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The competitive exclusion principle asserts that coexisting species must occupy distinct ecological
niches (i.e., the number of surviving species cannot exceed the number of resources). An open question is
to understand if and how different resource dynamics affect this bound. Here, we analyze a generalized
consumer resource model with externally supplied resources and show that—in contrast to self-renewing
resources—species can occupy only half of all available environmental niches. This motivates us to
construct a new schema for classifying ecosystems based on species packing properties.
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One of the most stunning aspects of the natural world is
the incredible diversity of species present in many envi-
ronments [1,2]. A major goal of community ecology is to
understand the rules governing community structure and
species coexistence patterns in these complex ecosystems.
One promising approach that has recently emerged for
tackling this challenge is to use ideas from statistical
mechanics inspired by spin glass physics [3,4]. In such
an approach, ecosystems are viewed as large interacting
disordered systems, allowing for the identification of
universal, collective properties [5,6]. Such statistical phys-
ics inspired models are also able to reproduce many
experimental observations, especially in the context of
microbial ecosystems [7–9].
Much of this work has focused on generalized Lotka-

Volterra models where species directly interact with each
other in a pairwise fashion [5,10–16]. While such models
have led to deep ecological insights [17] andhave allowed for
the identification of interesting ecological phases and phase
transitions [10–12], a major drawback of Lotka-Volterra
models are that they do not explicitly model the resources
present in the ecosystem. Instead, resource dynamics are
implicitly represented through the choice of species-species
interactions making it difficult to understand the relationship
between resource dynamics and community structure.
In contrast, generalized consumer resource models

(GCRMs), first introduced by MacArthur and Levins in a
series of seminal papers [18–20], explicitly incorporate both
species and resource dynamics. In GCRMs, ecosystems are
described by species that can consume and deplete resources
according to a set of consumer preferences. Interactions
between species arise because species with similar consumer
preferences occupy similar environmental niches and hence
compete for common resources. An important theoretical

and conceptual result that follows from GCRMs is that the
number of species that can coexist in an ecosystem is limited
by the number of resources that are present. In other words, if
we denote the number of species that can survive in an
ecosystem by S� and the number of supplied resources asM,
the competitive exclusion principle yields an upper bound for
the amount of species that can be packed into the ecosystem:
ðS�=MÞ ≤ 1 [21].
The basic intuition behind this bound is that the growth

rates giðRÞ of all coexisting species i ¼ 1; 2;… must
simultaneously vanish, and since the space of resource
concentrations R is M dimensional, at most M of these
equations can be simultaneously solved [see Supplemental
Material (SM) for discussion of nongeneric phenomena
where the bound is violated [22] ]. While this result gives
an upper bound, it is not clear when and if it will be
saturated. In particular, we show below that the choice of
resource dynamics fundamentally alters species packing
properties. To show this, we analyze GCRMs with two
different resource dynamics: self-renewing resources where
resources grow logistically in the absence of consumers
[18,19] and externally supplied resources that are supplied
and degraded at a constant rate [23–25] (see Fig. 1).
We derive species packing bounds for both choices of
dynamics by analyzing the susceptibilities of a new cavity
solution for GCRMs with externally supplied resources
and combining it with the previously derived cavity
solution for GCRMs with self-renewing resources
[6,26,27]. Surprisingly, in the absence of metabolic
trade-offs we find that, for externally supplied resources,
species can occupy only half of all available resource
niches: ðS�=MÞ < 1

2
. Motivated by these results, we suggest

a new schema for classifying ecosystems based on their
species packing properties.
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Model.—GCRMs describe the ecological dynamics of S
species of consumers Ni (i ¼ 1; 2;…; S) that can consume
M distinct resourcesRα (α ¼ 1; 2;…;M). The rate at which
species Ni consumes and depletes resource Rβ is encoded
in a matrix of consumer preferences Ciβ. In order to
survive, species have a minimum maintenance cost mi.
Equivalently, mi can also be thought of as the death rate of
species i in the absence of resources. These dynamics can
be described using a coupled set of M þ S ordinary
differential equations of the form

dNi

dt
¼ Ni

X
β

CiβRβ − Nimi;

dRα

dt
¼ hαðRαÞ −

X
j

NjCjαRα; ð1Þ

where hαðRαÞ is a function that describes the dynamics of
the resources in the absence of any consumers (see Fig. 1).
For self-renewing resources (e.g., plants, animals), the

dynamics can be described using logistic growth of the form

hαðRαÞ ¼ Rαðκα − RαÞ; ð2Þ
with κ the carrying capacity.While such resourcedynamics is
reasonable for biotic resources, abiotic resources such as
minerals and small molecules cannot self-replicate and are
usually supplied externally to the ecosystem [Fig. 1(b)]. A
common way to model this scenario is by using linearized
resource dynamics of the form

hαðRαÞ ¼ Kα − ωαRα: ð3Þ

Figure 1(c) shows a plot of these two choices. Note that the
two resource dynamics behave very differently at low
resource levels. The self-renewing resources can go extinct
and eventually disappear from the ecosystem, while this is
not true of externally supplied resources.
Recent research has shown some unexpected and inter-

esting nongeneric phenomena can appear in GCRMs in the
presence of additional constraints on parameter values.
A common choice of such constraints is the imposition of a
“metabolic budget” on the consumer preference matrix
[23,28] tying the maintenance cost mi to the total con-
sumption capacity

P
β Ciβ [24,29]. These metabolic trade-

offs can be readily incorporated into the cavity calculations
and have significant impacts on species packing, as will be
discussed below.
Cavity solution.—Recently, we derived a mean-field

cavity solution for steady-state dynamics of the GCRM
with self-renewing resource dynamics in the high-dimen-
sional limit where the number of resources and species in
the regional species pool is large (S;M ≫ 1) [6,26,27]. The
overall procedure for deriving the cavity equations for
GCRM with externally supplied resource is similar to that
for GCRMs with self-renewing resources and is shown in
Fig. S1 in the SM [22]. We assume the Kα and mi are
independent random normal variables with means K and m
and variances σ2K and σ2m, respectively. We also assume ωα

are independent normal variables with meanω and variance
σ2ω. The elements of the consumption matrix Ciα are drawn
independently from a normal distribution with mean μ=M
and variance σ2c=M. This scaling with M is necessary to
guarantee that hNi; hRi do not vanish when S;M ≫ 1 with
M=S ¼ γ fixed. Later, we will consider a slightly modified
scenario where the maintenance costs are correlated with
the consumption matrix in order to implement the meta-
bolic trade-offs discussed above.
The basic idea behind the cavity method is to derive

self-consistency equations relating an ecosystem with M
resources and S species to an ecosystem with M þ 1
resources and Sþ 1 resources. This is done by adding a
new “cavity” species 0 and a new “cavity” resource 0 to the
original ecosystem. When S;M ≫ 1, the effect of the new
cavity species or resource is small and can be treated using
perturbation theory. The cavity solution further exploits the
fact that since theCiα are randomvariables, whenM ≫ 1 the
sum

P
α CiαRα will be well described by a normal distribu-

tionwithmean μhRi and variance σ2cqR, where qR ¼ hR2i ¼
1=M

P
α R

2
α (see SM for details [22]). Combining this with

the non-negativity constraint, the species distribution can be
expressed as a truncated normal distribution,

N̄ ¼ max

�
0;
μhRi −mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2cqR þ σ2m

p
zN

σ2cχ

�
; ð4Þ

where χ ¼ −h∂R̄α=∂ωαi ¼ −M−1P
αð∂R̄α=∂ωαÞ and zN

is a standard normal variable. This equation describes

Externally Supplied ResourcesSelf-Renewing Resources(a) (b)

(c)

FIG. 1. Schematic description for two types of resources.
(a) Self-renewing resources (e.g., plants), which are replenished
through organic reproduction, and (b) externally supplied re-
sources (e.g., nutrients that sustain gut microbiota), which are
replenished by a constant flux from some external source, and
diluted at a constant rate. (c) The supply rate as a function of
resource abundance for both choices, with κ ¼ ωα ¼ Kα ¼ 1.
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GCRMs with both externally supplied and self-renewing
resource dynamics [26].
The steady-state cavity equations for externally supplied

resources are significantly more complicated and techni-
cally difficult to work with than the corresponding equa-
tions for self-renewing resources. To see this, note that the
steady-state abundance of resource α can be found by
plugging Eq. (3) into Eq. (1) and setting the left-hand side
to zero to get

R̄α ¼ Kα=

�
ωα þ

X
j

N̄jCjα

�
¼ Kα

ωeff
α

; ð5Þ

where we have defined ωeff
α ¼ ωα þ

P
j N̄jCjα. When

S ≫ 1, both the denominator ωeff
α and the numerator Kα

can be modeled by independent normal random variables.
This implies that the steady-state resource abundance is
described by a ratio of normal variables (i.e., the normal
ratio distribution) instead of a truncated Gaussian as in the
self-renewing case [30] (see Fig. S5 of SM [22]). At large
σc, this makes solving the cavity equations analytically
intractable. Luckily, if the variance of the denominator ωeff

α

is small compared with the mean—which is true when σc
not too large—we can still obtain an approximate replica-
symmetric solution by expanding in powers of the standard
deviation over the mean of ωeff

α (see SM [22]). We consider
expansions to the cavity solutions where the denominator
in Eq. (5) is expanded to first order. In general, the
backreaction correction is quite involved since resources
and species form loopy interactions resulting in nontrivial
correlation between Ciα and Ni that must be properly
accounted for (see SM [22]).
Comparison with numerics.—The full derivation of first-

order expansions of the mean-field equations is given in the
SM [22]. The resulting self-consistency equations can be
solved numerically in Mathematica. Figure 2 shows a
comparison between the cavity solution and 1000 inde-
pendent numerical simulations for various ecosystem
properties such as the fraction of surviving species S�=S
and the first and second moment of the species and resource
distributions (simulation details are in the SM [22]). As can
be seen in the figure, our analytic expressions agree
remarkably well over a large range of σc. However, at
very large σc (not shown), the cavity solutions start
deviating from the numerical simulations because the ratio
normal distribution can no longer be described using the
first- order expansion to the full cavity equations.
As a further check on our analytic solution, we ran

simulations where the Ciα were drawn from different
distributions. One pathology of choosing Ciα from a
Gaussian distribution is that when σc is large, many of
consumption coefficients are negative. To test whether our
cavity solution still describes ecosystems when Ciα are
strictly positive, we compare our cavity solution to simu-
lations where theCiα are drawn from a Bernoulli or uniform

distribution. As before, there is remarkable agreement
between analytics and numerics (see Fig. S2 [22]).
Species packing without metabolic trade-offs.—The

essential ingredients needed to derive species packing
bounds for GCRMS are the cavity equations for the average
local susceptibilities, ν ¼ h∂N̄i=∂mii ¼ S−1

P
jð∂N̄i=∂miÞ

and χ ¼ h∂R̄α=∂Xαi ¼ M−1ð∂R̄α=∂XαÞ, with Xα ¼ Kα for
externally supplied resources and Xα ¼ −ωα for self-
renewing resources. These two susceptibilities measure
how the mean species abundance and mean resource abun-
dance respond to changes in the species death rate and the
resource supply (depletion) rate, respectively. They play an
essential role in the cavity equation and can be used for
distinguishing different phases in complex systems [6,32].
For the self-renewing case, the susceptibilities χs and νs

are given by Eqs. (59) and (60) in Ref. [27],

νs ¼ −
ϕN

σ2cχs
; χs ¼

ϕR

1 − γ−1σ2cνs
; ð6Þ

and can be reduced to χs¼ϕR−γ−1ϕN , whereϕR ¼ M�=M,
with M� equal to the number of nonextinct resources in the
ecosystem. In order to guarantee the positivity of hNi, we
must have χs ¼ ϕR − γ−1ϕN > 0, resulting in an upper
bound,

1 ≥
M�

M
>

S�

M
; ð7Þ

which states that the number of surviving resources must be
larger than the number of surviving species.

FIG. 2. Comparison between cavity solutions (see text for
definition) and simulations for the fraction of surviving species
ϕN ¼ ðS�=SÞ and the first and second moments of the species and
resources distributions as a function of σc. The error bar shows
the standard deviation from 1000 numerical simulations with
M ¼ S ¼ 100, and all other parameters are defined in the SM
[22]. Simulations were run using the CVXPY package [31].
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For the externally supplied case, the corresponding
equations take the form

ν ¼ −
ϕN

σ2cχ
; χ ¼ −

1

2γ−1νσ2c
ð1 − h� � �iÞ; ð8Þ

where the full expression of h� � �i can be found in Eq. (63)
in the SM [22]. For our purposes, the most important
property is that in the absence of metabolic trade-offs, the
expression h� � �i is always positive. Combining this obser-
vation with the equations above gives the upper bound:

1

2
>

S�

M
¼ ϕNγ

−1: ð9Þ

Thus, for externally supplied resources, at most half of all
potential niches are occupied. Figure 3 shows numerical
simulations confirming the species packing bound for
various choices of K and σc (see Fig. S6 in SM for various
choices of S=M [22]). The lower diversity found when
resources are supplied externally can be anticipated by
noting that the resource abundance in this model is more
narrowly distributed than in a model with self-renewing
resources. As a result, species experience stronger com-
petition (see Fig. S5 and more details in SM [22]).
However, we still currently lack an intuitive explanation
of why the species packing bound is exactly 0.5.
Species packing with metabolic trade-offs.—We also find

that metabolic trade-offs modify the cavity equations in such
a way that the expression in brackets h� � �i in Eq. (8) can
become negative (see SM [22]). However, it still remains
greater than −1, allowing us to derive a species packing
bound of the form S� < M even in the presence of soft
metabolic constraints. In Fig. 4, we simulated various
ecosystems where the maintenance costs of species were
chosen to obey metabolic trade-offs of the form
mi ¼

P
α Ciα þ δmi, where δmi are independent and iden-

tically distributed (i.i.d.) normal variables with variance σ2m.
Note that a larger σm corresponds to ecosystems with softer
metabolic constraints.We found that when σm=σc > 1, these

ecosystems obey the 1=2 species packing bound derived
above. This can also be analytically shown using the
modified cavity equations derived in the SM [22]. Finally,
we show in the SM that when the metabolic trade-offs take
the form of hard constraints on the consumer preferences as
in Refs. [23,24,28,29], the cavity equations allow for
interesting nongeneric behavior with S� ≥ M, consistent
with these previous works. Importantly, we find that even
modest modifications of the trade-off equationmi ∝

P
α Ciα

result in ecosystems that satisfy the 1=2 species packing
bound.
Classifying ecosystems using species packing.—

Recently, it has become clear that there is a deep relation-
ship between ecosystem and constraint satisfaction prob-
lems [24,25,27,29]. In particular, each species can be
thought of as a constraint on possible resource abundances
[25,27]. Inspired by jamming [33], this suggests that we
can separate ecosystems into qualitatively distinct classes
depending on whether the competitive exclusion bound is
saturated. We designate ecosystems where S� → M (like
GCRMs with self-renewing resources) as isostatic species
packings, and ecosystems where the upper bound Smax on
the number of surviving species is strictly less than the
number of resources S� < Smax < M (like GCRMs with
externally supplied resources without metabolic trade-offs)
as hypostatic species packings. Ecosystems with S� ≥ M
(like GCRMs with hard metabolic constraints) are desig-
nated as nongeneric species packings because of the
presence of a macroscopic number of additional hard
constraints (i.e., the number of additional constraints that
are imposed scales with S and M in the limit S;M → ∞).
This basic schema suggests a way of refining the com-
petitive exclusion principle and may help shed light on
controversies surrounding the validity of basic species
packing bounds.
Discussion.—In this Letter, we examine the effect of

resource dynamics on community structure and large-
scale ecosystem level properties. To do so, we analyzed

(a) (b)
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FIG. 3. Comparison of the species packing ratio S�=M at
various σc and K for self-renewing and externally supplied
resource dynamics. The simulations represent averages from
1000 independent realizations with the system size M ¼ 100,
S ¼ 500 (parameters in SM [22]).

(a) (b)

FIG. 4. Species packing bounds in the presence of metabolic
trade-offs. (a) The species packing ratio S�=M as a function of
σm=σc, where σm is the standard deviation of the δmi and σc=

ffiffiffiffiffi
M

p
is the standard deviation of Ciα. Simulations are for binary
consumer preference matrix Ciα drawn from a Bernoulli distri-
bution with probability p. (b) mi versus

P
α Ciα for p ¼ 0.1 and

σm=σc ¼ 10−0.5. See SM for all parameters [22].
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generalized consumer resource models with two different
resource dynamics: externally supplied resources that are
supplied and degraded at a constant rate and self-replicating
resources whose behavior in the absence of consumers is
well described by a logistic growth law. Using a new cavity
solution for GCRMs with externally supplied resources
and a previously found cavity solution of the GCRM with
self-renewing resources, we show that the community
structure is fundamentally altered by the choice of resource
dynamics. In particular, for externally supplied resources,
we find that species generically can only occupy half of
all available niches, whereas for self-renewing resources all
environmental niches can be filled. We confirm this
surprising bound using numerical simulations.
In this Letter, we consider the effect of metabolic trade-

offs and show that they can increase species packing in an
ecosystem. In the future, it will be interesting to ask how
other specialized network structures, including niche par-
titioning, higher specialization, or combinations of spe-
cialists and generalists, can affect our results. Based on our
experience, we expect that, even in these more complicated
ecosystems, our species packing bound will hold quite
generically. But much more work needs to be done to
confirm if this is really the case.
Our results show how resource dynamics, which are

neglected in commonly used Lotka-Volterra models, can
fundamentally alter the properties of ecosystems. Much
work still needs to be done to see if and how our results
must be modified to account for other ecological processes
such as demographic stochasticity, spatial structure, and
microbe-specific interactions such as cross feeding [7,8].
It will also be necessary to move beyond steady states and
consider the dynamical properties of these ecosystems.
More generally, it will be interesting to further explore the
idea that we can classify ecosystems based on species
packing properties and see if such a schema can help us
better understand the origins of the incredible diversity we
observe in real-world ecosystems.
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