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FIG. S1. Schematic outlining steps in cavity solution. 1. The initial parameter information consists of the probability
distributions for the mechanistic parameters: K., m; and C;o. We assume they can be described by their first and second
moments. 2. The species dynamics N; (3, CiaRa —mi) in egs. (1) are expressed as a factor graph. 3. Add the "Cavity" species
0 as the perturbation. 4. Sum the resource abundance perturbations from the "Cavity" species 0 at steady state and update
the species abundance distribution to reflect the new steady state. 5. Employing the central limit theorem, the backreaction
contribution from the "cavity" species 0 and the non-negativity constraint, the species distribution is expressed as a truncated
normal distribution. 6. Repeat Step 2-4 for the resources. 7. The resource distribution is the ratio distribution from the ratio
of two normal variables Ko and wq + Y, NiCio. 8. The self-consistency equations are obtained from the species and resource

distributions. Note that 7_1031/ (R) in the dominator of (R) is from the correlation between N; and Ciq in Y-, NiCia.

A. Model setup

In this section, we derive the cavity solution to the linear resource dynamics (eq. 1) in the main text)
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Note that here we follow closely our derivation in [1, 2]. The main difference is that here we consider linear resource
dynamics, which as we will see below, makes the problem much more technically challenging.

Consumer preference Cj,, are random variables drawn from a Gaussian distribution with mean p/M and variance
Jg /M. They can be deposed into Cjo, = /M + 0.d;q, where the fluctuating part d;, obeys
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We also assume that both the carrying capacity K, and the minimum maintenance cost m; are independent Gaussian
random variables with mean and covariance given by

(Ko) =K (4)
Cov(Kq, Kg) = dapoi (5)
(mi) =m (6)
Cov(m;, m;) = 5w072n (7)

Let (R) = ﬁ ZB Rp and (N) = %Zj N; be the average resource and average species abundance, respectively.
With all these defined, we can re-write egs. (1) as
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where 0K, = K, — K,0m; = m; —m and v = M/S. As noted in the main text, the basic idea of cavity method is
to relate an ecosystem with M + 1 resources (variables) and S + 1 species (inequality constraints) to that with M
resources and S species. Following eq. (8) and eq. (9), one can write down the ecological model for the (M 41,5 +1)
system where resource R, and species Ny are introduced to the (M, S) system as:
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B. Perturbations in cavity solution
Following the same procedure as in [1], we introduce the following susceptibilities:
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where we denote X as the steady-state value of X. Recall that the goal is to derive a set of self-consistency equations
that relates the ecological system characterized by M + 1 resources (variables) and S + 1 species (constraints) to that
with the new species and new resources removed: (S + 1, M + 1) — (S, M). To simplify notation, let X\, denote
the steady-state value of quantity X in the absence of the new resource and new species. Since the introduction of
a new species and resource represents only a small (order 1/M) perturbation to the original ecological system, we
can express the steady-state species and resource abundances in the (S + 1, M + 1) system with a first-order Taylor
expansion around the (S, M) values. We note that the new terms o.d;oRp in Eq. eq. (9) and o.dooNo in eq. (8) can
be treated as perturbations to m;, and K, respectively, yielding:
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Note Y /0 and ) 50 mean the sum excludes the new species 0 and the new resource 0. The next step is to plug eq.
(16) and eq. (17) into eq. (10) and eq. (11) and solve for the steady-state value of Ny and Ry.

C. Self-consistency equations for species

For the new cavity species, the steady equation takes the form
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Notice that each of the sums in this equation is the sum over a large number of weak correlated random variables,

and can therefore be well approximated by Gaussian random variables for large enough M and S. We can calculate
the sum of the random variables:

1
> Vijdosdos = 37 > vijdiodse =0 (19)
B/0,5/0 B/0,3/0
B dondos = — R 5 = — B Ly i) = 20
Z Xaﬁ O Oﬁfﬂ Z XaB QB*MZXQOL*M r(onﬁ)*X ( )
«/0,8/0 «/0,8/0 e

where x is the average susceptibility. Using these observations about above sums, we obtain
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Employing the Central Limit Theorem, we introduce an auxiliary Gaussian variable zy with zero mean and unit
variance and rewrite this as

Z oedopRp 0 + ocdopRo — 6mo = 2n\/02qr + 02, (22)
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where ¢p is the second moment of the resource distribution,
1 2
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We can solve eq. (21) in terms of the quantities just defined:
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Inverting this equation one gets the steady state of species
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which is a truncated Gaussian.
Let y = max (0, T+ %z), with z being a Gaussian random variable with zero mean and unit variance. Then its j-th
moment is given by
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With this we can easily write down the self-consistency equations for the fraction of non-zero species and resources
as well as the moments of their abundances at the steady state:
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Note that S* is the number of surviving species at the steady state.

D. Self-consistency equations for resources

We now derive the equations for the steady-state of the resource dynamics. Inserting eq. (17) into eq. (11) gives:
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We can simplify the sums by averaging over the random variables:
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where v is the average susceptibility. Finally, note that we can write
5w0+20cdjon =zrVy lotan + 02, (34)
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where we have introduced another auxiliary Gaussian variable zr with zero mean and unit variance and gy is the

second moment of the resource distribution defined in eq. (56), Using these observations, we obtain a quadratic
expression for the resource.
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1. Cavity solution: without backreaction

As discussed in the main text, we cannot solve the full resource equations exactly. For this reason, we perform an
expansion, as a start, we calculate this equation by setting v = 0 in the resource equation. This is equivalent in the
TAP language of ignoring the backreaction term.

Under this assumption, the quadratic equation for the resource, simply becomes a linear equation that can be
re-arranged to give
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Assuming the fluctuations in the denominator is small, i.e. \/y 1o2qn + 02 < w+ vy~ u (N), we can do a first-order
Taylor expansion around the mean value and also ignore the coupling term between d K, and zgy:
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With all these approximations, we get the first two moments of the steady-state resource abundance distribution:
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2. Cavity solution: with backreaction correction

We start again with the full resource equation:

K + 0Ky — (wo +7 ' (N) + Vv 1o2qn + 02zr)Ro + 7~ oivRi = 0 (44)
Since Ry > 0 and v < 0, the solution of eq. (44) gives:
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Using these expressions, the moments of their abundances at steady state can be calculated yielding:
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From eq. (45),
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Combined with self-consistency equations for species, get the full set of 1%¢ order self-consistency equations:
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II. COMPARISON BETWEEN WITH AND WITHOUT BACKREACTION

We can reduce the cavity solution with backreaction to the simpler one when o, is large. In fact all the complexity
of cavity solution with backreaction comes from the expression for eq. (45):
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However, if we assume (w + vy~ 'u (N) + /v 1o2qn + 022r)? > —4y lvo?(K + 6Ky), we can expand the second
term following 1 -2z ~1—- % — %2 + O(a3?).
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The first term of above equation is the cavity solution without backreaction.
A. Comparing the cavity solutions to numerical simulations
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FIG. S2. Comparison of numerics and cavity solutions with and without the backreaction term as a function of o.. ¢n = S—;
is the fraction of surviving species. (N),(N?), (R) and (R*) are the first and second moments of the species and resources
distribution respectively. The simulations details can be found at the SM: III. C is sampled either from a Gaussian, Bernoulli,

or uniform distribution as indicated.

We show a comparison between theoretical and numerical results for different choices of how to sample the con-
sumption matrix in Fig. 2 in the main text and Fig. S2. These figures show that the cavity solution with backreaction
performs better for the Gaussian and Bernoulli cases. However, in the uniform case, the cavity solution without back-
reaction matches with numerical simulations perfectly, while the cavity solution with backreaction performs worse
than without backreaction. In the section II, we have shown the cavity solution with backreaction can be reduced to
the cavity solution without backreaction and hence should be a more robust solution. So why does it perform badly
in the uniform case? The reason is that in the uniform case y = Mb/2 > 1 when the system size M is large, leading
to |x| ~ m < 1. From egs. (55, 56), we see that both (N) and (N?) depends on % > 1 and the numerical
solver becomes unstable.

III. SIMULATION DETAILS
A. Parameters

All simulations are done with the CVXPY package[3] in PYTHON 3. All codes are available on GitHub at
https://github.com/Emergent-Behaviors-in-Biology/species-packing-bound.

e Fig. 2: the consumer matrix C is sampled from the Gaussian distribution N (47, ;CM) S = 100, M = 100,

p=1K=10x =01, m=1, 0, =01, w =1, 0, = 0 and each data point is averaged from 1000
independent realizations. We only provide the cavity solution with backreaction here.

e Fig. 3, Fig. S3, Fig. S5, Fig. S6: the consumer matrix C is sampled from the Gaussian distribution N(ﬁ, \‘/’Cﬁ)
S=500,M =100, p=1,0,=01,m=1, 0, =0.1, w =1, 7,, = 0 for externally supplied resource dynamics
and S =500, M =100, u=1,0,=0.1,m=1, 0, =0.1, 7 = 1, 0, = 0 for the self-renewing one. Each data
point is averaged from 1000 independent realizations. For Fig. S3 , K = 10. For Fig. S5, 0. = 5, K and k are
fixed at 4; For Fig. S6, 0. = 5, k = 4, S/M has a range from 1 to 100, and each data point is averaged from

100 independent realizations.


https://github.com/Emergent-Behaviors-in-Biology/species-packing-bound

e Fig. 4: the consumer matrix C is sampled from the Bernoulli distribution Bernoulli(p) and p are fixed to 0.1,
0.2 and 0.1. m; follows metabolic tradeoffs Eq. (70) with o, = 0, m = 1. We also set S = 500, M = 100,
K =10, o = 0.1. Each data point is averaged from 100 independent realizations.

e Fig. S2(a): the simulation is the same as Fig. 2. We show both the cavity solutions with and without reaction
here.

e Fig. S2(b): the consumer matrix C is sampled from the Bernoulli distribution Bernoulli(p). S = 100, M = 100,
K=1,0xk=01,m=1,0, =01, w=1, g, =0 and each data point is averaged from 1000 independent
realizations. The cavity solution is obtained by approximating the Bernoulli distribution to the corresponding
Gaussian distribution i.e. u = pM, o, = \/Mp(1 — p)

e Fig. S2(c): the consumer matrix C is sampled from the uniform distribution 4(0,b). S = 100, M = 100,
K=10g=01,m=1, 0, =01,w=1, g, =0 and each data point is averaged from 1000 independent
realizations. The cavity solution is obtained by approximating the uniform distribution to the corresponding
Gaussian distribution, i.e. g = bM/2, 0. = by/M/12.

e Fig. S4(a): the consumer matrix C is sampled from the Bernoulli distribution Bernoulli(p). S = 500, M = 100,
K=1,0xk=01,m=1, 0p, =01, w=1, 0, =0 and each data point is averaged from 1000 independent
realizations. The cavity solution is obtained by approximating the Bernoulli distribution to the corresponding
Gaussian distribution i.e. u = pM, 0. = /Mp(1 — p)

e Fig. S4(b): the consumer matrix C is sampled from the uniform distribution #(0,b). S = 500, M = 100,
K=1,0k=01,m=1, 0p, =01, w =1, 0, =0 and each data point is averaged from 1000 independent
realizations. The cavity solution is obtained by approximating the uniform distribution to the corresponding
Gaussian distribution, i.e. y = bM/2, o, = by/M/12.

B. Distinction between extinct and surviving species

In the main text, we show that the value of species packing Sﬁ for the externally supplied resources must be smaller
than 0.5. However, in numerical simulations, even for the extinct species the abundance is never exactly equal 0 due
to numerical errors. As a result, we must choose a threshold to distinguish extinct and surviving species in order to
calculate S*. Since we are using the equivalence with convex optimization to solve the generalized consumer-resource
models|2, 4], we can easily choose a reasonable threshold (e.g. 1072 in Fig. S3) since the extinct and surviving species
are well separated in two peaks (see Fig. S3).
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FIG. S3. Species abundance N in equilibrium at different o, for externally supplied resource dynamics at K = 10. The
simulations parameters can be found at the SM: III.

IV. AN UPPER BOUND FOR SPECIES PACKING

By analyzing the susceptibilities in the full Cavity solutions, an upper bound for species packing can be derived
for both resource dynamics in GCRMs. The derivations can also be extended to the case where metabolic tradeoffs
impose hard or soft constraints on the parameter values.



A. Externally supplied resource dynamics

The response functions x and v can be written as:

1 W+ u(N)+ /v lo2qn +02zr
A =Tl R (63)
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Substituting eq. (64) into eq. (63) and rearranging yields
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The numerator of the term in angle brackets is the total depletion rate for a given resource when it is first added to
the system. Depletion rates are always positive in this model, so the right-hand side is always less than 1/2. Noticing
V= %7 on = S*/S, x > 0, we immediately obtain an upper bound on Sﬁ

15
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B. Self-renewing(MacArthur’s) resource dynamics
Using the analytical expressions x, v and self-consistent equations in ref. [5], we can derive the following expressions:

R (VTR B QR e R (o Y e LG
o2(pr — 7 1oN) Volqr + 02, )’ r(dr — 7 1oN) ! VA toZqn + ok

To derive bounds, we consider various limits of these expressions. First, consider the case were we put many species
S — oo into the ecosystem with fixed number of resources M, (i.e v = % — 0). In order to keep (N) positive, we
must have ¢p — v 1én > 0, giving an upper bound:

1>— > = (68)

C. Externally supplied resources with metabolic tradeoffs

Here we consider two kinds of constraints on the parameters, encoding metabolic tradeoffs. In the first, the
maintenance cost m; = m is the same for all species, and the sum of the consumption preferences is constrained to
equal some fixed “enzyme budget” F that is nearly the same for all species:

Z Cia = E + 6Ez (69)

where JF; is a small random variable with mean zero and variance o%. A hard constraint can be generated by taking
O = 0.

The second kind of constraint does not make any assumptions about Cj,, but assigns a cost m to every unit of
consumption capacity, so that

m; = (1 + Ez)mz Cia + 5ml (70)

where ¢; and dm; are small random variables with mean zero and variances o2 and o2,, respectively. A hard constraint
can be generated by taking o. = o,,, = 0.

In the simplest way of setting up the first constraint, the equilibrium equations actually reduce to the same form
as the second. Specifically, one usually generates a consumer preference matrix satisfying the constraint by first
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generating an ii.d. matrix Ci, and then setting Cjo = (E + 5Ei)@a/25 C'ig. The resulting dynamics can be
written as:

N _ n, > (E+ 5Ei)07i°fRa —m; (71)
dt - Eb’ Ci,@
ZB o ~ i E+5E

Dropping the tilde’s, we can write the equilibrium condition in the same form that results from the second kind of
constraint:

0=N; {Z Cia[Ra — (1 + &)m] — om;} (73)
with
i = % (74)
e (75)
Sm; = 0. (76)

Inspection of Equation 73 immediately reveals an important novelty: now when we add a new resource as part of
the cavity protocol, the perturbation to the growth rate can either be positive or negative, depending on the sign of
[Ra — (14 €;)m]. This turns out to be the crucial factor that prevents the proof of the S*/M < 1/2 bound from going
through, regardless of the size of o¢ or oy,.

Following the same steps as above, we arrive at the following set of equilibrium conditions for the new species Ny
and resource Ry:

0= No [u(R) — wim + onzy — o2xNo] (77)
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These are nearly identical to the equations we had before. The two key changes are the presence of a term with a
negative sign inside the coefficient o of the random variable zx, and the v 1o2vm term inside the parentheses in
the equation for the resources.

We can now proceed in the same way as before, solving for Ny and Ry and taking derivatives to compute the

susceptibilities. We find:

1 . WA+ u(N) + opzr + vy Lolvm (81)
X = —_——,— J—
2y~ togy V(W +vIu(N) + opzr + 7 Lo2vm)? — 4y~ o2v(K + 0Ky)
éN
YT T2y (82)

This is almost the same as the expression in Equation (63) obtained in the absence of constraints, except for the extra
term v~ !o2vm in the numerator and denominator. This term is significant because v is a negative number, and if its
absolute value is large enough, it can make the whole term in angle brackets negative. Inserting the second equation

into the first, we obtain a formula for S*/M:

S* -1 +y (N + +y "ol
[ 1— w4y @ ORZR+Y o_vm ]3
M- ON = { <\/(w+’y1u<N>+oRZR+v10§Vm)2 —4y~loZv(K+30Ko) (83)
The term in brackets can now be negative, but is always greater than -1. We thus obtain the bound:
S*
— <1 (84)

M
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FIG. S4. Comparison of species packing Sﬁ* for different distributions of consumption matrices C with self-renewing and
externally-supplied resource dynamics. The simulations represent averages from 1000 independent realizations with the system
size M = 100, S = 500 and parameters at the SM: III.

The term approaches -1 in the limit v — —oo, which is the same limit required to saturate the bound in the model
with self-renewing resources. As in that case, the limit cannot actually be achieved, because v — —oo implies y — 0
(Equation (82)), and x appears in the denominator of the final expression for Ny (Equation (24)), while the numerator
always remains finite.

The only way to achieve the limit Sﬁ = 1 is to make the numerator vanish in the same way as the denominator,
which can only happen in the presence of hard constraints o,, = 0. = 0. In this case, it is easy to see that setting
R, = m for all @ and x — 0,v — —oo solves both the steady state equations, regardless of the value of Ny. In
Equation (77) for Ng, the mean and the fluctuating part inside the brackets both vanish individually (u(R) — pm = 0,
on = 0), and the back-reaction term also vanishes (02 Ny = 0), leaving the equation trivially satisfied. In Equation
(78) only the terms with v are significant in this limit, and they cancel each other perfectly. This is the “shielded
phase” discussed in [6].

Note also that if we take the y — 0, v — —oo limit first, before performing any substitutions, Equations (81) and
(82) are satisfied independently of the choice of ¢. This means that v~ '¢x = S*/M can be greater than 1, as
observed in the simulations of [7].

D. Numerical evidence

We show a comparison between the cavity solution and numerical results in Fig. 3 and Fig. S4 for three different
distributions of the consumption matrix C. For the Gaussian and Bernoulli distributions, Sﬁ can reach the upper

*

bound we derived for two different resource dynamics. For externally supplied resource dynamics, SH never exceeds



12

(a) 5 K=k=4,0.=5 (b)10 0.90
---- Curve Fitting: u=0.32, 0 =0.26
4 ---- Curve Fitting: = 0.28, 0 = 0.15 078
2 Self-renewing 8
g W External-supplied 060
-3 °
> T~ b 6 045
3 2 5
% \\ 0.30
<4 H AN 4
a4 Ij{ H o 0.15
M T X
0 I | I“Tﬂ?uu ~~~~~~~~~ 2

0.00 0.25 0.50 0.75 1.00
Resources Abundance

A 0.00
4 6 8 10AQR
K

FIG. S5. (a) Comparison of resource abundance for self-renewing and externally-supplied resource dynamics at K = k = 4
and o, = 5. The dashed lines are the gaussian curve fitting about the abundances with mean p and variance 0. (b, c) the
difference of the first and second moment of the resource abundance between self-renewing and externally-supplied resource
dynamics with the same K = k and 0., AR = R* — R®, Aqr = qi — qf, where the upper label e and s represents self-renewing
and externally-supplied, respectively. All simulations are the same as Fig. 3 in the main text.

0.5. For the uniform case, since the fluctuation of consumption matrix is small, the niche overlap is large and there
is fierce competitions among species and theses ecosystems live very far from the upper bounds we derive. However,
even for the uniform case, the species packing fraction is significantly larger for self-renewing resource dynamics than
externally supplied resource dynamics. For the Bernoulli case, when the binomial probability p ~ 1/M, the bound
can be slightly above 0.5, as shown in Fig. S4. In this regime, the consumer matrix is sparse. Each species only
consumes one or two different resources and species rarely compete with each other making it is possible to pack more
species.

E. Numerical analysis

Eq. (28) shows the fraction of surviving species S*/S is determined by the first moment (R = (R)) and second
moment(gr = (R?)) of the resource abundance. In Fig. S5 (a), the simulation shows the two dynamics have similar
means but quite different variance for K = k = 4 and o, = 5. And the external-supplied resource dynamics with a
larger qr (sharper distribution) have a smaller fraction of surviving species S*/S.

Fig. S5 (b, ¢) shows the first and second moment differences between self-renewing and externally-supplied resource
dynamics, AR and Agg are always positive, which means the self-renewing resource dynamics always has larger
R and gpr across the whole heat map. And thus, it is generally true that external-supplied dynamics has sharper
resource distribution and can explain the lower diversity (in high o, regime, it looks AR and Aqg are close to zero but
considering there is o, in the dominator of eq. (28), a slight difference in gr can have a huge difference.). However,
note that S*/S (the fraction of species in the regional species pool that survive) is not the same as species packing
S*/M and it cannot explain why the species packing bound is exactly at 0.5.
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FIG. S6. The species packing ratio Sﬁ* at various S/M for externally supplied resource dynamics. Other parameters are the
same as Fig. 3 in the main text.
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