
Supplemental Material

I. DERIVATION OF CAVITY SOLUTION
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FIG. S1. Schematic outlining steps in cavity solution. 1. The initial parameter information consists of the probability
distributions for the mechanistic parameters: Kα, mi and Ciα. We assume they can be described by their first and second
moments. 2. The species dynamics Ni(

∑
α CiαRα−mi) in eqs. (1) are expressed as a factor graph. 3. Add the "Cavity" species

0 as the perturbation. 4. Sum the resource abundance perturbations from the "Cavity" species 0 at steady state and update
the species abundance distribution to reflect the new steady state. 5. Employing the central limit theorem, the backreaction
contribution from the "cavity" species 0 and the non-negativity constraint, the species distribution is expressed as a truncated
normal distribution. 6. Repeat Step 2-4 for the resources. 7. The resource distribution is the ratio distribution from the ratio
of two normal variables Kα and ωα +

∑
iNiCiα. 8. The self-consistency equations are obtained from the species and resource

distributions. Note that γ−1σ2
cν 〈R〉 in the dominator of 〈R〉 is from the correlation between Ni and Ciα in

∑
iNiCiα.

A. Model setup

In this section, we derive the cavity solution to the linear resource dynamics (eq. 1) in the main text)
dNi
dt = Ni

(∑
β CiβRβ −mi

)
dRα
dt = Kα − ωαRα −

∑
j NjCjαRα

(1)

Note that here we follow closely our derivation in [1, 2]. The main difference is that here we consider linear resource
dynamics, which as we will see below, makes the problem much more technically challenging.

Consumer preference Ciα are random variables drawn from a Gaussian distribution with mean µ/M and variance
σ2
c/M . They can be deposed into Ciα = µ/M + σcdiα, where the fluctuating part diα obeys

〈diα〉 = 0 (2)

〈diαdjβ〉 =
δijδαβ
M

. (3)
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We also assume that both the carrying capacity Kα and the minimum maintenance cost mi are independent Gaussian
random variables with mean and covariance given by

〈Kα〉 = K (4)
Cov(Kα,Kβ) = δαβσ

2
K (5)

〈mi〉 = m (6)
Cov(mi,mj) = δijσ

2
m (7)

Let 〈R〉 = 1
M

∑
β Rβ and 〈N〉 = 1

S

∑
j Nj be the average resource and average species abundance, respectively.

With all these defined, we can re-write eqs. (1) as

dNi
dt

= Ni

µ 〈R〉 −m+
∑
β

σcdiβRβ − δmi

 (8)

dRα
dt

= K + δKα −

ωα + γ−1µ 〈N〉+
∑
j

σcdjαNj

Rα (9)

where δKα = Kα −K, δmi = mi −m and γ = M/S. As noted in the main text, the basic idea of cavity method is
to relate an ecosystem with M + 1 resources (variables) and S + 1 species (inequality constraints) to that with M
resources and S species. Following eq. (8) and eq. (9), one can write down the ecological model for the (M + 1, S+ 1)
system where resource R0 and species N0 are introduced to the (M,S) system as:

dN0

dt
=N0

µ 〈R〉−m+
∑
β

σcd0βRβ−δm0

 (10)

dR0

dt
=K+δK0 −

ω0 + γ−1µ 〈N〉+
∑
j

σcdj0Nj

R0 (11)

B. Perturbations in cavity solution

Following the same procedure as in [1], we introduce the following susceptibilities:

χRαβ = −∂R̄α
∂ωβ

(12)

χNiα = −∂N̄i
∂ωα

(13)

νRαi =
∂R̄α
∂mi

(14)

νNij =
∂N̄i
∂mj

(15)

where we denote X̄ as the steady-state value of X. Recall that the goal is to derive a set of self-consistency equations
that relates the ecological system characterized by M + 1 resources (variables) and S+ 1 species (constraints) to that
with the new species and new resources removed: (S + 1,M + 1) → (S,M). To simplify notation, let X̄\0 denote
the steady-state value of quantity X in the absence of the new resource and new species. Since the introduction of
a new species and resource represents only a small (order 1/M) perturbation to the original ecological system, we
can express the steady-state species and resource abundances in the (S + 1,M + 1) system with a first-order Taylor
expansion around the (S,M) values. We note that the new terms σcdi0R0 in Eq. eq. (9) and σcd0αN0 in eq. (8) can
be treated as perturbations to mi, and Kα, respectively, yielding:

N̄i = N̄i/0 − σc
∑
β/0

χNiβd0βN̄0 − σc
∑
j/0

νNij dj0R̄0 (16)
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R̄α = R̄α/0 − σc
∑
β/0

χRαβd0βN̄0 − σc
∑
j/0

νRαjdj0R̄0 (17)

Note
∑
j/0 and

∑
β/0 mean the sum excludes the new species 0 and the new resource 0. The next step is to plug eq.

(16) and eq. (17) into eq. (10) and eq. (11) and solve for the steady-state value of N0 and R0.

C. Self-consistency equations for species

For the new cavity species, the steady equation takes the form

0 = N̄0

µ 〈R〉 −m− σ2
c N̄0

∑
α/0,β/0

χRαβd0αd0β − σ2
c R̄0

∑
β/0,j/0

νRβjd0βd0j +
∑
β/0

σcd0βR̄β/0 + σcd00R̄0 − δm0

 (18)

Notice that each of the sums in this equation is the sum over a large number of weak correlated random variables,
and can therefore be well approximated by Gaussian random variables for large enough M and S. We can calculate
the sum of the random variables: ∑

β/0,j/0

νRβjd0βd0j =
1

M

∑
β/0,j/0

νRβjδj0δβ0 = 0 (19)

∑
α/0,β/0

χRαβd0αd0β =
1

M

∑
α/0,β/0

χRαβδαβ =
1

M

∑
α

χRαα =
1

M
Tr(χRαβ) = χ (20)

where χ is the average susceptibility. Using these observations about above sums, we obtain

0 = N̄0

µ 〈R〉 −m− σ2
cχN̄0 +

∑
β/0

σcd0βR̄β/0 + σcd00R̄0 − δm0

+O(M−1/2), (21)

Employing the Central Limit Theorem, we introduce an auxiliary Gaussian variable zN with zero mean and unit
variance and rewrite this as ∑

β/0

σcd0βR̄β/0 + σcd0βR̄0 − δm0 = zN
√
σ2
cqR + σ2

m, (22)

where qR is the second moment of the resource distribution,

qR =
1

M

∑
β

R2
β .

We can solve eq. (21) in terms of the quantities just defined:

µ 〈R〉 −m− σ2
cχN̄0 +

√
σ2
cqR + σ2

mzN ≤ 0 (23)

Inverting this equation one gets the steady state of species

N̄0 = max

[
0,

µ 〈R〉 −m+
√
σ2
cqR + σ2

mzN
σ2
cχ

]
(24)

which is a truncated Gaussian.
Let y = max

(
0, ab + c

bz
)
, with z being a Gaussian random variable with zero mean and unit variance. Then its j-th

moment is given by 〈
yj
〉

=
1√
2π

∫ ∞
− ac

e−
x2

2

(c
b
x+

a

b

)j
dx (25)

=
(c
b

)j 1√
2π

∫ ∞
− ac

e−
x2

2

(
x+

a

c

)j
dx (26)

=
(c
b

)j
wj(

a

c
) (27)
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here we define wj(ac ) = 1√
2π

∫∞
− ac

e−
x2

2

(
x+ a

c

)j
dx

With this we can easily write down the self-consistency equations for the fraction of non-zero species and resources
as well as the moments of their abundances at the steady state:

φN =
S∗

S
= w0

(
µ 〈R〉 −m√
σ2
cqR + σ2

m

)
(28)

〈N〉 =
1

S

∑
j

Nj =

(√
σ2
cqR + σ2

m

σ2
cχ

)
w1(

µ 〈R〉 −m√
σ2
cqR + σ2

m

) (29)

qN =
1

S

∑
j

N2
j =

(√
σ2
cqR + σ2

m

σ2
cχ

)2

w2(
µ 〈R〉 −m√
σ2
cqR + σ2

m

) (30)

Note that S∗ is the number of surviving species at the steady state.

D. Self-consistency equations for resources

We now derive the equations for the steady-state of the resource dynamics. Inserting eq. (17) into eq. (11) gives:

0=K+δK0−R̄0

ω + γ−1µ 〈N〉−σ2
c N̄0

∑
β/0,j/0

χNjβdj0d0β−σ2
c R̄0

∑
i/0,j/0

νNij d0id0j+
∑
j/0

σcdj0N̄j/0+σcd00N̄0+δω0

 (31)

We can simplify the sums by averaging over the random variables:∑
β/0,j/0

χNjβdj0d0β =
1

M

∑
β/0,j/0

χNjβδj0δβ0 = 0 (32)

∑
i/0,j/0

νNij d0id0j =
1

M

∑
i/0,j/0

νNij δij =
1

M

∑
i

νNii =
1

M
Tr(νNij ) = γ−1ν (33)

where ν is the average susceptibility. Finally, note that we can write

δω0 +
∑
j

σcdj0Nj = zR
√
γ−1σ2

cqN + σ2
ω, (34)

where we have introduced another auxiliary Gaussian variable zR with zero mean and unit variance and qN is the
second moment of the resource distribution defined in eq. (56), Using these observations, we obtain a quadratic
expression for the resource.

K + δK0 − (ω0 + γ−1µ 〈N〉+
√
γ−1σ2

cqN + σ2
ωzR)R̄0 + γ−1σ2

cνR̄
2
0 = 0 (35)

1. Cavity solution: without backreaction

As discussed in the main text, we cannot solve the full resource equations exactly. For this reason, we perform an
expansion, as a start, we calculate this equation by setting ν = 0 in the resource equation. This is equivalent in the
TAP language of ignoring the backreaction term.

Under this assumption, the quadratic equation for the resource, simply becomes a linear equation that can be
re-arranged to give

R̄α =
K + δKα

ω + γ−1µ 〈N〉+ zR
√
γ−1σ2

cqN + σ2
ω

(36)

Assuming the fluctuations in the denominator is small, i.e.
√
γ−1σ2

cqN + σ2
ω � ω+ γ−1µ 〈N〉, we can do a first-order

Taylor expansion around the mean value and also ignore the coupling term between δKα and zR:

R̄α =
K + δKα

ω + γ−1µ 〈N〉
−
K
√
γ−1σ2

cqN + σ2
ω

(ω + γ−1µ 〈N〉)2
zR (37)
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With all these approximations, we get the first two moments of the steady-state resource abundance distribution:

〈R〉 =
K

ω + γ−1µ 〈N〉
(38)

qR = 〈R〉2 +
σ2
K

(ω + γ−1µ 〈N〉)2
+
K2(γ−1σ2

cqN + σ2
ω)

(ω + γ−1µ 〈N〉)4
(39)

The susceptibility is given by:

χ = −
〈
∂R̄α
∂wα

〉
=

〈
Kα

(ωα +
∑
j cjαN̄j)

2
+

2K
√
γ−1σ2

cqN + σ2
ω

(ω + γ−1µ 〈N〉)3
zR

〉
=

K

(ω + γ−1µ 〈N〉)2
(40)

Combined with self-consistency equations for species, we get the full set of :

φN = w0

(
µ 〈R〉 −m√
σ2
cqR + σ2

m

)
, χ =

K

(ω + γ−1µ 〈N〉)2
(41)

〈N〉 =

(√
σ2
cqR + σ2

m

σ2
cχ

)
w1(

µ 〈R〉 −m√
σ2
cqR + σ2

m

), 〈R〉 =
K

ω + γ−1µ 〈N〉
(42)

qN =

(√
σ2
cqR + σ2

m

σ2
cχ

)2

w2(
µ 〈R〉 −m√
σ2
cqR + σ2

m

), qR = 〈R〉2 +
σ2
K

(ω + γ−1µ 〈N〉)2
+
K2(γ−1σ2

cqN + σ2
ω)

(ω + γ−1µ 〈N〉)4
(43)

2. Cavity solution: with backreaction correction

We start again with the full resource equation:

K + δK0 − (ω0 + γ−1µ 〈N〉+
√
γ−1σ2

cqN + σ2
ωzR)R̄0 + γ−1σ2

cνR̄
2
0 = 0 (44)

Since R0 > 0 and ν < 0, the solution of eq. (44) gives:

R0 =
ω + γ−1µ 〈N〉+

√
γ−1σ2

cqN + σ2
ωzR

2γ−1σ2
cν

−

√
(ω + γ−1µ 〈N〉+

√
γ−1σ2

cqN + σ2
ωzR)2 − 4γ−1νσ2

c (K + δK0)

2γ−1σ2
cν

(45)

For the 1st order expansion, we assume 4γ−1νσ2
cδK0+2

√
γ−1σ2

cqN + σ2
ωzR+(γ−1σ2

cqN+σ2
ω)z2R � (ω+γ−1µ 〈N〉)2−

4γ−1νσ2
cK and do a 1st order expansion around the mean of the form:√
(ω + γ−1µ 〈N〉+

√
γ−1σ2

cqN + σ2
ωzR)2 − 4γ−1νσ2

c (K + δK0)

=
√

(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK +

(γ−1σ2
cqN + σ2

ω)z2R + 2(ω + γ−1µ 〈N〉)
√
γ−1σ2

cqN + σ2
ωzR − 4γ−1νσ2

cδK0

2
√

(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK

(46)

Using these expressions, the moments of their abundances at steady state can be calculated yielding:

〈R〉 =
ω + γ−1µ 〈N〉

2γ−1σ2
cν

−
√

(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK

2γ−1σ2
cν

− γ−1σ2
cqN + σ2

ω

4γ−1σ2
cν
√

(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK

(47)

qR = 〈R〉2 +
(γ−1σ2

cqN + σ2
ω)2 + 8(γ−1νσ2

cσK)2

2(2γ−1σ2
cν)2[(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2

cK]

+
(γ−1σ2

cqN + σ2
ω)[
√

(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK − (ω + γ−1µ 〈N〉)]2

(2γ−1σ2
cν)2[(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2

cK]
(48)
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From eq. (45),

∂R0

∂ω
=

1

2γ−1σ2
cν

1−
ω + γ−1µ 〈N〉+

√
γ−1σ2

cqN + σ2
ωzR√

(ω + γ−1µ 〈N〉+
√
γ−1σ2

cqN + σ2
ωzR)2 − 4γ−1νσ2

c (K + δK0)

 (49)

The term inside the bracket can be expanded as:

ω + γ−1µ 〈N〉+
√
γ−1σ2

cqN + σ2
ωzR√

(ω + γ−1µ 〈N〉+
√
γ−1σ2

cqN + σ2
ωzR)2 − 4γ−1νσ2

c (K + δK0)
(50)

≈
ω+γ−1µ〈N〉+

√
γ−1σ2

cqN+σ2
ωzR√

(ω+γ−1µ〈N〉)2−4γ−1νσ2
cK

[
1− (γ−1σ2

cqN+σ2
ω)z

2
R+2(ω+γ−1µ〈N〉)

√
γ−1σ2

cqN+σ2
ωzR−4γ

−1νσ2
cδK0

2(ω+γ−1µ〈N〉)2−4γ−1νσ2
cK

]
The susceptibilities are given by averaging eq. (49)

χ = −
〈
∂R

∂ω

〉
(51)

= − 1

2γ−1νσ2
c

{
1− ω + γ−1µ 〈N〉√

(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK

+
3(γ−1σ2

cqN + σ2
ω)(ω + γ−1µ 〈N〉)

2[(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK]3/2

}
(52)

ν =

〈
∂N

∂m

〉
= − φN

σ2
cχ

(53)

Combined with self-consistency equations for species, get the full set of 1st order self-consistency equations:

φN = w0

(
µ 〈R〉 −m√
σ2
cqR + σ2

m

)
(54)

〈N〉 =

(√
σ2
cqR + σ2

m

σ2
cχ

)
w1(

µ 〈R〉 −m√
σ2
cqR + σ2

m

) (55)

qN =

(√
σ2
cqR + σ2

m

σ2
cχ

)2

w2(
µ 〈R〉 −m√
σ2
cqR + σ2

m

) (56)

〈R〉 =
ω + γ−1µ 〈N〉

2γ−1σ2
cν

−
√

(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK

2γ−1σ2
cν

− γ−1σ2
cqN + σ2

ω

4γ−1σ2
cν
√

(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK

(57)

qR = 〈R〉2 +
(γ−1σ2

cqN + σ2
ω)2 + 8(γ−1νσ2

cσK)2

2(2γ−1σ2
cν)2[(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2

cK]

+
(γ−1σ2

cqN + σ2
ω)[
√

(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK − (ω + γ−1µ 〈N〉)]2

(2γ−1σ2
cν)2[(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2

cK]
(58)

χ = − 1

2γ−1νσ2
c

{
1− ω + γ−1µ 〈N〉√

(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK

+
3(γ−1σ2

cqN + σ2
ω)(ω + γ−1µ 〈N〉)

2[(ω + γ−1µ 〈N〉)2 − 4γ−1νσ2
cK]3/2

}
(59)

ν = − φN
σ2
cχ

(60)

II. COMPARISON BETWEEN WITH AND WITHOUT BACKREACTION

We can reduce the cavity solution with backreaction to the simpler one when σc is large. In fact all the complexity
of cavity solution with backreaction comes from the expression for eq. (45):

R0 =
ω + γ−1µ 〈N〉+

√
γ−1σ2

cqN + σ2
ωzR

2γ−1σ2
cν

−

√
(ω + γ−1µ 〈N〉+

√
γ−1σ2

cqN + σ2
ωzR)2 − 4γ−1νσ2

c (K + δK0)

2γ−1σ2
cν

(61)



7

However, if we assume (ω + γ−1µ 〈N〉 +
√
γ−1σ2

cqN + σ2
ωzR)2 � −4γ−1νσ2

c (K + δK0), we can expand the second
term following

√
1− x ≈ 1− x

2 −
x2

8 +O(x3).

R0 =
K + δK0

ω + γ−1µ 〈N〉+
√
γ−1σ2

cqN + σ2
ωzR

+
γ−1σ2

cν(K + δK0)2

(ω + γ−1µ 〈N〉+
√
γ−1σ2

cqN + σ2
ωzR)3

(62)

The first term of above equation is the cavity solution without backreaction.

A. Comparing the cavity solutions to numerical simulations

(b) Bernoulli distribution (c) Uniform distribution(a) Gaussian distribution

FIG. S2. Comparison of numerics and cavity solutions with and without the backreaction term as a function of σc. φN = S∗

S

is the fraction of surviving species. 〈N〉 ,
〈
N2
〉
, 〈R〉 and

〈
R2
〉
are the first and second moments of the species and resources

distribution respectively. The simulations details can be found at the SM: III. C is sampled either from a Gaussian, Bernoulli,
or uniform distribution as indicated.

We show a comparison between theoretical and numerical results for different choices of how to sample the con-
sumption matrix in Fig. 2 in the main text and Fig. S2. These figures show that the cavity solution with backreaction
performs better for the Gaussian and Bernoulli cases. However, in the uniform case, the cavity solution without back-
reaction matches with numerical simulations perfectly, while the cavity solution with backreaction performs worse
than without backreaction. In the section II, we have shown the cavity solution with backreaction can be reduced to
the cavity solution without backreaction and hence should be a more robust solution. So why does it perform badly
in the uniform case? The reason is that in the uniform case µ = Mb/2� 1 when the system size M is large, leading
to |χ| ∼ 1

(ω+γ−1µ〈N〉)2 � 1. From eqs. (55, 56), we see that both 〈N〉 and
〈
N2
〉
depends on 1

χ � 1 and the numerical
solver becomes unstable.

III. SIMULATION DETAILS

A. Parameters

All simulations are done with the CVXPY package[3] in PYTHON 3. All codes are available on GitHub at
https://github.com/Emergent-Behaviors-in-Biology/species-packing-bound.

• Fig. 2: the consumer matrix C is sampled from the Gaussian distribution N ( µM , σc√
M

). S = 100, M = 100,
µ = 1, K = 1, σK = 0.1 , m = 1, σm = 0.1, ω = 1, σω = 0 and each data point is averaged from 1000
independent realizations. We only provide the cavity solution with backreaction here.

• Fig. 3, Fig. S3, Fig. S5, Fig. S6: the consumer matrix C is sampled from the Gaussian distribution N ( µM , σc√
M

).
S = 500, M = 100, µ = 1, σκ = 0.1 , m = 1, σm = 0.1, ω = 1, σω = 0 for externally supplied resource dynamics
and S = 500, M = 100, µ = 1, σκ = 0.1 , m = 1, σm = 0.1, τ = 1, στ = 0 for the self-renewing one. Each data
point is averaged from 1000 independent realizations. For Fig. S3 , K = 10. For Fig. S5, σc = 5, K and κ are
fixed at 4; For Fig. S6, σc = 5, κ = 4, S/M has a range from 1 to 100, and each data point is averaged from
100 independent realizations.

https://github.com/Emergent-Behaviors-in-Biology/species-packing-bound
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• Fig. 4: the consumer matrix C is sampled from the Bernoulli distribution Bernoulli(p) and p are fixed to 0.1,
0.2 and 0.1. mi follows metabolic tradeoffs Eq. (70) with σε = 0, m̃ = 1. We also set S = 500, M = 100,
K = 10, σK = 0.1. Each data point is averaged from 100 independent realizations.

• Fig. S2(a): the simulation is the same as Fig. 2. We show both the cavity solutions with and without reaction
here.

• Fig. S2(b): the consumer matrix C is sampled from the Bernoulli distribution Bernoulli(p). S = 100, M = 100,
K = 1, σK = 0.1 , m = 1, σm = 0.1, ω = 1, σω = 0 and each data point is averaged from 1000 independent
realizations. The cavity solution is obtained by approximating the Bernoulli distribution to the corresponding
Gaussian distribution i.e. µ = pM , σc =

√
Mp(1− p)

• Fig. S2(c): the consumer matrix C is sampled from the uniform distribution U(0, b). S = 100, M = 100,
K = 1, σK = 0.1 , m = 1, σm = 0.1, ω = 1, σω = 0 and each data point is averaged from 1000 independent
realizations. The cavity solution is obtained by approximating the uniform distribution to the corresponding
Gaussian distribution, i.e. µ = bM/2, σc = b

√
M/12.

• Fig. S4(a): the consumer matrix C is sampled from the Bernoulli distribution Bernoulli(p). S = 500, M = 100,
K = 1, σK = 0.1 , m = 1, σm = 0.1, ω = 1, σω = 0 and each data point is averaged from 1000 independent
realizations. The cavity solution is obtained by approximating the Bernoulli distribution to the corresponding
Gaussian distribution i.e. µ = pM , σc =

√
Mp(1− p)

• Fig. S4(b): the consumer matrix C is sampled from the uniform distribution U(0, b). S = 500, M = 100,
K = 1, σK = 0.1 , m = 1, σm = 0.1, ω = 1, σω = 0 and each data point is averaged from 1000 independent
realizations. The cavity solution is obtained by approximating the uniform distribution to the corresponding
Gaussian distribution, i.e. µ = bM/2, σc = b

√
M/12.

B. Distinction between extinct and surviving species

In the main text, we show that the value of species packing S∗

M for the externally supplied resources must be smaller
than 0.5. However, in numerical simulations, even for the extinct species the abundance is never exactly equal 0 due
to numerical errors. As a result, we must choose a threshold to distinguish extinct and surviving species in order to
calculate S∗. Since we are using the equivalence with convex optimization to solve the generalized consumer-resource
models[2, 4], we can easily choose a reasonable threshold (e.g. 10−2 in Fig. S3) since the extinct and surviving species
are well separated in two peaks (see Fig. S3).

(a) (b) (c)

FIG. S3. Species abundance N in equilibrium at different σc for externally supplied resource dynamics at K = 10. The
simulations parameters can be found at the SM: III.

IV. AN UPPER BOUND FOR SPECIES PACKING

By analyzing the susceptibilities in the full Cavity solutions, an upper bound for species packing can be derived
for both resource dynamics in GCRMs. The derivations can also be extended to the case where metabolic tradeoffs
impose hard or soft constraints on the parameter values.
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A. Externally supplied resource dynamics

The response functions χ and ν can be written as:

χ = − 1

2γ−1σ2
cν

1−

〈
ω + γ−1µ 〈N〉+

√
γ−1σ2

cqN + σ2
ωzR√

(ω + γ−1µ 〈N〉+
√
γ−1σ2

cqN + σ2
ωzR)2 − 4γ−1νσ2

c (K + δK0)

〉 (63)

ν = − φN
σ2
cχ

(64)

Substituting eq. (64) into eq. (63) and rearranging yields

γ−1φN =
1

2

1−

〈
ω + γ−1µ 〈N〉+

√
γ−1σ2

cqN + σ2
ωzR√

(ω + γ−1µ 〈N〉+
√
γ−1σ2

cqN + σ2
ωzR)2 − 4γ−1νσ2

c (K + δK0)

〉 . (65)

The numerator of the term in angle brackets is the total depletion rate for a given resource when it is first added to
the system. Depletion rates are always positive in this model, so the right-hand side is always less than 1/2. Noticing
γ = M

S , φN = S∗/S, χ > 0, we immediately obtain an upper bound on S∗

M :

1

2
>
S∗

M
. (66)

B. Self-renewing(MacArthur’s) resource dynamics

Using the analytical expressions χ, ν and self-consistent equations in ref. [5], we can derive the following expressions:

〈N〉 =

( √
σ2
cqR + σ2

m

σ2
c (φR − γ−1φN )

)
w1

(
µ 〈R〉 −m√
σ2
cqR + σ2

m

)
, 〈R〉 =

( √
γ−1σ2

cqN + σ2
K

φR(φR − γ−1φN )−1

)
w1

(
κ− γ−1µ 〈N〉√
γ−1σ2

cqN + σ2
K

)
(67)

To derive bounds, we consider various limits of these expressions. First, consider the case were we put many species
S → ∞ into the ecosystem with fixed number of resources M , (i.e γ = M

S → 0). In order to keep 〈N〉 positive, we
must have φR − γ−1φN > 0, giving an upper bound:

1 ≥ M∗

M
>
S∗

M
(68)

C. Externally supplied resources with metabolic tradeoffs

Here we consider two kinds of constraints on the parameters, encoding metabolic tradeoffs. In the first, the
maintenance cost mi = m is the same for all species, and the sum of the consumption preferences is constrained to
equal some fixed “enzyme budget” E that is nearly the same for all species:∑

α

Ciα = E + δEi (69)

where δEi is a small random variable with mean zero and variance σ2
E . A hard constraint can be generated by taking

σE = 0.
The second kind of constraint does not make any assumptions about Ciα, but assigns a cost m̃ to every unit of

consumption capacity, so that

mi = (1 + εi)m̃
∑
α

Ciα + δmi (70)

where εi and δmi are small random variables with mean zero and variances σ2
ε and σ2

m, respectively. A hard constraint
can be generated by taking σε = σm = 0.

In the simplest way of setting up the first constraint, the equilibrium equations actually reduce to the same form
as the second. Specifically, one usually generates a consumer preference matrix satisfying the constraint by first
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generating an i.i.d. matrix C̃iα, and then setting Ciα = (E + δEi)C̃iα/
∑
β C̃iβ . The resulting dynamics can be

written as:

dNi
dt

= Ni

[∑
α

(E + δEi)
C̃iα∑
β C̃iβ

Rα −mi

]
(71)

=
Ni(E + δEi)∑

β C̃iβ

[∑
α

C̃iαRα −m
∑
β C̃iβ

E + δEi

]
. (72)

Dropping the tilde’s, we can write the equilibrium condition in the same form that results from the second kind of
constraint:

0 = Ni{
∑
α

Ciα[Rα − (1 + εi)m̃]− δmi} (73)

with

m̃ =
m

E
(74)

εi = −δEi
E

(75)

δmi = 0. (76)

Inspection of Equation 73 immediately reveals an important novelty: now when we add a new resource as part of
the cavity protocol, the perturbation to the growth rate can either be positive or negative, depending on the sign of
[Rα− (1 + εi)m̃]. This turns out to be the crucial factor that prevents the proof of the S∗/M < 1/2 bound from going
through, regardless of the size of σε or σm.

Following the same steps as above, we arrive at the following set of equilibrium conditions for the new species N0

and resource R0:

0 = N̄0

[
µ〈R〉 − µm̃+ σNzN − σ2

cχN̄0

]
(77)

0 = K + δK0 − (ω + γ−1µ〈N〉+ σRzR + γ−1σ2
cνm̃)R̄0 + γ−1σ2

cνR̄
2
0 (78)

where

σ2
N = σ2

m + σ2
c [qR − 2m̃〈R〉+ m̃2(1 + σ2

ε )] (79)
σ2
R = σ2

ω + γ−1σ2
cqN + γ−2σ4

cν
2m̃2σ2

ε . (80)

These are nearly identical to the equations we had before. The two key changes are the presence of a term with a
negative sign inside the coefficient σN of the random variable zN , and the γ−1σ2

cνm̃ term inside the parentheses in
the equation for the resources.

We can now proceed in the same way as before, solving for N̄0 and R̄0 and taking derivatives to compute the
susceptibilities. We find:

χ = − 1

2γ−1σ2
cν

{
1−

〈
ω + γ−1µ〈N〉+ σRzR + γ−1σ2

cνm̃√
(ω + γ−1µ〈N〉+ σRzR + γ−1σ2

cνm̃)2 − 4γ−1σ2
cν(K + δK0)

〉}
(81)

ν = − φN
σ2
cχ

(82)

This is almost the same as the expression in Equation (63) obtained in the absence of constraints, except for the extra
term γ−1σ2

cνm̃ in the numerator and denominator. This term is significant because ν is a negative number, and if its
absolute value is large enough, it can make the whole term in angle brackets negative. Inserting the second equation
into the first, we obtain a formula for S∗/M :

S∗

M
= γ−1φN = 1

2

{
1−

〈
ω+γ−1µ〈N〉+σRzR+γ−1σ2

cνm̃√
(ω+γ−1µ〈N〉+σRzR+γ−1σ2

cνm̃)2−4γ−1σ2
cν(K+δK0)

〉}
(83)

The term in brackets can now be negative, but is always greater than -1. We thus obtain the bound:

S∗

M
< 1. (84)
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 Bernoulli distribution

 Uniform distribution

(a)

(b)

self-renewing externally supplied

externally suppliedself-renewing

FIG. S4. Comparison of species packing S∗

M
for different distributions of consumption matrices C with self-renewing and

externally-supplied resource dynamics. The simulations represent averages from 1000 independent realizations with the system
size M = 100, S = 500 and parameters at the SM: III.

The term approaches -1 in the limit ν → −∞, which is the same limit required to saturate the bound in the model
with self-renewing resources. As in that case, the limit cannot actually be achieved, because ν → −∞ implies χ→ 0
(Equation (82)), and χ appears in the denominator of the final expression for N̄0 (Equation (24)), while the numerator
always remains finite.

The only way to achieve the limit S∗

M = 1 is to make the numerator vanish in the same way as the denominator,
which can only happen in the presence of hard constraints σm = σε = 0. In this case, it is easy to see that setting
Rα = m̃ for all α and χ → 0, ν → −∞ solves both the steady state equations, regardless of the value of Ñ0. In
Equation (77) for Ñ0, the mean and the fluctuating part inside the brackets both vanish individually (µ〈R〉−µm̃ = 0,
σN = 0), and the back-reaction term also vanishes (σ2

cχN̄0 = 0), leaving the equation trivially satisfied. In Equation
(78) only the terms with ν are significant in this limit, and they cancel each other perfectly. This is the “shielded
phase” discussed in [6].

Note also that if we take the χ→ 0, ν → −∞ limit first, before performing any substitutions, Equations (81) and
(82) are satisfied independently of the choice of φN . This means that γ−1φN = S∗/M can be greater than 1, as
observed in the simulations of [7].

D. Numerical evidence

We show a comparison between the cavity solution and numerical results in Fig. 3 and Fig. S4 for three different
distributions of the consumption matrix C. For the Gaussian and Bernoulli distributions, S∗

M can reach the upper
bound we derived for two different resource dynamics. For externally supplied resource dynamics, S

∗

M never exceeds
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(a) (b) (c)

FIG. S5. (a) Comparison of resource abundance for self-renewing and externally-supplied resource dynamics at K = κ = 4
and σc = 5. The dashed lines are the gaussian curve fitting about the abundances with mean µ and variance σ2. (b, c) the
difference of the first and second moment of the resource abundance between self-renewing and externally-supplied resource
dynamics with the same K = κ and σc, ∆R = Rs−Re, ∆qR = qsR− qeR, where the upper label e and s represents self-renewing
and externally-supplied, respectively. All simulations are the same as Fig. 3 in the main text.

0.5. For the uniform case, since the fluctuation of consumption matrix is small, the niche overlap is large and there
is fierce competitions among species and theses ecosystems live very far from the upper bounds we derive. However,
even for the uniform case, the species packing fraction is significantly larger for self-renewing resource dynamics than
externally supplied resource dynamics. For the Bernoulli case, when the binomial probability p ∼ 1/M , the bound
can be slightly above 0.5, as shown in Fig. S4. In this regime, the consumer matrix is sparse. Each species only
consumes one or two different resources and species rarely compete with each other making it is possible to pack more
species.

E. Numerical analysis

Eq. (28) shows the fraction of surviving species S∗/S is determined by the first moment (R = 〈R〉) and second
moment(qR =

〈
R2
〉
) of the resource abundance. In Fig. S5 (a), the simulation shows the two dynamics have similar

means but quite different variance for K = κ = 4 and σc = 5. And the external-supplied resource dynamics with a
larger qR (sharper distribution) have a smaller fraction of surviving species S∗/S.

Fig. S5 (b, c) shows the first and second moment differences between self-renewing and externally-supplied resource
dynamics, ∆R and ∆qR are always positive, which means the self-renewing resource dynamics always has larger
R and qR across the whole heat map. And thus, it is generally true that external-supplied dynamics has sharper
resource distribution and can explain the lower diversity (in high σc regime, it looks ∆R and ∆qR are close to zero but
considering there is σc in the dominator of eq. (28), a slight difference in qR can have a huge difference.). However,
note that S∗/S (the fraction of species in the regional species pool that survive) is not the same as species packing
S∗/M and it cannot explain why the species packing bound is exactly at 0.5.
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FIG. S6. The species packing ratio S∗

M
at various S/M for externally supplied resource dynamics. Other parameters are the

same as Fig. 3 in the main text.
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