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NOTATION

Here we provide more details of the results in the main text. First, we outline our notation. The time dependent
probability of state i is pi = pi(t), while the steady state probability of state i is pssi . The Laplace transformed
probability of state i is Pi(s). The rate to go from state i to state j is kij . The probability to transition from state i
to state j is qij . The time it takes to transition from state i to j is τij . The first passage time is given by f(t) while
the Laplace transformed first passage time is F (s). The lifetime of state i is ρi.

DETAILED DERIVATION OF GENERAL UNCERTAINTY

Here we derive formulas for the accuracy of statistical inference when the activated signaling states continuously
produce signals. Following Berg and Purcell [1], we will measure the accuracy of a receptor by the “uncertainty” of
the concentration estimate:

uncertainty :=
〈(δc)2〉
c2

(1)

where c is the mean and 〈(δc)2〉 is the variance of the estimated concentration.
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Let us consider the case where activated signaling states produce downstream signaling molecules at a rate α. We
will define τS as the mean lifetime of the signaling states and τNS as the mean non-signaling time. Then, we know
that the mean number of signaling molecules u produced after a time T is given by

u = αT

(
τS

τS + τNS

)
≡ αT φ̄ (2)

This follows by noting that φ̄ is just the fraction of time the receptor is in the signaling states. Notice that by definition,
α and T are independent of the concentration c. The signaling time τS , can in principle depend on concentration,
and for L signaling states is given by

τS =

L∑
i=1

p0iτi0 (3)

where p0i is the probability to transition from state 0 to state i, and τi0 is the mean time to return from state i to
state 0. Since we assume the receiving state is strongly biased (i.e. k01 is much larger than any other rate k0i from
non-signaling, 0, to signaling state i), then the derivative of the signaling time with respect to concentration is:

dτS
dc

= −
L∑
i=2

k0i
k01

(τ10 + τi0) (4)

Since this is by assumption small, we will approximate τS as independent of concentration, and thus all the concen-
tration dependence comes from τNS . Thus, using the usual error-propagation formulas one has

δu

u
= −dτNS

dc

1

τS + τNS
δc (5)

which gives the uncertainty for the concentration:

〈(δc)2〉
c2

=

(
c
dτNS
dc

)−2
(τNS + τS)

2 〈(δu)2〉
u2

(6)

The formula above reduces the problem to calculating the uncertainty in the number of signaling molecules produced
in a time T . To calculate this, notice that u comes from on average N = T/(τS + τNS) independent binding cycles

(state 0 to state 1 transition). Thus, the variance in the fraction of time bound during a time T will just be N
−1

times the variance in a single binding cycle. In particular, the coefficient of variation in a single cycle is given by

δφ

φ
=

τNS
τS + τNS

[(
δτS
τS

)
−
(
δτNS
τNS

)]
(7)

Noting that the signaling and non-signaling events are independent, we get

〈(δu)2〉
u2

=
1

N

(
τNS

τS + τNS

)2 [ 〈(δτNS)2〉
τ2NS

+
〈(δτS)2〉
τ2S

]
(8)

Plugging this expressions into (6) gives

〈(δc)2〉
c2

=
1

N

(
c
d log (τNS)

dc

)−2 [ 〈(δτNS)2〉
τ2NS

+
〈(δτS)2〉
τ2S

]
(9)

Therefore the complicated response of a receptor is reduced to its mean and variance of the time in both the
signaling and non-signaling states. In this paper, we will examine the case where there is a single non-signaling state
(0) and there are L signaling states arranged in a ring. In this case, the above expression simplifies to (leading order
k0L/k01):

〈(δc)2〉
c2

=
1

N

[
1 +
〈(δτS)2〉
τ2S

]
(10)

For a two state process as considered by Mora and Wingreen [2], there is only the receiving state and one signaling
state. These are just Poisson processes which each have an uncertainty of 1 and we recover the Berg and Purcell [1]
limit

〈(δc)2〉
c2

=
2

N
(11)
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GENERAL FIRST PASSAGE TIME

We need to calculate the first passage properties of the Markov chain, specifically the mean and variance of the
first passage time. This can be calculated as follows [3, 4]. The master equation that we want to solve is dp

dt = Kp(t).
First apply the Laplace transform

Pi(s) =

∫ ∞
0

pi(t)e
−stdt (12)

which leads to the master equation

(s−K)P (s) = p(t = 0) (13)

with K the matrix of transitions for the full system but with the transition rates leaving the absorbing states set to
zero.

The first passage time to return to state 0 is

f(t) =
dp0(t)

dt
(14)

F (s) = sP0(s) (15)

For our purposes, we only need the mean and variance of the first passage time. This is easily obtained by the
uncentered moments

M (m) =

∫ ∞
0

tmf(t) = (−1)m
dmF (s)

dsm

∣∣∣∣
s=0

(16)

where m = 1 is the mean and m = 2 is the uncentered second moment.
In general we know that τx, the spent in state x, is drawn from a mixture where it can switch to states j = 1, 2, ....

The variance of mixtures is X =
∑
i wiXi, where wi are arbitrary weights and Xi are random variables drawn from

distributions with mean µi and variance σi. Combining equations we get:

Var(X) =
∑
i

wi
[
(µi − µ)2 + σ2

i

]
(17)

with µ =
∑
i wiµi.

We can get the time spent in state x, τx, by using the variance mixture formula combined with τ ix and Var(τix),
respectively the mean and variance first passage time of starting in state i and ending in state x. This gives us

τx =
∑
i

qxiτ ix (18)

qxi =
kxi∑
j kxj

= kxiρx (19)

ρx =

∑
j

kxj

−1 (20)

Var(τx) =
∑
i

qxiV ar(τix) +
∑
i

qxi

(
τ ix −

∑
k

qxkτkx

)2

(21)

where qxi is the probability of transitioning from state x to state i, kxi is the rate to go from state x to state i, and
ρx is the lifetime of state x.

In this paper, we have one non-signaling state and the other L states are signaling. Therefore, we will let state 0
be the absorbing state, and it can initially transition to state 1 and state L. The above equations then simplify to

τ0 = q01τ10 + q0LτL0 (22)

Var(τ0) = q01V ar(τ10) + q0LV ar(τL0) + 2q01q0L (τ10 − τL0)
2

(23)

q0L = 1− q01 (24)
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FIRST PASSAGE TIME: 2 SIGNALING STATES

Here we calculate the mean and variance of the first passage time to return to state 0 from either state 1 or 2. The
master equation that we need to solve is dp

dt = Kp(t). The matrix rates are:

Kij =



k10 for i = 0 and j = 1

k12 for i = 2 and j = 1

k20 for i = 0 and j = 2

k21 for i = 1 and j = 2

−(k10 + k12) for i = 1 and j = 1

−(k20 + k21) for i = 2 and j = 2

0 everywhere else

(25)

While the initial conditions are set by the rates k01 and k02, for the purposes of the first passage time calculation,
the rates from 0 to 1 (k01) and from 0 to 2 (k02) are both set to zero, k01 = k02 = 0.

The Laplace transform for the initial condition of starting in state 1 is:

F (s) = sP0(s) = k10P1 + k20P2 (26)

with

P1 =

[
Γ1 −

k12k21
Γ2

]−1
(27)

P2 =
k12
Γ2

P1 (28)

Γi = s+ ρ−1i (29)

We can obtain mean and variance from

τ = − dF

ds

∣∣∣∣
s=0

(30)

Var(τ) =
d2F

ds2

∣∣∣∣
s=0

− τ2 (31)

The mean and variance of the first passage time from starting in either state 1 or state 2 is:

τ10 = ρ1
1 + k12ρ2

1− k12k21ρ1ρ2
=
k12 + k20 + k21

ξ
(32)

τ20 = ρ2
1 + k21ρ1

1− k12k21ρ1ρ2
=
k10 + k12 + k21

ξ
(33)

Var(τ10) = τ210

[
1 + 2ρ22

k12 (k10 − k20)

(1 + k12ρ2)2

]
= τ210 + 2

k12(k10 − k20)

ξ2
(34)

Var(τ20) = τ220

[
1 + 2ρ21

k21 (k20 − k10)

(1 + k21ρ1)2

]
= τ220 − 2

k21(k10 − k20)

ξ2
(35)

ξ = k10k20 + k10k21 + k12k20 (36)

where the second equality holds as long as ξ 6= 0.
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FIRST PASSAGE TIME: L SIGNALING STATES

Derivation

Here we calculate the mean and variance of the first passage time in a L+ 1 state chain. The master equation that
we need to solve is dp

dt = Kp(t). The matrix is indexed from 0 to L and the rates are:

Kij =



k10 for i = 0 and j = 1

kL0 for i = 0 and j = L

f for i = j + 1 and 1 < j < L

b for i = j − 1 and 1 < j < L

−(f + k10) for i = 1 and j = 1

−(f + b) for i = j and 1 < j < L

−(kL0 + b) for i = L and j = L

0 everywhere else

(37)

While the initial conditions are set by the rates k01 and k0L, for the purposes of the first passage time calculation,
the rates from 0 to 1 (k01) and from 0 to L (k0L) are both set to zero, k01 = k0L = 0.

For later convenience we define the following ratio of rates:

θ =
f

b
(38)

α =
k10
b

(39)

ω =
kL0
f

(40)

We can use a transfer matrix to find a general solution (for non-degenerate eigenvales, i.e. θ 6= 1) to the state
probability as

Pi(s) = C+λ
i−1
+ + C−λ

i−1
− (41)

signal

signal
signal

0

1

2

L
k10
k01

b
f

k0L

kL0

FIG. 1: Simplified rate structure considered for L signaling states first passage time calculation. The rates k01, k10, kL0, k0L
are unconstrained, while the remaining forward rates are equal, f = k12 = k23 = . . . = kL−1,L and the remaining backward
rates are equal, b = k21 = k32 = . . . = kL,L−1.
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Solving for the the expressions 1 < i < L leads to

λ± =
1

2b

(
s+ f + b±

√
(s+ f + b)2 − 4fb

)
(42)

=
1

2

(
σ ±

√
σ2 − 4θ

)
=

1

2
(σ ± ψ) (43)

σ =
s

b
+ θ + 1 (44)

ψ =
√
σ2 − 4θ (45)

With the initial condition of starting in P1, the boundary equations for P1 and PL are:

(σ + α− 1) (C+ + C−) = 1/b+ (C+λ+ + C−λ−) (46)

(σ + (ω − 1)θ)
(
C+λ

L−1
+ + C−λ

L−1
−

)
= θ

(
C+λ

L−2
+ + C−λ

L−2
−

)
(47)

Solving these equations gives

C− = −C+ΛLM (48)

C+ =
1

b [λ− + α− 1− (λ+ + α− 1)ΛLM ]
(49)

Λ =
λ+
λ−

(50)

M =
1 + (ω − 1)λ−
1 + (ω − 1)λ+

(51)

And then the probabilities are

P1(s) = C+

(
1− ΛLM

)
(52)

PL(s) = C+λ
L−1
+ (1− ΛM) (53)

The full Laplace transform F is:

F (s) =
α(1− ΛLM) + ωθλL−1+ (1− ΛM)

λ− + α− 1− (λ+ + α− 1)ΛLM
(54)

Results

To get the mean and variance of the first passage time, we need

τ10 = − dF

ds

∣∣∣∣
s=0

(55)

Var(τ10) =
d2F

ds2

∣∣∣∣
s=0

− τ2 (56)

The mean return time to state 0 when starting in state 1 is:

τ10 =
τ10,num
τ10,den

(57)

τ10,num = (ωL− ω + 1)θL+1 − (ωL+ 1)θL + (ω − 1)θ + 1 (58)

τ10,den = b [θ − 1]
[
ωθL+1 + ω(α− 1)θL + α(1− ω)θ − α

]
(59)
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The variance of the return time to state 0 when starting in state 1 is:

Var(τ10) =
Var(τ10)num
Var(τ10)den

(60)

Var(τ10)num = θ2L+3
[
ω2(L− 1) + 1

]
(61)

+ θ2L+2
[
ω2
(
L2α− L(3α+ 1) + 2α− 3

)
+ 2ω((L− 2)α+ 1) + 2α− 3

]
− θ2L+1

[
ω2
(
2L2α− 4Lα+ L+ 4α− 4

)
+ ω((4L− 6)α+ 4) + 4α− 3

]
+ θ2L [ω(ωL+ 2)(Lα− α+ 1) + 2α− 1]

+ θL+3(ω − 1)
[
2(ω − 1)α+ 3ωL2α+ L(ω(4− 5α) + 4α) + 2

]
+ θL+2

[
−2ω2

(
3L2α+ L(4− 6α) + α− 2

)]
+ θL+2

[
ω
(
9L2α+ L(12− 23α) + 8α− 6

)
+ 6(2L− 1)α+ 6

]
+ θL+1

[
ω
(
−9L2α+ L(19α− 12)− 6α+ 6

)]
+ θL+1

[
ω2(L− 1)((3L− 4)α+ 4) + 6(−2Lα+ α− 1)

]
+ θL

[
α
(
3L2ω − 5Lω + 4L+ 2ω − 2

)
+ (4L− 2)ω + 2

]
− θ3(ω − 1)2(2α− 1)

− θ2(ω − 1)(ω + 4α− 3)

+ θ(−2ω − 2α+ 3)

− 1

Var(τ10)den = b2 [θ − 1]
3 [
ωθL+1 + ω(α− 1)θL + α(1− ω)θ − α

]2
(62)

While the results here are for initial condition of being in state 1, one can easily find the results for the initial
condition of state L if one makes the following substitutions θ ⇔ 1/θ, b⇔ f , and α⇔ ω.

STEADY STATE PROBABILITIES

In general, we are considering a Markov chain with L+ 1 nodes (labeled 0 to L). We have the master equation

dP (t)

dt
= KP (t) (63)

with K the matrix of transition rates. The rates are labeled as kij where i is the initial state and j is the final state.
For later convenience, define the lifetime of a state as

ρi =

∑
j 6=i

kij

−1 (64)

The steady state distributions are easily obtained by solving Kpss = 0. The solution can be written in a compact
form [5] as

P ssi =
zi
Z

(65)

Z =
∑
i

zi (66)

and zi is the matrix minor of K at (i, i) i.e. the determinant of K with the ith row and column removed.
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For the two signaling state system we have that

pss0 =
ρ−11 ρ−12 − k12k21

Z
=
k10k20 + k10k21 + k12k20

Z
(67)

pss1 =
ρ−10 ρ−12 − k02k20

Z
=
k01k20 + k01k21 + k02k21

Z
(68)

pss2 =
ρ−10 ρ−11 − k01k10

Z
=
k01k12 + k02k10 + k02k12

Z
(69)

Z =
∑
i6=j

(
ρ−1i ρ−1j − kijkji

)
(70)

For the L signaling state with the simplified rates, we will just present the result for state 0:

pss0 =
pss0,num
pss0,den

(71)

pss0,num = b(θ − 1)
(
ωθL+1 + ω(α− 1)θL + α(1− ω)θ − α

)
(72)

pss0,den = −αε+ αb+ αLε+ ε+ 1 (73)

+ θ (αbω − 2αb− αLε+ ω − ε− 1) (74)

+ αbθ2 (1− ω) (75)

+ θL (bω + αε− Lω − 1− ε− αbω) (76)

+ θ1+L (αbω − 2bω + Lω − ω + 1 + ε) (77)

+ bωθL+2 (78)

The rates from 0 to 1 is k01 = 1, from 1 to 0 is k10 (with α = k10/b), from 0 to L is k0L = ε� 1, and from L to 0 is
kL0 (with ω = kL0/f). All other forward rates are f and backward rates are b and the ratio of rates is θ = f/b.

AVERAGE SAMPLING RATE: n

The average sampling rate is

n =
N

T
= k01p

ss
0 (79)

where N is the number of samples (i.e. number of binding events), T is the total integration time, k01 is the rate
from state 0 to state 1, and pss0 is the steady state probability of being in state 0.

Since we are assuming that k01 = 1 and kL0 = ε � 1, we have the mean signaling time becomes τS ≈ τ10. With
these rates we have

n ≈ (1 + τS)
−1

(80)

ENTROPY PRODUCTION: ep

For a general Markov process with states labeled by i, steady state probabilities pssi , and transition rate kij from
state i to state j, the non-equilibrium steady state (NESS) entropy production [6, 7] is given by

ep =

L∑
i=0

L∑
j 6=i

pssi kij ln
kij
kji

(81)

where the summation is over both i and j. Alternatively, the entropy production can be written as a sum over the
flux between each connected node as

ep =

L∑
i=0

L∑
j>i

(pssi kij − pssi kij) ln
kij
kji

(82)
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where now we have an unrestricted sum over i but a restricted sum over j.
Since we are modeling our receptor as a ring, the entropy production simplifies to

ep = (pss0 k01 − pss1 k10) ln
k01k12 . . . kL0

k0Lk10 . . . kL,L−1
= J ln γ (83)

where the flux J = pss0 k01 − pss1 k10 between each neighboring state is equal and the ln γ is the free energy difference
of a cycle.

For 2 signaling states, the entropy production per sampling rate is given by:

ep
n

=

[
1 +

k10
k12

+
k10k21
k12k20

]−1
γ − 1

γ
ln γ (84)

γ =
k01k12k20
k10k21k02

(85)

For the L signaling states arranged in a ring, the entropy production per sampling rate is given by:

ep
n

=

[
1 +

α

ω
θ−L + αθ−1

1− θ1−L

1− θ−1

]−1
γ − 1

γ
ln γ (86)

γ =
k01ω

k0Lα
θL (87)

where ω = kL0/f , α = k10/b, θ = f/b, f is all the forward rates (except k01 and kL0), and b is all the backward rates
(except k10 and k0L).

ANSATZ FOR 2 SIGNALING STATE RECEPTOR

Here are the details of the ansatz for the minimum uncertainty for the 2 signaling state system.
The rates are as follows:

• k01 = 1

signal signal

0

12

k10

k10 = k(1-x)/2

1

kδ

kx

ε
k

FIG. 2: Rate structure for ansatz of minimum uncertainty for the L = 2 signaling state system. The rates are as follows:
k01 = 1, k10 = k

2
(1 − x), k12 = kx, k21 = kδ, k20 = k, and k02 = ε. The mean signaling time is set by k. The other rates are

ε, δ � 1 and 0 < x < 1.
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• k10 = k
2 (1− x)

• k12 = kx

• k21 = kδ

• k20 = k

• k02 = ε

where ε � 1 (and in this paper ε = 10−3), 0 < x < 1, δ � 1 (and in this paper δ = 0.04), and k is varied to fix the
mean sampling rate n.

For the ansatz, the mean, coefficient of variation, and entropy production simplifies to

τS ≈
2

k
(88)

〈(δτS)2〉
τ2S

≈ 1− x

1 + x
(89)

ep
n
≈
(

1 +
1− x

2x

)−1
γ − 1

γ
ln γ (90)

γ =
2x

εδ(1− x)
(91)

SIMULATED ANNEALING

Simulated annealing is a meta-heuristic algorithm for global optimization in which one uses the Metropolis algorithm
to perform a random walk in parameter space while periodically lowering the temperature. We used a simulated
annealing algorithm to search for the parameters of a model describing a receptor with 2 signaling states that minimizes
a cost function given by

cost =
〈(δc)2〉
c̄2

+ λep(ln ep − ln êp)
2 − (λnn̂− 1) lnn− (λn(1− n̂)− 1) ln(1− n) (92)

That is, we minimize the uncertainty of the resulting estimator (〈(δc)2〉/c̄2) subject to soft constraints on the energy
production (ep) and sampling rate (n), which are constrained to êp and n̂, respectively. Here, λep and λn implement
the constraints. We chose λep = 20 and λn = 20/max{n̂, 1− n̂}.

Let Ω1 denote a set of parameters describing a receptor with 2 signaling states (i.e. all of the various rate constants).
A new set of trial parameters Ω2 was generated in the following way: for each k ∈ Ω1 set the corresponding k′ ∈ Ω2

to ln k′ = ln k + η where η is a random variable with from a Normal distribution centered at zero. The width of the
Normal distribution was chosen adaptively so that approximately 25% of the steps were accepted. Making the random
perturbations to the logarithm of the rate constants ensures that they are always positive. The trial move was accepted
according to the Metropolis criterion with probability min[1, exp((cost(Ω1)− cost(Ω2))/T )]. The temperature T was
initialized to T = 10 and adjusted by T ← 0.95T every 2000 steps. The best solution obtained during the chain was
stored in ΩB , and the chain was re-initialized from Ω1 = ΩB every 2000 steps to prevent the chain from getting stuck
in a poor local minimum. This simulated annealing algorithm was run until convergence of 〈(δc)2〉/c̄2, ep and n.

SCALING WITH TEMPERATURE

In the main text, we worked in the units of kBT = 1. However, here we examine the general temperature dependence.
Experimentally, it is known that rates of biochemical reactions doubles for every 10 ◦C [8, 9]. Therefore, a general
rate k at a temperature T (measured in degrees Celsius) is related to initial rate k0 and initial temperature T0 by:

k = k02
T−T0

10 (93)

Now we need to determine the general scaling of various entities in this paper, which is summarized below in terms
of a general rate k:
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• Mean signaling time, τS ∼ k−1

• Variance in signaling time, 〈(δτS)2〉 ∼ k−2

• Coefficient of variation of signaling time, 〈(δτS)2〉
τ2
S
∼ 1

• Sampling rate, n ∼ k

• Uncertainity, 〈(δc)
2〉

c2
∼ k−1

• Entropy production, ep ∼ k

While increasing temperature increases both the mean and variance of the signaling time, since the estimator

(E = 1 + 〈(δτS)2〉
τ2
S

) only depends on the coefficient of variation of signaling time, the estimator is independent of

temperature. The sampling rate n does increase with increasing temperature, and therefore increasing temperature
decreases the uncertainty. However, this decrease in uncertainty costs energy. While the free energy per cycle (ln γ)
remains constant, the probability flux (J) is proportional to a rate, and since the entropy production is given by
ep = J ln γ, we see that that decrease in uncertainty is directly related to the increase in entropy production.
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Academy of Sciences 111, 972 (2014).
[9] I. H. Segel, Enzyme Kinetics, vol. 360 (Wiley, New York, 1975).


