training
set will not be limited by small eigenvalues in W , and the test
error will not diverge when W is square (Nf = Np).

Finally, we wish to emphasize that the two coefficients of ν

each capture a different aspect of learning. The first coefficient
ν−1 captures overparameterization, counting the fraction of fit
parameters in excess of that needed to achieve zero training

error. Meanwhile, ν0 characterizes phase transitions, diverging
at the interpolation threshold in concert with the variance and
at the minimal bias transition. We refer the reader to Ref.
[35] for a thorough discussion of the physical interpretations
of these susceptibilities for a general nonlinear model, along
with the other susceptibilities of note that appear in our deriva-
tions.

V. COMPARISON TO LINEAR REGRESSION AND THE
RANDOM NONLINEAR FEATURES MODEL

One of the more surprising results of our analysis is that the
phase diagram for the random linear features model is qual-
itatively different from the random nonlinear features model.
On other hand, we find that the random linear feature model
is qualitatively similar to ordinary ridgeless regression when
the number of hidden features matches the input features. To
better understand the similarities and differences, we have
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FIG. 3. Comparison of the random linear features model to linear regression (no basis functions) and the random nonlinear features model.
(a) The training error, test error, bias, and variance as a function of αp (or equivalently, α f ) for linear regression (no basis functions) and (b) the
same quantities for the random linear features model for the special case α f = αp. The training error, test error, bias, and variance as a function
of αp and α f for (c)–(f) the random nonlinear features model with ReLU activation, ϕ(h) = max(0, h), and (g)–(j) the random linear features
model. In all panels, black dashed lines indicate phase transitions. Results for linear regression and the random nonlinear features model are
reproduced from Ref. [35].

reproduced the phase diagrams for all three models in Fig. 3
(see Ref. [35] for a detailed analysis of ridge regression and
the random nonlinear features model).

First, we compare the random linear features model to lin-
ear regression in which the number of hidden features matches
the input features:

�z(�x) = �x. (21)

Figure 3(a) shows the training error, test error, bias, and vari-
ance for linear regression. Since linear regression lacks basis
functions, in Fig. 3(b), we plot the same quantities for the
random linear features model for the special case where the
number of input features equals the number of hidden features
(α f = αp).

We observe that along this cut of the phase diagram, the
random linear features model behaves qualitatively similar
to linear regression, with variance first increasing as one

approaches the interpolation threshold (αp = 1) and then de-
creasing monotonically beyond the threshold. Meanwhile,
the bias is zero below the interpolation threshold and then
increases once one crosses the interpolation threshold. As
discussed in detail in Ref. [35], the underlying reason for the
increase in bias for αp > 1 is that in this regime, the model
does not have enough training data points to sample the entire
input feature space. Therefore, any predictions made about
these unsampled directions represent implicit assumptions of
the model.

Next, we compare to the random nonlinear features model
in which the hidden features take the form

�z(�x) = 1

〈ϕ′〉
σW σX√

Np
ϕ

( √
Np

σW σX
W T �x

)
, (22)
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where ϕ is a nonlinear activation function that acts separately

on each element of its input and 〈ϕ′〉 = 1√
2π

∫ ∞
−∞ dhe− h2

2 ϕ′(h)
is a normalization constant. Figures 2(c)–2(f) show the train-
ing error, test error, bias, and variance for this model for the
case of ReLU activation, ϕ(h) = max(0, h), as a function of
both αp and α f , while Figs. 2(g)–2(j) depict the same for the
random linear features model.

We observe that while the interpolation transition bound-
ary at αp = 1 for α f � 1 remains the same, the addition of
a nonlinear activation function suppresses the interpolation
transition at α f = 1 for αp > 1, along with the transition to
a minimal bias regime at α f = αp for αp < 1. At the same
time, the interpolation transition at αp = 1 is extended to all
values of α f .

The two changes to the shape of the interpolation boundary
can be attributed to the behavior of small eigenvalues in the
Hessian. Upon the introduction of a nonlinear activation, the
interpolation transition at αp = 1 for α f < 1 arises due to the
creation of small eigenvalues in Z . The nonlinear transforma-
tion promotes Z to full rank when it is square (Np = M), even
if the product XW is not full rank. As a result, Z exhibits
small eigenvalues at this transition whether or not XW has
a small eigenvalue, translating to small eigenvalues in the
Hessian and a divergence in the test error. In contrast, our
random matrix theory analysis suggests that the presence of
a nonlinear activation function suppresses the transition at
α f = 1 with αp > 1 by serving as an implicit regularizer of
small eigenvalues in the Hessian (this behavior was previously
observed in Ref. [15]). In particular, the use of nonlinear basis
functions masks divergences arising from small eigenvalues
that arise when the design matrix X is square (Nf = M).

Finally, to account for the removal of the minimal bias
transition when α f = αp with αp < 1, we note that the train-
ing data is generated using a teacher model that depends
directly on the input features, while the nonlinear model first
applies a nonlinear transformation. This nonlinear basis masks
properties of the underlying input feature space like its di-
mension, introducing additional bias. Therefore, the bias does
not approach a minimal value at αp = α f , even if there are
in principle enough hidden features to fully encode the full
space of input features. Instead, we observe that the bias only
reaches a minimum in the limit αp → ∞ for fixed α f .

VI. CONCLUSIONS

A central question in machine learning is understanding
why complicated models with many more parameters than
training data points can still make accurate predictions. Here,
we have tackled this problem by analyzing one of the simplest
examples of nontrivial supervised learning: regression with
random linear features. Despite the simplicity of the model,
it exhibits remarkably rich behavior with multiple phase tran-
sitions.

We found that the phase diagram of the model has three
distinct phases: (i) an underparameterized regime with finite
training error and large bias, (ii) a second underparameterized
regime with minimal bias, and (iii) an overparameterized, or
interpolation, regime with zero training error. We also showed
that at the transition to the interpolation regime, the variance

but not the bias diverges. For this reason, while the classical
bias-variance trade-off captures much of the behavior of the
model in the underparameterized regime, it fails to describe
the interpolation regime where the variance decreases with
increasing model complexity.

We showed that the divergence of the variance is due to the
presence of small eigenvalues in the Hessian matrix. This is
consistent with the general picture advocated in Refs. [8,35]
that large test errors are associated with the closing of a
spectral gap near the interpolation transition. On both sides
of the transition, when the spectral gap is large, it is easy to
distinguish noise from poorly sampled directions in feature
space. However, when the gap closes this is no longer possi-
ble, accounting for the large variance.

Our paper suggests that many of the fundamental features
of double descent can be understood even when considering
simple convex models. An important question is how to gener-
alize the intuitions developed here to more complex settings.
In contrast with the random linear features model, modern
deep-learning methods are often nonconvex and attempt to
learn meaningful features directly from data. In the future, it
will be interesting to see how this changes the understanding
of the bias-variance trade-off developed here [39–41].
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APPENDIX A: CAVITY DERIVATIONS

In this Appendix, we provide detailed derivations of all
closed-form solutions for the random linear features model.
These calculations follow the general procedure laid out in
Ref. [35].

1. Notational conventions

(a) We define M as the number of points in the training
data set, Nf as the number of input features, and Np as the
number of fit parameters or hidden features. We define the
ratios α f = Nf /M and αp = Np/M.

(b) Unless otherwise specified, the type of symbol used
for an index label (e.g., �ya) or as a summation index (e.g.,∑

a) implies its range. The symbols a, b, or c imply ranges
over the training data points from 1 to M, the symbols j, k,
or l imply ranges over the input features from 1 to Nf , and
the symbols J , K , or L imply ranges over the fit parameters or
hidden features from 1 to Np.

(c) The notations Ex[·], Varx[·] and Covx[·, ·] represent the
mean, variance, and covariance, respectively, with respect to
one or more random variables x. A lack of subscript implies
averages taken with respect to the total ensemble distribution,
i.e., taken over all possible sources of randomness. A subscript
0 implies averages taken with respect to random variables
containing one or more zero-valued indices (e.g., Xa0, X0 j ,
W0J , or Wj0).
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2. Nonlinear label decomposition

To calculate the statistical properties of the nonlinear
teacher model, we first decompose the labels into their linear
and nonlinear components as follows:

y(�x) = �x · �β + δy∗
NL(�x) + ε, �β ≡ −1

�x Cov�x[�x, y∗(�x)].
(A1)

The first term in this decomposition captures the linear cor-
relations between the labels y∗ and the input features �x via
the ground-truth parameters �β. The second term, defined as
δy∗

NL(�x) ≡ y∗(�x) − �x · �β, represents the remaining nonlinear
component of the labels. By defining the ground-truth pa-
rameters as shown above, where �x = Cov�x[�x, �xT ] is the
covariance matrix of the input features (assumed to be in-
vertible), it can be proven that the linear and nonlinear
components are statistically independent. Using the defini-
tion of the nonlinear component of the labels δy∗

NL(�x), it is
straightforward to show that their mean and covariance in the
thermodynamic limit evaluate to

E[δy∗
NL(�xa)] = 0, Cov[δy∗

NL(�xa), δy∗
NL(�xb)] = σ 2

δy∗δab,

(A2)
where �xa and �xb are to independent data points and we have
defined the variance σ 2

δy∗ of the nonlinear components as

σ 2
δy∗ = σ 2

βσ 2
X � f , � f = 〈 f 2〉 − 〈 f ′〉2

〈 f ′〉2 ,

〈 f 2〉 = 1√
2π

∫ ∞

−∞
dhe− h2

2 f 2(h),

〈 f ′〉 = 1√
2π

∫ ∞

−∞
dhe− h2

2 f ′(h).

(A3)

The decomposition in Eqs. (A1) and its statistical properties
are derived in detail in Ref. [35].

3. General solutions

Next, we derive some useful formulas for the ensemble-
averaged quantities we wish to calculate. First, we express the
ensemble-averaged training error as

〈Etrain〉 = 〈�y2〉, 〈�y2〉 = E

[
1

M

∑
b

�y2
b

]
, (A4)

where we have defined 〈�y2〉 as the mean-squared label error
for the training data.

Next, we evaluate the average over the test data set in the
ensemble average of the test error:

〈Etest〉 = σ 2
X 〈�β2〉 + σ 2

δy∗ + σ 2
ε . (A5)

To obtain this expression, we have defined the set of ground-
truth parameters estimated by the model as β̂ ≡ W ŵ and
the corresponding residual parameter error ��β ≡ �β − β̂. The
quantity 〈�β2〉 is then the mean-squared residual parameter
error:

〈�β2〉 = E

[
1

Nf

∑
k

�β2
k

]
. (A6)

To correctly calculate the ensemble average of the squared
bias, we make use of the following trick: we reinterpret the

square of the average over D as two separate averages over
uncorrelated training data sets:

Bias2[ŷ(�x)] = (ED[ŷ(�x)] − y∗(�x))2

= ED1,D2 [(y(�x) − ŷ1(�x))(y(�x) − ŷ2(�x))].
(A7)

Now, instead of a single regression problem trained on a single
data set D, we consider two separate regression problems each
trained independently on different training sets, D1 and D2,
drawn from the same distribution with the same ground truth
parameters �β. These regression problems will also share all
other random variables including the test data point (y, �x), W ,
etc.

Next, we apply the ensemble average and explicitly aver-
age over test data point �x to obtain

〈Bias2[ŷ(�x)]〉 = σ 2
X 〈�β1�β2〉,

〈�β1�β2〉 = E

[
1

Nf

∑
k

�β1,k�2,k

]
,

(A8)

where we have defined 〈�β1�β2〉 as the covariance of the
residual label errors between the two models trained on data
sets D1 and D2.

Finally, we find an expression for the variance by subtract-
ing the bias and noise (σ 2

ε ) from the test error:

〈Var[ŷ(�x)]〉 = σ 2
X (〈�β2〉 − 〈�β1�β2〉). (A9)

Based on these expressions, we find that the training error,
test error, bias, and variance depend on three key ensemble-
averaged quantities: 〈�y2〉, 〈�β2〉, and 〈�β1�β2〉. We aim to
calculate these quantities in the remainder of this derivation.

4. Linear system of equations

In this section, we derive a linear system of equations to
which we will apply the cavity method. To do this, we first
evaluate the gradient of the loss function in Eq. (5) with
respect to the fit parameters:

0 = ∂L(ŵ)

∂ŵJ
= −

∑
b

�ybZbJ + λŵJ . (A10)

In addition to this gradient equation, we will also need the
equations for the residual label errors for the training set:

�ya = y∗(�xa) + εa −
∑

K

ŵK ZaJ . (A11)

Next, we decompose these two sets of equations such that
they are linear in the random matrices W and X , resulting in
four different sets of equations,

λŵJ =
∑

k

ûkWkJ + ηJ ,

û j =
∑

b

�ybXb j + ψ j,

�ya =
∑

k

�βkXak + δy∗
NL(�xa) + εa + ξa,

�β j = β j −
∑

K

ŵKWjK + ζ j,

(A12)
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where we have also utilized Eq. (A1) to decompose the train-
ing labels into their linear and nonlinear components. We have
also added a small auxiliary field, ηJ , ψ j , ξa, or ζ j , to each
equation. We will use these extra fields to define perturbations
about the solutions to these equations with the intent of setting
the fields to zero at the end of the derivation. The quantities
û j can be interpreted as representations of the fit parameters
in the space of input features.

5. Cavity expansion

Next, we add an additional variable of each type, resulting
in a total of M + 1 data points, Nf + 1 input features, and
Np + 1 fit parameters. Each additional variable is represented
using an index value of 0, written as ŵ0, û0, �y0, and �β0.
After including these additional unknown quantities, the four
equations become

λŵJ =
∑

k

ûkWkJ + ηJ + û0W0J ,

û j =
∑

b

�ybXb j + ψ j + �y0X0 j,

�ya =
∑

k

�βkXak + δy∗
NL(�xa) + εa + ξa + Xa0�β0,

�β j = β j −
∑

K

ŵKWjK + ζ j − ŵ0Wj0, (A13)

with each 0-index variable described by an additional equa-
tion:

λŵ0 =
∑

k

ûkWk0 + η0 + û0W00,

û0 =
∑

b

�ybXb0 + ψ0 + �y0X00,

�y0 =
∑

k

�βkX0k + δy∗
NL(�x0) + ε0 + ξ0 + �β0X00,

�β0 = β0 −
∑

K

ŵKW0K + ζ0 − ŵ0W00. (A14)

Now we take the thermodynamic limit in which M, Nf , and
Np tend toward infinity, but their ratios α f = Nf /M and αp =
Np/M remain fixed. We interpret the extra terms in Eqs. (A13)
as small perturbations to the auxiliary fields,

δηJ = û0W0J , δψ j = �y0X0 j, δξa = �β0Xa0, δζ j = −ŵ0Wj0, (A15)

allowing us to expand each unknown quantity about its solution in the absence of the zero-indexed variables (i.e., the solutions
for M data points, Nf input features, and Np fit parameters):

ŵJ ≈ ŵJ\0 +
∑

K

νŵ
JKδηK +

∑
k

φŵ
Jkδψk +

∑
b

χ ŵ
Jbδξb +

∑
k

ωŵ
Jkδζk,

û j ≈ û j\0 +
∑

K

ν û
jKδηK +

∑
k

φû
jkδψk +

∑
b

χ û
jbδξb +

∑
k

ωû
jkδζk,

�ya ≈ �ya\0 +
∑

K

ν
�y
aK δηK +

∑
k

φ
�y
ak δψk +

∑
b

χ
�y
ab δξb +

∑
k

ω
�y
ak δζk,

�β j ≈ �β j\0 +
∑

K

ν
�β
jK δηK +

∑
k

φ
�β

jk δψk +
∑

b

χ
�β

jb δξb +
∑

k

ω
�β

jk δζk . (A16)

We define each of the susceptibility matrices as a derivative of a variable with respect to an auxiliary field:

νŵ
JK = ∂ŵJ

∂ηK
, φŵ

Jk = ∂ŵJ

∂ψk
, χ ŵ

Jb = ∂ŵJ

∂ξb
, ωŵ

Jk = ∂ŵJ

∂ζk
,

ν û
jK = ∂ û j

∂ηK
, φû

jk = ∂ û j

∂ψk
, χ û

jb = ∂ û j

∂ξb
, ωû

jk = ∂ û j

∂ζk
,

ν
�y
aK = ∂�ya

∂ηK
, φ

�y
ak = ∂�ya

∂ψk
, χ

�y
ab = ∂�ya

∂ξb
, ω

�y
ak = ∂�ya

∂ζk
,

ν
�β
jK = ∂�β j

∂ηK
, φ

�β

jk = ∂�β j

∂ψk
, χ

�β

jb = ∂�β j

∂ξb
, ω

�β

jk = ∂�β j

∂ζk
. (A17)

a. Central limit theorem

Substituting the expansions in Eq. (A16) into the zero-
indexed equations in Eq. (A14), we find that each of the
resulting sums contains a thermodynamically large number
of statistically uncorrelated terms. This means that each sum
satisfies the conditions necessary to apply the central limit

theorem, allowing us to express each in terms of a single
normally distributed random variable described by just its
mean and its variance.

First, we approximate each of the sums containing one of
the unperturbed quantities, ŵJ\0, û j\0, �ya\0, or �β j\0. The
unperturbed quantities in each of these sums are statistically

025304-10



BIAS-VARIANCE DECOMPOSITION OF … PHYSICAL REVIEW E 106, 025304 (2022)

independent of all elements of both X and W with a zero-
valued index. Using this fact, we find

∑
k

ûk\0Wk0 ≈ σŵzŵ, σ 2
ŵ = σ 2

W

α f

αp
〈û2〉,

〈û2〉 = 1

Nf

∑
k

û2
k\0

∑
b

�yb\0Xb0 ≈ σûzû, σ 2
û = σ 2

X α−1
f 〈�y2〉,

〈�y2〉 = 1

M

∑
b

�y2
b\0

∑
k

�βk\0X0k ≈ σ�yz�y, σ 2
�y = σ 2

X 〈�β2〉,

〈�β2〉 = 1

Nf

∑
k

�β2
k\0

∑
K

ŵK\0W0K ≈ σ�βz�β, σ 2
�β = σ 2

W 〈ŵ2〉,

〈ŵ2〉 = 1

Np

∑
K

ŵ2
K\0,

(A18)

where zŵ, zû, z�y, and z�β are all random variables with
zero mean and unit variance and can easily be shown to be
statistically independent from one another.

Note that we have used the same notation, 〈�y2〉 and
〈�β2〉, for the two averages defined previously in Ap-
pendix A 3 even though they each lack an ensemble average.
In doing so, we have employed the ansatz that these sums will
converge to their ensemble averages in the thermodynamic
limit. This assumption is typical of the cavity method.

Next, we approximate each of the sums containing one
of the square susceptibility matrices. Using the fact that all
the susceptibility matrices are statistically independent of all
elements of both X and W with a zero-valued index, we find
that each of these sums is dominated by its mean with its
variance going to zero in the thermodynamic limit,

∑
jk

ωû
jkWj0Wk0 ≈ σ 2

W

α f

αp
ω, ω = 1

Nf

∑
k

ωû
kk,

∑
ab

χ
�y
ab Xa0Xb0 ≈ σ 2

X α−1
f χ, χ = 1

M

∑
b

χ
�y
bb ,

∑
jk

φ
�β

jk X0 jX0k ≈ σ 2
X φ, φ = 1

Nf

∑
k

φ
�β

kk ,

∑
JK

νŵ
JKW0JW0K ≈ σ 2

W ν, ν = 1

Np

∑
K

νŵ
KK ,

(A19)

where ω, χ , φ, and ν can be interpreted as a set of scalar
susceptibilities.

Finally, it is straightforward to show that both the mean and
variance each of the sums containing a rectangular suscepti-
bility matrix goes to zero in the thermodynamic limit and can
therefore be neglected.

b. Self-consistency equations

Applying the approximations from the previous section, we
find a set of self-consistent equations for ŵ0, û0, �y0, and
�β0,

λŵ0 ≈ σŵzŵ − ŵ0σ
2
W

α f

αp
ω + η0,

û0 ≈ σûzû + �β0σ
2
X α−1

f χ + ψ0,

�y0 ≈ σ�yz�y + �y0σ
2
X φ + δy∗

NL(�x0) + ε0 + ξ0,

�β0 ≈ β0 − σ�βz�β − û0σ
2
W ν + ζ0,

(A20)

where have also made use of the fact that the terms including
X00 or W00 are infinitesimally small in the thermodynamic
limit with zero mean and variances of O(1/Nf ) and O(1/Np),
respectively. Solving these equations for the zero-indexed
variables, we find

ŵ0 = σŵzŵ + η0

λ + σ 2
W

α f

αp
ω

,

û0 = σûzû + ψ0 + σ 2
X α−1

f χ (β0 − σ�βz�β + ζ0)

1 + σ 2
W σ 2

X α−1
f χν

,

�y0 = σ�yz�y + δy∗
NL(�x0) + ε0 + ξ0

1 − σ 2
X φ

,

�β0 = β0 − σ�βz�β + ζ0 − σ 2
W ν2(σûzû + ψ0)

1 + σ 2
W σ 2

X α−1
f χν

.

(A21)

Next, we derive a set of self-consistent equations for the
scalar susceptibilities by taking appropriate derivatives of
these variables with respect to the auxiliary fields,

ν = 1

Np

∑
K

νŵ
KK ≈ E

[
νŵ

00

] = E

[
∂ŵ0

∂η0

]
= 1

λ + σ 2
W

α f

αp
ω

,

ω = 1

Nf

∑
k

ωû
kk ≈ E

[
ωû

00

] = E

[
∂ û0

∂ζ0

]
= σ 2

X α−1
f χ

1 + σ 2
W σ 2

X α−1
f χν

,

χ = 1

M

∑
b

χ
�y
bb ≈ E

[
χ

�y
00

] = E

[
∂�y0

∂ξ0

]
= 1

1 − σ 2
X φ

,

φ = 1

Nf

∑
k

φ
�β

kk ≈ E
[
φ

�β

00

] = E

[
∂�β0

∂ψ0

]

= − σ 2
W ν

1 + σ 2
W σ 2

X α−1
f χν

.

(A22)
Furthermore, we note that there are two additional deriva-
tives that have not yet appeared in the calculation up to this
point, ∂ û j/∂ψ j and ∂�β j/∂ζ j . It is clear to see from the
equations for û0 and �β0 that these two additional derivatives
are equivalent. Evaluating these derivatives, we define a fifth
scalar susceptibility:

κ = 1

Nf

∑
k

φû
kk = 1

Nf

∑
k

ω
�β

kk ≈ E

[
∂ û0

∂ψ0

]
= E

[
∂�β0

∂ζ0

]

= 1

1 + σ 2
W σ 2

X α−1
f χν

. (A23)
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Using this formula for κ , we re-express the four other suscep-
tibilities as

ω = σ 2
X α−1

f χκ, φ = −σ 2
W νκ, χ = 1

1 + σ 2
W σ 2

X νκ
,

ν = 1

λ + σ 2
W σ 2

X α−1
p χκ

. (A24)

Finally, we square and average each of the expressions in
Eqs. (A21) to find self-consistent equations for the four mean-
squared averages (setting the auxiliary fields to zero),

〈ŵ2〉 = 1

Np

∑
K

ŵ2
K\0 ≈ E

[
ŵ2

0

] = ν2σ 2
W

α f

αp
〈û2〉,

〈û2〉 = 1

Nf

∑
k

û2
k\0 ≈ E

[
û2

0

] = κ2σ 2
X α−1

f 〈�y2〉

+ ω2
(
σ 2

β + σ 2
W 〈ŵ2〉),

〈�y2〉 = 1

M

∑
b

�y2
b\0 ≈ E

[
�y2

0

] = χ2
(
σ 2

X 〈�β2〉 + σ 2
δy∗ + σ 2

ε

)
,

〈�β2〉 = 1

Nf

∑
k

�β2
k\0 ≈ E

[
�β2

0

] = κ2
(
σ 2

β + σ 2
W 〈ŵ2〉)

+ φ2σ 2
X α−1

f 〈�y2〉. (A25)

c. Solution with finite regularization (λ ∼ 1)

Next, we derive the solutions when the regularization pa-
rameter λ is finite. To do this, we combine the self-consistency
equations for the susceptibilities in Eqs. (A23) and (A24) to
derive a cubic equation for χ ,

0 = χ3 + (α f + αp − 2)χ2 + [(α f − 1)(αp − 1)

+ α f αpλ̄]χ − α f αpλ̄, (A26)

where we have defined the dimensionless regularization pa-
rameter:

λ̄ = λ

σ 2
W σ 2

X

. (A27)

This cubic equation indicates that we should expect three
different solutions for χ . Using these solutions, we can derive
the associated solutions for the rest of the susceptibilities.
Furthermore, we solve Eqs. (A25) to find

⎛
⎜⎜⎜⎜⎝

〈ŵ2〉
〈û2〉
〈�y2〉
〈�β2〉

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 −σ 2
W

α f

αp
ν2 0 0

−σ 2
W ω2 1 −σ 2

X α−1
f κ2 0

0 0 1 −σ 2
X χ2

−σ 2
W κ2 0 −σ 2

X α−1
f φ2 1)−1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0

σ 2
βω2

(σ 2
ε + σ 2

δy∗ )χ2

σ 2
β κ2

⎞
⎟⎟⎟⎟⎠. (A28)

In combination with the solutions for the five scalar suscepti-
bilities, these solutions are exact in the thermodynamic limit.

d. Solutions in ridgeless limit (λ → 0)

Next, we take the ridge-less limit in which λ → 0. Based
on the cubic equation for χ in Eq. (A26), we make the ansatz
that the lowest order contribution to χ is O(1) in small λ̄:

χ ≈ χ0 + λ̄χ1. (A29)

We then expand Eq. (A26) in orders of λ to find solutions for
χ0 and χ1. Using these solutions, we solve for the following
coefficients for the remaining susceptibilities:

ν ≈ 1

λ̄
ν−1 + ν0,

κ ≈ κ0 + λ̄κ1,

φ ≈ 1

λ̄
φ−1 + φ0,

ω ≈ ω0 + λ̄ω1, (A30)

Finally, we expand the mean-squared averages in small λ as

〈ŵ2〉 ≈ 〈ŵ2〉0 + λ̄2〈ŵ2〉2,

〈û2〉 ≈ 〈û2〉0 + λ̄2〈û2〉2,

〈�y2〉 ≈ 〈�y2〉0 + λ̄2〈�y2〉2,

〈�β2〉 ≈ 〈�β2〉0 + λ̄2〈�β2〉2,

(A31)

and then use the solutions for the susceptibilities to solve
Eqs. (A25) for these coefficients.

We find three sets of solutions for all quantities, corre-
sponding to the three regimes of the random linear features
model. To determine when each solution applies, we use the
fact that each of the ensemble-averaged quantities 〈ŵ2〉, 〈û2〉,
〈�y2〉, and 〈�β2〉 must be positive. All together, we find the
solutions for the ensemble-averaged squared quantities in the
λ → 0 limit to be

〈ŵ2〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ 2
β

σ 2
W

α f

(αp−α f ) + (σ 2
ε +σ 2

δy∗ )

σ 2
W σ 2

X

α2
f

(1−α f )(αp−α f ) if Nf < Np, M

σ 2
β

σ 2
W

(1−αp+α f −αp)
(1−αp)(α f −αp) + (σ 2

ε +σ 2
δy∗ )

σ 2
W σ 2

X

α f αp

(1−αp)(α f −αp) if Np < Nf , M

σ 2
β

σ 2
W

1
(αp−1) + (σ 2

ε +σ 2
δy∗ )

σ 2
W σ 2

X

α f

(α f −1)(αp−1) if M < Nf , Np,

(A32)

025304-12



BIAS-VARIANCE DECOMPOSITION OF … PHYSICAL REVIEW E 106, 025304 (2022)

〈û2〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ2

σ 4
X σ 4

W

[
σ 2

βσ 4
X

α3
p

(αp−α f )3 + σ 2
X

(
σ 2

ε + σ 2
δy∗

) α f α
3
p

(1−α f )(αp−α f )3

]
if Nf < Np, M

σ 2
βσ 4

X
(1−αp)(α f −αp)

(
1−αp+α f −αp

)
α3

f
+ σ 2

X

(
σ 2

ε + σ 2
δy∗

) (1−αp)(α f −αp)
α2

f
if Np < Nf , M

λ2

σ 4
X σ 4

W

[
σ 2

βσ 4
X

α3
p

α f (αp−1)3 + σ 2
X

(
σ 2

ε + σ 2
δy∗

) α3
p

(α f −1)(αp−1)3

]
if M < Nf , Np,

(A33)

〈�y2〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
σ 2

ε + σ 2
δy∗

)
(1 − α f ) if Nf < Np, M

σ 2
βσ 2

X
(1−αp)(α f −αp)

α f
+ (

σ 2
ε + σ 2

δy∗
)
(1 − αp) if Np < Nf , M

λ2

σ 4
X σ 4

W

[
σ 2

βσ 2
X

α f α
3
p

(α f −1)(αp−1)3 + (
σ 2

ε + σ 2
δy∗

) α2
f α

2
p(α f −1+αp−1)

(α f −1)3(αp−1)3

]
if M < Nf , Np,

(A34)

〈�β2〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(σ 2
ε +σ 2

δy∗ )

σ 2
X

α f

(1−α f ) if Nf < Np, M

σ 2
β

(α f −αp)
α f (1−αp) + (σ 2

ε +σ 2
δy∗ )

σ 2
X

αp

(1−αp) if Np < Nf , M

σ 2
β

αp(α f −1)
α f (αp−1) + (σ 2

ε +σ 2
δy∗ )

σ 2
X

(α f −1+αp−1)
(α f −1)(αp−1) if M < Nf , Np.

(A35)

In addition, to lowest order in small λ, the five scalar
susceptibilities are

χ =
⎧⎨
⎩

1 − α f if Nf < Np, M
1 − αp if Np < Nf , M
λ

σ 2
W σ 2

X

α f αp

(1−α f )(1−αp) if M < Nf , Np,
(A36)

ν =

⎧⎪⎪⎨
⎪⎪⎩

1
λ

(αp−α f )
αp

+ 1
σ 2

W σ 2
X

α2
f

(1−α f )(αp−α f ) if Nf < Np, M
1

σ 2
W σ 2

X

α f αp

(1−αp)(α f −αp) if Np < Nf , M
1
λ

(αp−1)
αp

+ 1
σ 2

W σ 2
X

α f

(α f −1)(αp−1) if M < Nf , Np,

(A37)

κ =

⎧⎪⎨
⎪⎩

λ

σ 2
W σ 2

X

α f αp

(1−α f )(αp−α f ) if Nf < Np, M
(α f −αp)

α f
if Np < Nf , M

(α f −1)
α f

if M < Nf , Np,

(A38)

ω =

⎧⎪⎪⎨
⎪⎪⎩

λ

σ 2
W

αp

(αp−α f ) if Nf < Np, M

σ 2
X

(1−αp)(α f −αp)
α2

f
if Np < Nf , M

λ

σ 2
W

αp

α f (αp−1) if M < Nf , Np,

(A39)

φ =

⎧⎪⎨
⎪⎩

− 1
σ 2

X

α f

(1−α f ) if Nf < Np, M

− 1
σ 2

X

αp

(1−αp) if Np < Nf , M

− σ 2
W
λ

(α f −1)(αp−1)
α f αp

if M < Nf , Np.

(A40)

We use the quantities 〈�y2〉 and 〈�β2〉 above in combination
with formulas for the training and test error in Appendix A 3
to obtain the expressions in Eqs. (14) and (15).

e. Bias-variance decomposition

Next, we derive the bias and variance. According to the
general solutions in Eqs. (A8) and (A9), we require the
quantity 〈�β1�β2〉. To calculate 〈�β1�β2〉, we apply the
self-consistent equations, Eqs. (A21), to two models each
trained separately on one of two independent training sets,
with all other random variables held in common. We specify
which quantities depend on each of the training sets using
subscript 1 or 2 for data sets D1 and D2, respectively. For

training set D1, these equations are

ŵ1,0 = νσŵzŵ1,

û1,0 = κσûzû1 + ω(β0 − σ�βz�β1 ),

�y1,0 = χ (σ�yz�y1 + δy∗
NL(�x1,0) + ε1,0),

�β1,0 = κ (β0 − σ�βz�β1 ) + φσûzû1 ,

(A41)

while for training set D2, they are

ŵ2,0 = νσŵzŵ2 ,

û2,0 = κσûzû2 + ω(β0 − σ�βz�β2 ),

�y2,0 = χ (σ�yz�y2 + δy∗
NL(�x2,0) + ε2,0),

�β2,0 = κ (β0 − σ�βz�β2 ) + φσûzû2 .

(A42)

Multiplying these equations and making the self-averaging
approximation, we find equations for the covariance of each
of the unknown variables:

〈ŵ1ŵ2〉 = 1

Np

∑
K

ŵ1,Kŵ2,K ≈ E
[
ŵ1,0ŵ2,0

]
= ν2E

[
σ 2

ŵzŵ1 zŵ2

]
,

〈û1û2〉 = 1

Nf

∑
k

û1,kû2,k ≈ E
[
û1,0û2,0

]
= κ2E

[
σ 2

û zû1 zû2

] + ω2
(
σ 2

β + E
[
σ 2

�βz�β1 z�β2

])
,

〈�y1�y2〉 = 1

M

∑
b

�y1,b�y2,b ≈ E
[
�y1,0�y2,0

]
= χ2E

[
σ 2

�yz�y1 z�y2

]
,

〈�β1�β2〉 = 1

Nf

∑
k

�β1,k�β2,k ≈ E
[
�β1,0�β2,0

]
= κ2

(
σ 2

β + E
[
σ 2

�βz�β1 z�β2

]) + φ2E
[
σ 2

û zû1 zû2

]
.

(A43)

Next, we calculate each of the four resulting expectation val-
ues of products of random variables. Converting each of the
random variables zŵ1 , z�β1 , etc. back into their forms as sums,
we use the independence of elements of the random matrices
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and the other variables to find

E
[
σ 2

ŵzŵ1 zŵ2

] ≈ E

[∑
jk

û1, j\0û2,k\0Wj0Wk0

]
= σ 2

W

α f

αp
〈û1û2〉,

E
[
σ 2

�βz�β1 z�β2

] ≈ E

[∑
JK

ŵ1,J\0ŵ2,K\0W0JW0K

]
= σ 2

W 〈ŵ1ŵ2〉,

E
[
σ 2

û zû1 zû2

] ≈ E

[∑
ab

�y1,a\0�y2,b\0X1,a0X2,b0

]
= 0,

E
[
σ 2

�yz�y1 z�y2

] ≈ E

[∑
jk

�β1, j\0�β2,k\0X1,0 jX2,0k

]
= 0.

(A44)
Substituting these results back into Eq. (A43), we find the self-
consistent equations

〈ŵ1ŵ2〉 = ν2σ 2
W

α f

αp
〈û1û2〉,

〈û1û2〉 = ω2
(
σ 2

β + σ 2
W 〈ŵ1ŵ2〉

)
,

〈�y1�y2〉 = 0,

〈�β1�β2〉 = κ2
(
σ 2

β + σ 2
W 〈ŵ1ŵ2〉

)
.

(A45)

Next, we make the ansatz that the ensemble-averaged covari-
ances are O(1) in small λ̄ with the next order terms at O(λ̄2):

〈ŵ1ŵ2〉 ≈ 〈ŵ1ŵ2〉0 + λ̄2〈ŵ1ŵ2〉2,

〈û1û2〉 ≈ 〈û1û2〉0 + λ̄2〈û1û2〉2,

〈�β1�β2〉 ≈ 〈�β1�β2〉0 + λ̄2〈�β1�β2〉2.

(A46)

All together, the covariances in the limit λ → 0 are

〈ŵ1ŵ2〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
β

σ 2
W

α f

(αp−α f ) if Nf < Np, M
σ 2

β

σ 2
W

αp

(α f −αp) if Np < Nf , M
σ 2

β

σ 2
W

1
(α f αp−1) if M < Nf , Np,

(A47)

〈û1û2〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ2

σ 4
X σ 4

W
σ 2

βσ 4
X

α3
p

(αp−α f )3 if Nf < Np, M

σ 2
βσ 4

X
(1−αp)2(α f −αp)

α3
f

if Np < Nf , M

λ2

σ 4
X σ 4

W
σ 2

βσ 4
X

α3
p

α f (αp−1)2(α f αp−1) if M < Nf , Np,

(A48)

〈�y1�y2〉 = 0 (A49)

〈�β1�β2〉 =

⎧⎪⎪⎨
⎪⎪⎩

λ2

σ 4
X σ 4

W
σ 2

β

α2
f α

3
p

(1−α f )2(αp−α f )3 if Nf < Np, M

σ 2
β

(α f −αp)
α f

if Np < Nf , M

σ 2
β

αp(α f −1)2

α f (α f αp−1) if M < Nf , Np.

(A50)

Finally, we use the solution for 〈�β1�β2〉 to find the bias
and variance according to Eqs. (A8) and (A9), resulting in
Eqs. (16) and (17).

APPENDIX B: SPECTRAL DENSITIES OF KERNEL
MATRICES

Here, we derive the spectral densities for the kernel matrix
ZT Z using the technique laid out in Ref. [37]. According

to this formalism, the spectral density of the kernel can be
written in terms of the scalar susceptibility ν, defined in the
previous section, using the formula

ρ(x) = − 1

π
lim

ε→0+
Imν(−x + iε). (B1)

In addition, we expect there to be a delta function of
eigenvalues located at zero. Although the above formula can
in principle be used to obtain the fraction of eigenvalues at
zero, for convenience, we instead use the scalar susceptibility
χ , which can be shown to be exactly

χ = 1

M
Tr

∂��y
∂�ξ

= 1

M
Tr[IM − ZZ+] = 1 − 1

M
rank(ZT Z ).

(B2)
The fraction of eigenvalues at zero is then

fzero = 1 − 1

Np
rank(ZT Z ) = χ + αp − 1

αp
. (B3)

Next, we define dimensional versions of ν and λ:

ν̄ = σ 2
W σ 2

X ν, λ̄ = λ

σ 2
W σ 2

X

. (B4)

Using the self-consistent equations for the scalar susceptibil-
ities in Eqs. (A23) and (A24), we find a cubic equation for
ν̄:

0 = (αpλ̄ν̄)3 + [1 − αp + α f − αp](αpλ̄ν̄)2

+ [(1 − αp)(α f − αp) + α f αpλ̄](αpλ̄ν̄) − α f α
2
pλ̄. (B5)

Solving this cubic equation analytically is very involved, so
we refer to the solution in Ref. [36]. Instead, we solve this
equation numerically for the negative imaginary roots of ν(λ)
with λ = −x, according to Eq. (B1). However, we also need
to find the interval over which the eigenvalue spectrum is
positive. To do this, we rewrite the equation in general form
for αpλ̄ν̄,

(αpλ̄ν̄)3 + a2(αpλ̄ν̄)2 + a1(αpλ̄ν̄) + a0 = 0, (B6)

where the coefficients are

a0 = −α f α
2
pλ̄,

a1 = (1 − αp)(α f − αp) + α f αpλ̄,

a2 = 1 − αp + α f − αp.

(B7)

The discriminant for a cubic equation is expressed in terms of
these coefficients as

D(λ) = R2 − Q3, (B8)

with

Q = 1

9
(a2

2 − 3a1),

R = 1

54
(9a2a1 − 27a0 − 2a3

2).

(B9)

To find the limiting eigenvalues, we then solve the equa-
tion D(λ) = 0 (with λ = −x) numerically for the largest and
smallest non-negative real roots.
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10−1 100 101

Parameters αp

10−1

100

101

F
ea

tu
re

s
α

f

(a-ii)

10−1 100 101

Parameters αp

10−1

100

101

F
ea

tu
re

s
α

f

(b-ii)

10−1 100 101

Parameters αp

10−1

100

101

F
ea

tu
re

s
α

f

(c-ii)

10−1 100 101

Parameters αp

10−1

100

101

F
ea

tu
re

s
α

f

(d-ii)

10−2 10−1 100 101 102

Error/σ2
y

FIG. 4. Comparison of analytic and numerical results for the random linear features model: Training error and bias-variance decomposition.
Analytic solutions (top row) and numerical results (bottom row) are shown as a function of αp = Np/M and α f = Nf /M. Plotted are the
ensemble-averaged (a) training error (b), test error (c), squared bias, and (d) variance. In each panel, black dashed lines show boundaries
between different regimes of solutions, depending on which is smallest of the quantities M, Nf , or Np. The vertical and horizontal lines bound
the interpolation, or overparameterized, regime, located at αp > 1 and α f > 1, while the diagonal line marks the boundary between the large
bias and minimal bias underparameterized regimes for a linear teacher model. All solutions have been scaled by the variance of the training
set labels σ 2

y = σ 2
β σ 2

X + σ 2
ε .

To find the weight of the delta function component at zero,
we use the solution for χ that we found previously, giving us

fzero =
⎧⎨
⎩

1 − α f

αp
if Nf < Np, M

0 if Np < Nf , M
1 − α−1

p if M < Nf , Np.

= max

(
0, 1−α f

αp
, 1 − α−1

p

)
(B10)

APPENDIX C: NUMERICAL SIMULATION DETAILS

In this Appendix, we explain our procedures for generating
numerical results. Figure 4 provides comparisons to numerical
results for the training error, test error, bias, and variance.

1. General details

In all plots of training error, test error, bias, and variance,
each point (or pixel for 2d plots) is averaged over 1000
independent simulations, unless located exactly at a phase
transition, in which case each point is averaged over 150 000
simulations. Small error bars are shown for each plot, repre-
senting the error on the mean. We also scale the error in each
plot by the variance of the labels σ 2

y = σ 2
βσ 2

X + σ 2
δy∗ + σ 2

ε . In
all simulations, we use training and test sets of size M = M ′ =
512, a signal-to-noise ratio of (σ 2

βσ 2
X + σ 2

δy∗ )/σ 2
ε = 10, and a

regularization parameter of λ = 10−6. We use a linear teacher
model y∗(�x) = �x · �β (σ 2

δy∗ = 0) for all plots.
To find the solution for a particular regression problem, we

solve a different (but equivalent) system of equations depend-
ing on whether Np < M or Np > M, allowing us to reduce the
size of the linear system we need to solve. If Np < M, we
solve the system of Np equations,

[λINp + ZT Z]ŵ = ZT �y, (C1)

for the Np unknown fit parameters ŵ where INp is the Np × Np

identity matrix. This equation is identical to that in Eq. (6) in
the main text.

Alternatively, if Np > M, we solve a system of M equa-
tions,

[λIM + ZZT ]â = �y, (C2)

for the M unknowns â where IM is the M × M identity matrix.
We then convert to fit parameters via the formula ŵ = ZT â.

2. Bias-variance decompositions

To efficiently calculate the ensemble-averaged bias and
variance, we take inspiration from Eq. (A7). During each
simulation, we independently generate two training data sets
D1 and D2. Using the results from the first training set, we
calculate the training and test error. To calculate the bias, we
also calculate the label predictions for both training sets for an
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identical test set, ŷ1 and ŷ2, and record the residual label errors
between these predictions and the true labels of the test set �y∗′
We then record the dot product (ŷ1 − �y∗′) · (ŷ2 − �y∗′). When
averaged over many simulations, this quantity approximates
the bias. We can then subtract this quantity from the average
test error to find the variance.

3. Eigenvalue decompositions of kernel matrices

For each of the numerical eigenvalue distributions for
the kernel matrices presented in the main text, we choose

M = 4096. We then average over the distributions for 10
independently sampled matrices when αp = 1 or αp = 8 and
over 80 matrices when αp = 1/8. In this way, we ensure
that the same number of nonzero eigenvalues is present in
the part of the histograms corresponding to the bulk of the
distributions (the distribution excluding the delta function at
zero). For M < Np, we calculate the eigenvalues of ZT Z ,
while for M > Np we instead calculate the eigenvalues of ZZT

since this matrix is smaller and contains the same nonzero
eigenvalues. In the later case, we then manually append an
additional Np − M zero-valued eigenvalues to the distribution.
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