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Introduction

Biology is in the midst of the revolution spearheaded 
by the pioneering work of Takahashi and Yamanaka 
[1] on cellular reprogramming showing that it is 
possible to reprogram mouse embryonic fibroblasts 
(MEFs) to cells resembling embryonic stem cells 
(ESCs), commonly called induced pluripotent stem 
cells (iPSCs), by manipulating the expression of 
just four transcription factors (TFs). The idea of 
manipulating small sets of TFs to alter cell fates has 
proven to be extremely versatile and it is now possible 
to create iPSCs from a variety of cell types [2], as 
well as to perform direct conversions between two 
differentiated cell types such as MEFs and neurons 
[3]. Most reprogramming experiments have a similar 
design [4] (figure 1(A)). The starting cell type (e.g. 
MEF) is engineered with a construct containing 
the desired reprogramming genes. These genes are 
induced at the start of the experiment. After several 
days, the cell culturing conditions are switched to a 
medium favorable to the desired cell type (e.g. stem 
cell media). At a later time, typically a few weeks, 

the exogenous genes are turned off. If all goes well, a 
percentage (often  ≈0.01−1%, but sometimes much 
larger, approaching even 100% [7]) of cells successfully 
reprogram to the desired cell type.

Significant progress has been made towards 
understanding the mechanisms underlying cellular 
reprogramming [5, 6] (which from now on we will 
use to include both reprogramming to iPSC as well as 
direct conversion), yet many questions remain. Cel-
lular reprogramming requires global changes in gene 
expression involving hundreds of transcription factors 
and thousands of genes, but how cells dynamically alter 
their gene expression profile during reprogramming 
is still not well understood. Reprogramming rates 
seem to depend on the exact protocol used and can be 
changed by several orders of magnitude through care-
ful genetic manipulations [7, 8]. Experiments have also 
measured whole genome time courses during repro-
gramming but the high-dimensional nature of the 
measured trajectories makes them difficult to inter-
pret [9]. Other experiments have examined gene-level 
events during reprogramming. Buganim et al [10] ana-
lyzed reprogramming dynamics at the single-cell level 
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Abstract
Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene 
expression involving thousands of genes, and understanding how cells globally alter their gene 
expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course 
data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells 
(iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction 
coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as 
well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that 
such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming 
is viewed as a ‘barrier-crossing’ process between cell fates. Overall, our analysis and model suggest 
that gene expression dynamics during reprogramming follow a canonical trajectory consistent with 
the idea of an ‘optimal path’ in gene expression space for reprogramming.
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and concluded that reprogramming initially is proba-
bilistic but ends with a hierarchichal (i.e. ordered), 
deterministic stage. In contrast, Polo et al [9] analyzed 
reprogramming dynamics with both population level 
and single-cell level measurements and concluded that 
reprogramming follows an early deterministic phase 
with many gene changes, followed by an intermediate 
phase with fewer changes, and ending with a determin-

istic phase with many gene changes. Recently, Chung 
et al [11] measured single cell reprogramming dynam-
ics and proposed that the intermediate phase of repro-
gramming is a ‘loosely ordered probabilistic phase’ 
in which the timing between events is probabilistic, 
but the order of events is relatively deterministic. This 
highlights the need for a better understanding of gene 
expression dynamics during reprogramming.

Figure 1.  Cellular reprogramming reaction coordinate. (A). Transient expression of reprogramming genes plus switching culturing 
conditions probabilistically leads to the desired cell type. (B). Reprogramming is commonly described as the crossing of a barrier 
in a high-dimensional landscape. (C). Our proposed cellular identity landscape is based on the projection, a, of an arbitrary gene 
expression, S, onto the subspace (gray plane) spanned by the natural cell types, �ξµ. (D). Principal component analysis (PCA) of 
reprogramming from mouse embryonic fibroblasts (MEF) to induced pluripotent stem cells (iPSC) with start marking day 0 
and end marking iPSC. Rais [8], Polo [9], and ST (Samavarchi-Tehrani) [29] are three successful trajectories; the explicit time 
in days is labeled on plots E, F, and G. Other represents additional successful trajectories, PRC are partially reprogrammed cells, 
and failed trajectories do not reprogram. (E). Projection onto astart  (MEF) and aend (iPSC) only. All successful trajectories follow 
a simple reaction coordinate in projection space, a straight line from (astart = 1, aend = 0) to (astart = 0, aend = 1). Insets in E, F, 
and G are simulation data with failed trajectories in red and successful trajectories in gray. See SI figure 2 for larger version of the 
simulations. (F). Measure of projection on all other cell types, a⊥ versus the reaction coordinate. See SI figure 3 for larger version of 
the simulations. (G). Energy landscape of basins of attraction, Hbasin, per transcription factor (TF) versus reaction coordinate. See SI 
figure 4 for larger version of simulations.
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Reprogramming involves global changes in gene 
expression and therefore is intrinsically high dimen-
sional. For this reason, it is common to use dimen-
sional reduction techniques such as principal comp
onent analysis (PCA) to project the dynamics onto a 
low-dimensional sub-space. However, dimensional 
reductions techniques, such as PCA, have several key 
limitations. The principal component vectors have 
no clear biological interpretation, making it difficult 
to extract biological meaning from the resulting low-
dimensional dynamics. PCA also depends on the type 
and quality of the data included in the dataset, mak-
ing it cumbersome to compare dynamical data across 
experiments and systems.

To overcome these challenges, we introduce a new 
technique for visualizing high-dimensional repro-
gramming dynamics, inspired by ‘epigenetic land-
scape’ models for cellular identity. In Waddington’s 
original landscape idea [12], each cell type corre-
sponds to the minimum of one of the basins of attrac-
tion in an abstract cell identity landscape. This idea 
has been refined by a variety of researchers, and has 
yielded a number of insights into the genetic basis of 
cellular identity [13–26]. Two of us recently proposed 
a landscape model [27] that takes global gene expres-
sion profiles (microarrays or RNA-Seq) and uses 
techniques inspired by spin physics and the Hopfield 
model to explicitly construct a cell identity landscape. 
Without any additional parameters, this model pro-
vided an explanation for the existence of partially-
reprogrammed cell types and can identify TFs that 
have been used to successfully reprogram to multiple 
cell types. In this paper, we extend this previous work 
to analyze reprogramming dynamics. Using a new 
linear-algebra based analysis method inspired by our 
landscape model, we show that the experimentally 
observed gene expression dynamics during repro-
gramming follow a simple, 1D reaction coordinate. 
We also show that this reaction coordinate emerges in 
numerical simulations of our landscape model, sug-
gesting that reprogramming can be understood as a 
‘barrier crossing’ process between landscape minima.

1.  Results

1.1.  Mathematical model and data analysis method
In the epigenetic landscape, cell types correspond 
to minima of stable basins of attraction, and 
reprogramming between basins proceeds through 
stochastic fluctuations resulting from gene expression 
noise (figure 1(B)). Here, we briefly summarize the 
relevant features of the landscape model (see Lang 
et al [27] for additional details). Before defining the 
epigenetic landscape, one needs to define the state 
space. We define the epigenetic state space from the 
genome-wide expression profiles of natural cell 
types (i.e. stable cell states either found in vivo or in 
established growth media) using a curated dataset 
of microarrays for p = 63 mouse cell types and 

approximately N ∼ 1400 TFs (see Materials and 
Methods). These data are summarized in a cell type 
matrix, ξµi , whose entries contain the expression level 
of TF i in cell type μ (e.g. MEF, ESC). This construction 
can easily be extended to include genes beyond TFs.

The global gene expression level of TFs in an arbi-
trary gene expression state (i.e. a perturbed natural cell 
type or a completely general gene expression) can be 
summarized using an N-dimensional expression state 
vector �S , whose entries Si encode the expression level 
of TFs i = 1 . . .N . Expression levels are treated as con-
tinuous variables when analyzing experimental data, 
and as binary variables which can be either on or off 
(Si = ±1) when performing numerical simulations 
(see Materials and Methods).

Now that the epigenetic state space has been 
defined, it is possible to define the epigenetic land-
scape. In order to describe the epigenetic landscape 
in geometric terms, we will first introduce a measure 
of similarity between an arbitrary expression vector �S  
and the expression vector, �ξµ, for cell type μ. One com-
mon similarity measure in gene expression space is the 
overlap or dot product,

mµ = �S · �ξµ =
1

N

N∑
i=1

Siξ
µ
i� (1)

which measures the correlations between an arbitrary 
state �S , and cell type μ, given by �ξµ. The overlap 
between cell type μ and state �S  is 1, −1, or 0 for the cases 
when �S  and �ξµ are perfectly correlated, anti-correlated, 
or uncorrelated, respectively. Since the number of cell 
types, p = 63, is much smaller than the number of 
TFs, N ∼ 1400, a given set of overlaps {m1, · · · , m p} 
is consistent with many possible N-dimensional gene 
expression states Si. A special case of particular interest 
is the overlap (or correlation) between two cell types, μ 
and ν, given by

Aµν = �ξµ · �ξν =
1

N

N∑
i=1

ξµi ξ
ν
i .� (2)

In practice, the dot product is a poor measure of 
similarity because cell types are highly correlated with 
each other. For example, blood cell types share a com-
mon core set of gene expression and thus B cells and T 
cells have a 87% overlap in their gene expression pro-
files. As a consequence of this, if a gene expression state 
approaches a certain cell type in the landscape, the 
overlap may appear to show that it is roughly equally 
similar to that cell type and to other cell types. In other 
words, the overlap is too blunt an instrument to fol-
low the evolution of gene expression states in the land-
scape.

For this reason, it is useful to introduce an alter-
native measure of similarity, the projections aµ, in 
which natural cell types have zero similarity with each 
other. For example, even though the overlap between 
the gene expressions for B cells and T cells is 87%, the 
projection of each one of those gene expressions onto 
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the other is exactly zero. The projection of an arbitrary 
expression profile Si onto cell type μ is given by:

aµ =

p∑
ν=1

(A−1)µνmν� (3)

where A−1 is the inverse of the cell type correlation 
matrix A. According to this definition, the projection 
would reduce to the overlap if A was the identity 
matrix, which would correspond to the cell types 
having exactly zero overlap with each other (i.e. if 
they were orthogonal). However, as indicated before, 
overlaps between cell types are actually quite large, 
and as a consequence, mµ and aµ are quite different. 
We can think of the N-dimensional expression state 

vector �S  as the sum of two contributions, �S = �S⊥ + �S‖, 
such that the dot product of �S⊥ with each one of the 

p cell type states �ξµ is exactly zero, and S‖i = ai  (‘the 

projected state’) is a linear combination of the cell type 
states, given by

S‖i = ai =

p∑
ν=1

aµξµi .� (4)

This construction has the geometric interpretation 
depicted in figure 1(C): ai is obtained by projecting (i.e. 
casting a shadow) of Si onto the hyperplane defined 
by the p cell types in the matrix ξ (represented as the 
gray plane). As indicated before, the benefit of this con-
struction is that it automatically accounts for the cor-
relations between cell types: the projection of a B cell 
with itself is one, while a B cell’s projection on T cells is 
zero, and vice versa.

Projections are essential when constructing land-
scape models for cellular identity. In Lang et al [27], it 
was shown that it is possible to define a Lyapunov func-
tion (commonly called an energy), Hbasin in expression 
space. This energy function defines an energy land-
scape, in which the natural cell types are the global 
minima. Mathematically, the energy is defined by [27]:

Hbasin = −N

2

∑
µ

mµaµ� (5)

= −N

2
�S · �S‖� (6)

= −1

2

∑
i,j

SiJijSj� (7)

where equation (5) represents the landscape in terms 
of the projections aµ and overlaps mµ with the natural 
cell types, equation (6) represents it in terms of the 
projected state �S‖, and equation  (7) represents the 
landscape in terms of an effective interaction matrix, 
Jij, between TFs, defined as

Jij =
1

N

p∑
µ=1

p∑
ν=1

ξµi (A
−1)µνξνj� (8)

We emphasize that this Lyapunov function represents 
an abstract ‘cellular identity energy surface’ 

characterizing the stability of cell states and cannot be 
directly related to metabolism or ATP consumption. 
Additionally, the coefficients Jij do not represent real 
physical interactions between TFs. Instead, these are 
effective, symmetric interactions that are chosen so that 
they generate individual basins of attraction for each 
natural cell type. We have checked that the landscape 
construction is robust for the introduction of 
reasonable amounts of asymmetry in the interactions 
[27]. This can be seen by noting that in a given cell 
type (say µ = 1), Si = ξ1

i  and a1 = m1 = 1, while 
the projection on all other cell types is zero, aν = 0 
(ν = 2 . . . p). Inserting these results into equations (5) 
or into (6) shows that each cell type is a global 

minimum with energy Hmin = −N
2 . (We notice here 

that if we had chosen an alternative energy landscape 
model, based entirely on the overlaps, namely the 

Hopfield model: HHopfield = −N
2

∑
µ mµmµ, then 

the cell types would not be the global minima of the 
landscape.)

The landscape represented by Hbasin does not 
incorporate differences in natural cell type stabil-
ity, especially with regard to stability differences due 
to external factors such as cell-type specific favorable 
growth media. These differences are represented by an 
additional term in the landscape,

H = Hbasin + Hculture,

Hculture = −
p∑

µ=1

bµaµ,
�

(9)

where bµ > 0 indicates the presence of a culture 
medium that favors cell type μ. For example, during 
reprogramming, when cells are initially grown in MEF 
culture, only bMEF �= 0, while later in reprogramming, 
after the media has been changed to ESC culture, 
only bESC �= 0. Finally, to incorporate the fact that 
some transcription factors are overexpressed in 
the experiments the variables Si corresponding to 
overexpressed TFs are locked in the ‘on’ (Si = +1) 
state.

Our energy function uniquely defines the land-
scape. However, there are multiple ways to implement 
dynamics on this landscape. We want to represent 
the fact that the dynamics are governed by the land-
scape itself and by stochastic fluctuations due to gene 
expression noise. A standard way to describe this kind 
of dynamic is to represent the evolution of the state of 
the system by random, asynchronous Monte-Carlo 
updates (Glauber dynamics), [28]. At each simulation 
time t, one (non-locked) TF i is randomly chosen, and 
the probabilities for its new value Si(t + 1) are

P[Si(t + 1)] =
eβhi(t)Si(t+1)

eβhi(t) + e−βhi(t)
,� (10)

with the local field on TF i given by 

hi = −∂H
∂Si

=
∑

j JijSj. We have introduced the effective 

noise parameter β = 1/T  (i.e. inverse temperature) 
that controls the level of stochasticity. When β → ∞, 

Phys. Biol. 15 (2018) 016001
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the update becomes deterministic: the new expression 
value Si(t + 1) for the chosen transcription factor i 
takes, with probability 1, the value Si(t + 1) = +1 if 
hi > 0 and the value Si(t + 1) = −1 if hi < 0, thus 
always minimizing the energy. When β → 0, the 
landscape plays no role, and all expression states are 
equally likely. As long as there are fewer cell types than 
there are genes a β exists above which all of the cell 
types are attractors of the dynamics. Additionally, as 
indicated above, in some of the simulations a subset of 
the transcription factors is locked at a certain value. In 
many of the simulations we discuss the OSKM TFs are 
fixed to have the value +1 (‘on’).

Currently available static genomic data do not yet 
provide a clear way to relate biological time to the time 
variable in the Glauber dynamics. Although in this 
work we only show results from this particular choice 
of dynamics, in [27] it was shown that changing to an 
alternative dynamic does not significantly modify the 
results.

1.2.  MEF reprogramming dynamics
We begin by reanalyzing the experimentally available 
time course data on reprogramming in mice. 
Figure 1(D) shows the first two principal components 
(PC) for 10 different reprogramming trajectories 
from MEF to iPSC from multiple labs. In the analysis, 
we have included partially reprogrammed cells 
(PRC), which are novel cell states only found during 
incomplete reprogramming experiments. The plot 
shows dynamics projected onto the first two PCs, but 
in reality this system is high-dimensional and it takes 
21 PCs to explain 80% of the variation in the data (see 
SI figure 1 for details). The PCA plot illustrates several 
important findings. First, reprogramming trajectories 
seem to group into two distinct clusters, and within 
each cluster, the starting points (day 0) and ending 
points (final iPSC) are near each other. Therefore, even 
for different experimental protocols, reprogramming 
seems to follow only a few paths. Second, these paths 
are distinct from partially reprogrammed cells (PRC). 
While several reprogramming data points seem to 
be near PRCs, this is an artifact of keeping only two 
PCs in our visualization. In fact, the PRCs only have 
a Spearman correlation of 90% with the closest 
reprogramming data point and approximately 80% 
correlation with the two closest trajectories. Third, the 
final state of failed trajectories (trajectories that did 
not successfully reprogram to iPSCs) is closer to their 
starting point instead of to iPSCs, suggesting that failed 
trajectories do not leave the basin of attraction of the 
initial cell type. While PCA allows easy visualization 
of the data, the principal components have no clear 
biological meaning, making it difficult to interpret the 
lower dimensional PCA dynamics.

For a chemical reaction, the trajectory that a sys-
tem takes on its potential energy landscape when going 
from reactants to products is usually called the reac-
tion pathway, and the reaction coordinate is defined as 

an abstract one dimensional coordinate which meas-
ures progress along the reaction pathway. However, 
in common use the two terms ‘reaction pathway’ and 
‘reaction coordinate’ are often conflated. In the case 
of a chemical reaction, the energy is a function of the 
positions of all the atoms involved. In the case of the  
epigenetic landscape, the energy is a function of  
the expression state. As in the case of a chemical reac-
tion, the reprogramming process can be thought of in 
terms of a trajectory in the (high-dimensional) epige-
netic landscape, going from the initial cell type to the 
final cell type. We will refer to this trajectory either as 
the ‘reaction pathway’ or (in a slight abuse of termi-
nology) as the ‘reaction coordinate’.

In figures  1(E)–(G), we have replotted the same 
time-course data as in the PCA plots using projections 
on the starting and ending cell type. As in the PCA 
plot, the various symbols represent the actual data, 
while the lines connecting data show the time order 
of experimental points. In these plots, the starting 
(ending) states for each trajectory are defined as the 
initial (final) time point for the corresponding experi-
ment. When calculating projections, the start (end) 
states replace MEF (ESC) in our cell type matrix ξ. 
This allows us to plot each experiment against its own 
start and end points. This additional step is necessary 
because different experiments define MEFs and iPSs 
differently.

The result of this analysis is shown in figure 1(E). In 
contrast to the PCA plot, which contained two clusters 
(figure 1(D)), the reprogramming trajectories in the 
projected basis all follow a similar path: a straight line 
joining the starting cell type with the ending cell type 
in a projection space.

In addition, we can look at how reprogramming 
trajectories project on other cell types besides the start-
ing and ending cell types. To do so, we introduce a new 
quantity,

a⊥ =

√√√√
∑

1�ν�p
ν �=(start,end)

(aν)2,
� (11)

that measures the magnitude of the projections 
perpendicular to the plane spanned by the starting and 
ending cell type. This is shown in figure 1(F). Notice 
that faster trajectories have a smaller perpendicular 
projection on the remaining cell types than slower 
trajectories. Furthermore, the difference in speed 
between experiments arises largely from the fact 
that slower trajectories also appear to get stuck at 
particular points along the reaction coordinate for 
as long as two weeks. The most important aspect of 
these results, however, is that the typical magnitude 
|aνtyp| = a⊥/

√
p − 2 of each one of the individual 

projections aν for ν �= (start, end) is extremely small: 
since a⊥ � 0.5, we find that |aνtyp| � 0.064 � 1. In 
other words, to a very good approximation we can 
think of the trajectory as being restricted to the two-
dimensional plane spanned by astart and aend.

Phys. Biol. 15 (2018) 016001
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We can summarize the results shown in fig-
ures 1(E) and (F) as follows: (i) the data for different 
reprogramming trajectories from different experi-
ments all collapse together and (ii) this unique tra-
jectory is very simple, just a straight line from the 
initial state to the final state. The data collapse among 
different experimental trajectories is more remark-
able when considering the extreme heterogeneity in 
reprogramming rates across the plotted experiments. 
The Polo et al experiment [9] represents a typical time 
course with reprogramming taking approximately two 
weeks, while Rais et al [8] is the fastest trajectory (8 d) 
and ST (Samavarchi-Tehrani et al) [29] is the slowest 
trajectory in our dataset (30 d). The second observa-
tion is also extremely surprising since reprogramming 
between cell types requires whole-scale reorganization 
of gene expression and therefore it would be reasonable 
to expect the trajectory to involve nontrivial changes 
in a number of dimensions similar to the dimension 
of the genome, i.e. thousands (if only TFs are consid-
ered) or even higher. However, in the projection-based 
model, the reaction pathway essentially only involves 
the projections onto the initial and final cell types, and 
within that two-dimensional space it automatically 
appears as a straight line without the need for any fur-
ther transformations.

To compare these experimental trajectories to our 
mathematical model, it is useful to visualize these data 
in yet another way. In figure 1(G), we have replotted 
the same data taking the z-axis as the energy per TF, 
which can be calculated directly from gene expression 
profiles using our landscape construction (Hbasin/N). 
In making these plots we have ignored the contrib
utions of the culture terms in equation  (9) to the 
energy in our model (see SI figures and the Material 
Methods section). Notice that the faster trajectories 
follow a lower energy path while the slowest trajectory 
(ST) follows a high energy path and appears to spend 
time stuck in two different barriers between days 8 and 
21. These observation suggest that the experimentally 
observed reprogramming dynamics are consistent 
with the idea of a ‘barrier crossing’ process between 
the starting and ending cell types in a rough landscape 
(see figure 1(B)).

Further evidence for this barrier-crossing picture 
comes from numerical simulation using our landscape 
model (see the Material and Methods section). The 
insets in figures 1(E)–(G) show failed and successful 
(final state has aend > 0.8) reprogramming trajecto-
ries from Monte-Carlo simulations. There is a strik-
ing similarity between the model trajectories and the 
experiment. Like in the experiments, successful repro-
gramming trajectories in our model follow a simple 
1D reaction coordinate in the projection space and 
reprogramming requires crossing a significant energy 
barrier. Supplementary figures  2–4 (stacks.iop.org/
PhysBio/15/016001/mmedia) contain more exam-
ples of successful and unsuccessful simulation tra-
jectories. Supplementary figure 12 shows simulation 

results for the projection onto the initial cell type and 
onto other cell types, different from the initial and final 
ones. Those projections onto other cell types are much 
smaller than the projections onto the initial and final 
cell types, and can be neglected to a very good approx
imation, as discussed above in the case of the experi-
ments.

Finally, we note that the reaction coordinate can 
also be visualized using more traditional measures 
of distances such as the overlap (dot product) of the 
gene expression profile with the starting and ending 
states (see SI figure 5(A)). However, when using over-
laps, each experiment has its own starting and ending 
point, making it hard to compare across experiments. 
Furthermore, overlaps are unable to discern the ‘bar-
rier crossing’ picture that emerges automatically from 
using projections (see SI figure 5(B)).

1.3.  B cell reprogramming dynamics
The previous section  considered reprogramming 
from MEF to iPSC. Here, we extend this analysis to 
consider two additional reprogramming experiments 
from B cells to IPSs [30, 31]. In the first experiment, 
the standard Yamanaka reprogramming protocol 
(OSKM) [1] was used to reprogram B cell to iPSC. 
Unlike in MEFs, in B cells the OSKM protocol resulted 
in extremely low reprogramming yields. To increase 
the reprogramming yield, the protocol was then 
modified so that the OSKM expression was preceded 
by the pulsed expression of CEBPα (abbreviated 
C  +  OSKM). This modified protocol significantly 
increased the reprogramming yield. Figure  2(A) 
shows that for both experiments, reprogramming 
trajectories once again follow a simple reaction 
coordinate in projection space. Figure 2(B) extends 
these plots to the energy versus reaction coordinate 
plane. Note that in both experiments the energy of 
the trajectories first increases and then decreases. The 
higher yield trajectory (C  +  OSKM) makes steady 
progress over the energy barrier, while the low yield 
trajectory (OSKM) appears to meander through 
inefficient directions. Thus the reprogramming 
dynamics of B cells are similar to the reprogramming 
dynamics of MEF: in all cases reprogramming 
follows a simple 1D reaction coordinate and can be 
understood as a barrier crossing process between 
minima.

The insets in these figures  show results from 
numerical simulations using the landscape model. 
The simulations reveal a simple reaction coordinate. 
However, unlike in the experiments, the simulated 
trajectories for the two protocols exhibit nearly iden-
tical dynamics. This likely reflects the limitations of 
the coarse-graining approximation used to construct 
the landscape model. In the model, TFs are treated as 
binary variables and all TFs are treated on equal foot-
ing—no distinction is made between more promiscu-
ous TFs like CEBPα and more specific downstream fac-
tors. Despite these limitations, the phenomenological 
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model still captures the qualitative phenomena seen in 
the experiments.

The similarity of the reprogramming trajectories 
from MEFs and B cells suggests a universal reaction 
coordinate for reprogramming: a straight line con-
necting the starting and ending cell type in the projec-
tion space. In particular, the cells directly convert from 
the initial cell type to the final cell type without pro-
ducing any other cell type as an intermediate state. This 
can be seen best in figures 2(C) and (D) where we have 
plotted the reprogramming dynamics from both MEFs 
and B Cells on the same plots. These experimental data 
are consistent with numerical simulations using our 
landscape model which show that reprogramming tra-
jectories always follow a straight line in the projection 
space for both choices of starting cell type.

We also performed direct conversion simulation 
MEF to cardiomyocyte [46]. The simulation results are 
shown in supplementary figures 13–15. The direct con-
version trajectories also support the idea of a universal 

reaction coordinate and the absence of any intermedi-
ate states corresponding to any well-defined cell type. 
We could not analyze experimental time course data 
for this direct conversion experiment due to lack of 
such data for this particular experiment.

1.4.  Insight into dynamics from our mathematical 
model
Given the strong agreement between the experiments 
and the landscape model, it is interesting to ask 
if the model can provide further insights into 
reprogramming dynamics beyond those that can be 
directly gleaned from analyzing experimental time 
courses. As discussed in the introduction, there is an 
ongoing debate in reprogramming literature about 
the order and organization of gene-level events 
during reprogramming [9–11]. To address this, we 
performed detailed simulations that allowed us to 
probe gene-level events during reprogramming from 
MEF to iPSC (see the Materials and Methods section). 

Figure 2.  Universal reaction coordinate. (A). Cellular reprogramming from astart  (B Cells) to aend (iPSC) by Di Stefano et al 
[30]. OSKM is the standard Yamanaka protocol, while C  +  OSKM is a pulse of C/EBPα followed by OSKM which led to higher 
reprogramming yield. All insets are simulation data of same data shown in main figure. See SI figure 6 for larger version of 
simulations. (B). Energy landscape of basins of attraction, Hbasin, per transcription factor (TF) versus reaction coordinate. See SI 
figure 7 for larger version of simulations. (C). Data collapse of trajectories to astart  versus aend for both MEF to iPSC (gray) and B Cell 
to iPSC (black). See SI figure 8 for a larger version of the simulations. (D). Data collapse of trajectories when viewed as energy versus 
reaction coordinate. See SI figure 9 for a larger version of the simulations.
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Experimentally, reprogramming times (as measured 
by reporters for pluripotency markers) are well 
described as a Poisson process, implying the existence 
of a single rate limiting step [7]. Our simulation results 
support the idea of a single rate limiting step to the 
turning on of pluripotency markers (see figure 3(A)). 
In our simulations, the time to turn-on pluripotency 
markers is calculated by measuring the time it takes a 
trajectory to have a significant projection on an iPSC 
state (aend = 0.3). Additionally, our simulations show 
that the later phase of reprogramming (defined as the 
period of time when trajectories go from having a 
projection aend = 0.3 to aend = 0.8) follows a narrowly 
peaked distribution. Once reprogramming has started, 
it is very fast: the median time for the later phase is 
approximately 40 times shorter than the median time 
for the early phase. Therefore, the rate-limiting step 
is the early stage of reprogramming. Consistent with 
experiment [7, 8], we find that almost all trajectories 
eventually reprogram. The most clear evidence for 
this statement comes from two observations based 
on the results shown in figure  3(A): (i) by the end 
of the simulation, 97.90% of the trajectories have 
completed the early (slow) stage of reprogramming, 
and (ii) within the time range of the simulation, the 
early stage of reprogramming is very well described 
by a Poisson process, and there is no indication of that 
behavior changing at longer times. If the first stage 
of reprogramming is indeed a Poisson process, as it 
is strongly suggested by our results, then given a long 
enough time, all cells will reprogram. In agreement 
with Yamanaka [32] and with Hanna et al [7], these 
results are inconsistent with an ‘elite’ model of 

reprogramming in which only a special subset of cells 
are amenable to reprogramming.

To ask about the order of gene level events, we 
probed the gene level dynamics of 10 genes known to 
be mutually exclusive for either MEFs or ESCs (Snai1, 
Snai2, Prrx1, Twist2, Twist1 and Zfp42, Nanog, Utf1, 
Lin28a, Sall4, respectively) for 224 successful repro-
gramming trajectories out of a total of 3000 attempts. 
Recall, that in our model, each gene is represented by 
a binary variable and can either be ‘on’ or ‘off’. Since 
the dynamics of our landscape model are stochastic, 
these genes turn on and off at different values of the 
reaction coordinate in each of these 224 trajectories. 
To understand if there is any structure in the gene level 
dynamics, we counted the percentage of trajectories 
for which a gene was on at a given reaction coordinate 
using a moving average over a narrow range of values 
of the reaction coordinate. The results are shown in fig-
ure 3(B) (see SI figure 10 for an example of non-aver-
aged data). The MEF (ESC) genes gradually turn off 
(on) over time as expected. Furthermore, the order in 
which genes turn on and off is relatively stable, at least 
when averaged over trajectories. In contrast, individual 
simulation trajectories show much more variability in 
the order in which genes turn on. However, if we con-
sider individual pairs of TFs, we find that their ordering 
tends to be consistent with what one would expect from 
figure 3(B). For example, Nanog turns on before Sall4 in 
58% of trajectories, and Snai1 turns off before Twist1 in 
71% of trajectories, but for Twist1 and Twist2, there is 
no clear trend for one or the other to turn off first.

All the qualitative features of our simulations 
are consistent with the idea that reprogramming 

Figure 3.  Nature of reprogramming dynamics in the landscape model. (A). Cumulative distributions of timing show that the early 
(aend = 0 to aend = 0.3) and later (aend = 0.3 to aend = 0.8) stages of reprogramming are respectively a Poisson and a narrowly 
peaked distribution. See SI figure 11 for early (aend = 0 to aend = 0.3), middle (aend = 0.3 to aend = 0.7) and late (aend = 0.7 to 
aend = 0.8) phases of reprogramming as Poisson, narrowly peaked and narrowly peaked distributions, respectively. In order to 
study the complete timing distribution, the data shown here and in SI figure 11 were obtained in a simulation with a duration of 
t = 3 × 106 MC steps, which is 30 times longer than the simulations reported on in all other figures. (B). Percentage of trajectories in 
which a gene is on versus reaction coordinate. Data shown is a moving average of MEF (ESC) genes turning off (on) over time. See SI 
figure 10 for an example of non-averaged data.
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trajectories correspond to successful ‘barrier cross-
ing’ between two minima in a landscape. An impor-
tant qualitative prediction of all barrier crossing is that 
reprogramming trajectories should be dominated by 
a small number of optimal paths, with some amount 
of fluctuation around those paths [33, 34]. In par
ticular, the fact that the early phase of reprogram-
ming is well described by a Poisson process, the later 
phase is described by a narrow distribution of times, 
and that the median time for the early phase is much 
longer than the median time for the later phase are all 
features that would be expected of a simple barrier-
crossing process. Furthermore, these simulations show 
that in a high-dimensional barrier crossing, genes can 
turn on in a temporally ordered manner (at least when 
averages over many reprogramming attempts) even 
though the process is driven entirely by stochasticity.

2.  Discussion

A common metaphor used to describe cellular identity 
is Waddington’s landscape, or the idea of a rugged 
‘epigenetic landscape’ in which cell types correspond 
to minima of basins of attraction. In this picture, 
cellular reprogramming is envisioned as a process in 
which one cell type is externally driven out of its basin 
of attraction, across a barrier, and eventually ends 
up in the basin of attraction of the desired cell type. 
Previously, two of us used ideas from spin physics 
to introduce a model of cellular identity that can be 
built from genome expression data. In this paper, we 
reanalyzed experimental data on reprogramming 
dynamics in terms of this model and found good 
agreement between the experiments and simulations 
of the model.

The model provides several interesting insights into 
reprogramming dynamics. We find that reprogram-
ming dynamics proceed along a simple 1D reaction 
coordinate and must cross a significant energy bar-
rier. Somewhat surprisingly, this reaction coordinate is 
independent of reprogramming dynamics. In terms of 
projections, we can simply describe the reaction coor-
dinate as a straight line from (astart = 1, aend = 0) to 
(astart = 0, aend = 1). What makes this simple picture 
especially interesting is that we demonstrated its valid-
ity for two different types of reprogramming experi-
ments (MEF or B Cell to iPSC). Based on simulations 
with our model, we believe that any cellular intercon-
version (reprogramming or direct conversion), will 
proceed along a similar, universal, reaction coordi-
nate when described in terms of astart, aend (see SI fig-
ures 13–15). We expect this basic picture should also be 
valid in other organisms such as humans.

An important corollary coming from the shape 
of this universal reprogramming trajectory is the fol-
lowing: since at all points in the reprogramming tra-
jectory the state of the cell has substantial projections 
onto the initial cell type, the final cell type, or both, 
and much smaller projections onto all other cell types  

(SI figure 12), we can conclude that the system does not 
go through any well-defined intermediate cell type at 
any point in the process. In particular, for the case of 
direct conversion (SI figures 13–15), this leads to the 
prediction that it is not a two-step process of conver-
sion from the initial cell type to iPSC followed by con-
version from iPSC to the final cell type.

Our model also gives insight into the ongoing 
debate about the phases of reprogramming dynam-
ics. A priori, reprogramming dynamics may be either 
probabilistic or deterministic with respect to both the 
timing and order of gene level events. Our simulations 
show the the initial phase of reprogramming follows 
a Poisson distribution—initiating reprogramming is 
a rare event. However, once initiated, reprogramming 
proceeds quickly and efficiently. This is reflected in 
our simulations by the observation that the dynamics 
of the reprogramming process at later stages are well 
described by a narrowly peaked distribution. Further-
more, we find that when averaged over many success-
ful reprogramming trajectories, the order of gene level 
events are relatively reproducible. Our simulations 
strongly support Chung et al [11] description of repro-
gramming as a ‘loosely ordered probabilistic process’.

Why have different dynamics experiments led to 
such drastically different conclusions? So far, each 
experiment has used different techniques, each of 
which have their own limitations. GFP reporters (for 
example [7]) provide precise timing data but are lim-
ited to small numbers of genes. Whole genome expres-
sion data (for example [9]) provides data on all genes, 
but both microarrays and RNA-Seq require popula-
tions of cells. Finally, single cell gene expression data 
(for example [10]) provides accurate details of gene 
expression, but only for a subset of genes (currently 
48 with standard Fluidigm chips [10]). Therefore, 
depending on which technique is utilized, each exper
imentalist rightfully sees a different picture of repro-
gramming dynamics. However, viewing reprogram-
ming as a loosely ordered probabilistic process unifies 
all of these different experimental pictures.

Besides examining the gene level reprogramming 
dynamics, our model provides a clearer picture of the 
global mechanism behind reprogramming. One of 
the most surprising aspects of reprogramming is that 
the over expression of just a few TFs (out of thou-
sands) can lead to such drastic changes in the global 
gene expression profile. Our simulations suggest the 
underlying reason for this is the important role played 
by culturing conditions. In our model, inducing the 
OSKM TFs in MEFs only changes the energy by 0.5% , 
which at the noise levels considered here, does not lead 
to any successful reprogramming event. However, by 
including the effect of cell culture in our simulations, 
we achieve 7.43% reprogramming rates. This suggests 
that culturing conditions likely play an important role 
in dictating reprogramming efficiencies. For example, 
it is claimed [35] that it is possible to use the OSKM 
factors, normally used to reprogram to iPSC, to instead 
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reprogram to neuronal progenitors just by changing 
culture conditions. This highlights an important issue 
of experimental design for direct conversions to a given 
cell type. Before one searches for TFs to manipulate, it 
is essential to understand the correct culturing con-
ditions for the desired cell type. Without the correct 
medium, direct conversion may prove to be exceed-
ingly difficult. In our simulations, we have found that 
the culture term for a given cell type decreases the size 
of the basin of attraction of all the other cell types. We 
even find some reprogramming events when we bias 
the system just by introducing the culture term, with-
out forcing expression of the OSKM TFs (this likely 
reflects the limitations of the model). However, when 
we compare simulations of MEF to ESC reprogram-
ming at a certain noise level and for a certain duration, 
the ones where expression of the OSKM TFs is forced 
and the ESC culture term is present have a success rate 
5 times higher than the ones where the ESC culture 
term is present but OSKM expression is not forced.

Even though our current models suggest that the 
growth medium is extremely important for repro-
gramming and direct conversion dynamics, the bio-
logical mechanism that gives rise to this effect remains 
elusive. The underlying reason for this is that our 
epigenetic landscape model utilizes a coarse-grained 
description based on ‘effective interactions’ between 
TFs and cannot distinguish between direct regula-
tion of epigenetic states by the growth medium, and 
indirect regulation due to signaling pathways or other 
regulatory layers. This highlights the need for more 
detailed, mechanistic models of cell fate and repro-
gramming dynamics.

The experimental analysis and simulations pre-
sented here suggest that reprogramming can be viewed 
as a ‘barrier crossing’ process in a rugged landscape 
(see figure  4). In all barrier crossings, the dynamics 
are dominated by a few ‘optimal paths’, suggesting 
that reprogramming dynamics are likely to be low-
dimensional and fairly reproducible at the gene level. A 
consequence of this picture is the existence of a simple 
reaction coordinate that describes the progress along 
the optimal path. If the landscape picture is correct, 
the existence of a reaction coordinate is likely to be a 
generic feature of all reprogramming and direct con-
version protocols. Directed differentiation is a closely 
related experimental technique where, instead of using 
TFs to convert between cell types, focuses on recapitu-
lating embryonic development through sequences of 
signaling molecules [36]. It will be interesting to see 
if projections are also a useful reaction coordinate for 
directed differentiation experiments.

The results presented here are also likely to be appli-
cable to other systems. Recently, it has been suggested 
that the evolutionary dynamics of viruses such as HIV 
can also be understood using a Hopfield-inspired 
landscape model [37]. In evolutionary landscapes, 
crossing fitness valleys in rugged landscapes can be 
understood in terms of barrier crossings. For this rea-

son, it is likely that the techniques developed here in 
the context of cellular reprogramming can be adapted 
to visualize evolutionary data on fitness landscape 
dynamics. More generally, landscapes have proven to 
be an important tool for furthering our understand-
ing of a variety of other biological problems, includ-
ing protein folding [38–40]. The intuitions developed 
in the context of these other problems are also likely 
to be applicable to cellular reprogramming and, in the 
future, it will be interesting to explore these connec-
tions further.

3.  Materials and methods

3.1.  Data analysis
Here we present details of the data analysis. All the 
experimental data used in this paper are available in 
the online supplementary files.

	 •	SI_Metadata-Cell_Type_basis.txt. 
List of publicly available microarrays used to define 
cell types.

	 •	SI_Metadata-Data_Analysis.txt. Data 
samples analyzed in this paper.

	 •	SI_Cell_Type_Basis-Data_Analysis.
txt. Zscore data that defines cell types for the data 
analysis.

	 •	SI_Cell_Type_Basis-Simulations.
txt. Binarized data that defines cell types for the 
simulations.

	 •	SI_Data_Analysis.txt. Zscore data for the 
data samples.

	 •	SI_trajectory_1.txt. Example simulation 
trajectory of reprogramming MEF to ESC.

	 •	SI_trajectory_2.txt. Example simulation 
trajectory of reprogramming MEF to ESC.

The following abbreviations are used in the sup-
plementary files. All GSE and GSM are data identifi-
ers from NCBI GEO except that GSE labels E-MEXP 

Figure 4.  Culture schematic. The correct culture conditions 
plays an essential role in reprogramming by stabilizing the 
final cell type.
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are data identifiers from ArrayExpress. Sample_Name 
refers to the sample label in SI_Data_Analysis.
txt. Plot_Label refers to the abbreviations used in 
figures  1 and 2. Paper_Reference is an abbreviated 
citation of the source data which came from the fol-
lowing papers[8, 9, 29–31, 41–44].

Microarrays were taken from public datasets and 
come from a variety of different microarray platforms. 
In order to compare the different platforms, the fol-
lowing analysis was done. The raw microarray data was 
converted to an expression level as follows. Microar-
ray probe-to-gene map was created with Bioconductor 
3.0. All raw microarray files were initially processed by 
robust mean averaging (RMA) and genes with multi-
ple microarray probes were averaged. Since we were 
interested in cellular identity, only transcription fac-
tors, transcription co-factors, or chromatin remod-
eling genes were kept (for short hand, referred to as 
transcription factors,TF, throughout the text) [45].

While the above analysis was done for both exper
imental data and simulations, from this point on 
the analysis differed between the two cases. For the 
experimental data analysis, we only used TFs that were 
common to all of the different microarray platforms, 
leaving N = 994 TFs. In order to make robust com-
parisons across platforms the RMA output was con-
verted to a rank order. Next, we wanted to convert this 
rank order to the z-score of a log-normal distribution. 
We converted the rank to a percentile (for N genes, 
by dividing by N + 1), and then this percentile into a 
normal z-score. For later mathematical convenience, 
we used a biased estimator (i.e. we normalized by N 
and not N − 1) since then the Euclidean norm of each 
microarray gene expression was N. Therefore, for the 
data analysis each sample is described by a Gaussian 
distribution with a Euclidean norm of N = 994.

The N transcription factors (TF) are labeled by 
Latin indices i and the p cell types are labeled by Greek 
indices μ. When analyzing experiments, we keep the 
N = 994 TFs common to all of the experimental data-
sets. Each sample is a Gaussian distribution with mean 
equal to 0 and Euclidean norm equal to N. This implies 

a standard deviation of N
N−1 ≈ 1. When performing 

simulations, we use the complete set of N = 1436 TFs 
and each TF is either on (+1) or off (−1).

For the simulations we followed similar steps to 
produce continuous TF expression levels for the cell 
type basis vector. However, in order to reduce the com-
putational cost, we binarized the gene expression so that 
each TF is either on (+1) or off (−1). We then dropped 
all TFs that were always on or always off in every cell 
type, leaving N = 1436 TFs for the simulations.

3.2.  Supplementary code
We have also included code to aid in understanding the 
manuscript and as a potential starting point for future 
work.

	 •	SI_load_paper_data.py. This script loads 
in the data used in this paper.

	 •	SI_model.py. This script creates the model 
based on the provided data.

	 •	SI_make_plots.py. This script takes the data 
and model and creates plots of the time courses as 
viewed from the reaction coordinates.

	 •	SI_dynamics_code.py. This script 
implements the dynamics used in the simulations. 
See below for more details.

3.3.  Simulations
We performed Monte Carlo (MC) simulations of a 
system containing N = 1436 TFs using the update rule 
given by equation (10), with noise parameter β = 1.62 
(i.e. T ≈ 0.617). When a culture term was introduced, 
it was to bias the system towards the ESC cell type, 
with bµ = 0.03 for µ = ESC and bµ

′
= 0 for all other 

cell types. The dynamics are qualitatively similar for 
a wide-range of values for bµ and the quantitative 
differences will be explored in future work.

Most of the results reported in this paper corre-
spond to simulations where the total number of steps 
was t = 105. For the case of simulations of MEF to 
ESC reprogramming, the OSKM transcription fac-
tors were locked ‘on’ for the whole simulation, and 
the culture term was present from step t = 5000 until 
the end. In this case, 3000 trajectories were simulated, 
out of which 224 successfully reprogrammed, i.e. the 
reprogramming rate was 7.43%. For the simulations 
of B-cell to ESC reprogramming, the protocol was 
similar, and in this case 205 trajectories reprogrammed 
successfully out of a total of 3000, corresponding to a 
reprogramming rate of 6.83%.

In order to obtain additional details about the 
probability distributions of times associated with the 
reprogramming, which we show in figure 3(A) and SI 
figure 11, we performed an additional set of simula-
tions of MEF to ESC reprogramming, with the only 
change being that the total number of steps was 30 
times larger, i.e. t = 3 × 106 instead of t = 105. In 
this set of much longer simulations, 2937 trajectories 
out of 3000 successfully reprogrammed from MEF to 
ESC, which corresponds to a reprogramming rate of 
97.90%.

In the supplementary files, we have also included 
a Python script SI_dynamics_code.py that 
implements the dynamics. We would like to point 
out that this script is provided for illustrative pur-
poses only, it would probably require a long time to 
reproduce all the computer simulations presented in 
this paper by using the script as provided. The repro-
gramming simulations discussed in the paper were 
actually performed using a FORTRAN code that 
we developed, and which runs much faster than the 
Python script.
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