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The deep connection between thermodynamics, computation, and information is now well established
both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also
places fundamental constraints on statistical estimation and learning. To do so, we investigate the
constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks
to estimate the concentration of an external signal. We show that accuracy is limited by energy
consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.
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Cells often perform complex computations in response to
external signals. These computations are implemented using
elaborate biochemical networks that may operate out of
equilibrium and consume energy [1–7]. Given that energetic
costs place important constraints on the design of physical
computing devices [8] and neural computing architectures
[9], one may conjecture that thermodynamic constraints
also influence the design of cellular information processing
networks. This raises interesting questions about the rela-
tionship between the information processing capabilities of
biochemical networks and energy consumption [10–14].
Indeed, we will show that thermodynamics places funda-
mental constraints on the ability of biochemical networks to
perform statistical inference. More generally, statistical
inference is intimately tied to the manipulation of informa-
tion and hence offers a rich setting to study the relationship
between information and thermodynamics [15–19].
In order for a cell to formulate an appropriate response to

an environmental signal, it must first estimate the concen-
tration of an external signaling molecule using membrane
bound receptors [1–6,20]. The biophysics and biochemistry
of cellular receptors is highly variable. Whereas some simple
receptor proteins behave like two-state systems (i.e.,
unbound and ligand bound) with dynamics obeying detailed
balance [21], other receptors, such as G-protein coupled
receptors, can actively consume energy as they cycle through
multiple states. This naturally raises questions about how
energy consumption by cellular receptors affects their ability
to perform statistical inference. Here, we address these
questions by analyzing the accuracy of statistical inference
(i.e., learning) as a function of energy consumption in a
simple but biophysically realistic model. We show that
learning more accurately always requires expending more
energy, suggesting that the accuracy of a statistical estimator
is fundamentally constrained by thermodynamics.
Cells estimate the concentration of an external ligand

using ligand-specific receptors expressed on the cell sur-
face. A ligand (usually a small molecule), at a concentration

c in the environment, binds the receptor at a concentration-
dependent rate, kþc, and unbinds at a concentration-
independent rate, k− [1] [see Fig. 1(a)]. Upon ligand
binding, the receptor protein undergoes conformational
changes or chemical modifications that alter its activity,
sending a signal that the ligand is bound to downstream
portions of the biochemical network. During a time interval
T, the receptor can undergo multiple stochastic transitions
between the unbound nonsignaling state and the bound
signaling states. This information is contained in the time
series of signaling and nonsignaling intervals [see Fig. 1(b)].

(e) (f) (g)

ADP

ADP

ATP

ATP

signal signal signal

0 0

121

k10
k10 k01k01

k21

k12

k02

k20

signal

signal
signal

0

1

2

L

k10

k01

k21

k12

k0L

kL0

(a)

k+c k-

time

Signaling

Nonsignaling

T

(b) (c) (d)

SNS

FIG. 1. Schematic of a cell receptor and our model of a receptor.
(a) A chemical ligand at concentration c binds to the receptor at
rate kþc and unbinds at rate k−. (b) Example time series of a
receptor binding. While unbound, the receptor is in a non-
signaling state, but upon ligand binding it transitions to a
signaling state. After a long time T, the receptor has a series
of nonsignaling times τNS and signaling times τS from which to
estimate the concentration. (c) Two-state and (d) three-state
biochemical models of a receptor. Upon ligand binding the
receptor undergoes a physical change (represented as a conforma-
tional change) that transmits signals to the downstream bio-
chemical network. (e) Two-state, (f) three-state, and (g) L-state
Markov models of a receptor, where the chain of states
3; 4;…; L − 1 has been suppressed.

PRL 113, 148103 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

3 OCTOBER 2014

0031-9007=14=113(14)=148103(5) 148103-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.148103
http://dx.doi.org/10.1103/PhysRevLett.113.148103
http://dx.doi.org/10.1103/PhysRevLett.113.148103
http://dx.doi.org/10.1103/PhysRevLett.113.148103


After a time T, the cell converts this time series into an
estimate for the external concentration. A longer time series
T always gives a better estimate for the concentration;
however, the cell needs to make a decision in a finite time,
so we consider T to be fixed to a large but finite value. In
principle, the estimate for the concentration could be
computed using one of many different statistics that can
be obtained from this time series (e.g., average bound time,
average unbound time, etc.). Each of the resulting estimators
for the external ligand concentration has a different accuracy.
Following Berg and Purcell (BP) [1], we measure the
accuracy of an estimator for the concentration using its
“uncertainty,” defined as

uncertainty ¼ hðδcÞ2i
c̄2

; ð1Þ

where c̄ is the mean and hðδcÞ2i is the variance of the
estimated concentration.
Several methods have been proposed for how a cell may

estimate the concentration of the external signaling mol-
ecule. In their pioneering paper, Berg and Purcell suggested
estimating the concentration using the average time the
receptor was bound during the time T [1]. They showed
that the minimal uncertainty a receptor could achieve with
this estimator was

hðδcÞ2i
c̄2

¼ 2

N̄
; ð2Þ

where N̄ is the expected number of binding events during
the time interval T. For 30 years, many thought that the BP
estimator placed a fundamental limit on the accuracy of a
cellular receptor. However, in 2009, Endres and Wingreen
[3] showed that a cell using maximum likelihood estima-
tion (MLE) based on the average nonsignaling time could
reduce its uncertainty by half to

hðδcÞ2i
c̄2

¼ 1

N̄
: ð3Þ

However, the increased accuracy of MLE comes at an
energetic cost. Previous work [5] established that BP sets a
limit for the best possible estimator in equilibrium, imply-
ing that any receptor that performs MLE must operate out
of equilibrium and consume energy.
In order to study the relationship between thermody-

namics and the accuracy of statistical estimators, we
introduce a new family of biophysically inspired cellular
receptors that interpolate between BP and MLE. In our
model, receptors can actively consume energy by operating
out of equilibrium [for example, by hydrolyzing adenosine
triphosphate (ATP)]. Using this family of models, we show
that there is a direct connection between the energy
consumed by a receptor and the uncertainty of the resulting
estimator. We find that in order to learn more information
(decrease its uncertainty), the receptor must always expend

more energy (increase entropy production). Note that, in
this Letter, we restrict ourselves to modeling the receptor
and ignore the downstream signaling network that converts
the signal from the receptor into a cellular response [10,13].
Thus, the energies computed here represent lower bounds
on the total energy consumed by the statistical estimation
network.
Figure 1(c) shows the simple two-state receptor consid-

ered by BP. The binding of an external ligand to the
receptor induces a change in the receptor from a non-
signaling state to a signaling state [see Fig. 1(b)]. The
dynamics of this simple two-state receptor always obey
detailed balance. Thus, in order to model nonequilibrium
receptors, we must consider receptors with more than two
states. Figure 1(d) shows a receptor with three states: one
nonsignaling state to which ligands can bind and two
signaling states to which ligands cannot bind. With this
extra state, the dynamics of the receptor can break detailed
balance by coupling the conformational change in the
receptor to another reaction such as the hydrolosis of ATP.
In particular, by consuming energy it is possible to drive the
system preferentially through a series of state changes [22]
[for example, clockwise in Figs. 1(f) and 1(g)]. This results
in a nonzero probability flux through the state space and
positive entropy production.
In order to relate the thermodynamic properties of these

receptors to their ability to perform statistical inferences, it is
useful to represent receptors as Markov chains. For example,
the two-state receptor shown in Fig. 1(c) can be represented
as a two-state Markov chain with a state 0 corresponding to
the unbound nonsignaling state and state 1 corresponding to
the signaling state [see Fig. 1(e)]. We choose the transition
rates between states in theMarkov chain to be identical to the
transition rates between conformations of the receptor. The
three-state receptor can also be modeled as a three-state
Markov chain with a ring structure, with state 0 once again
corresponding to the unbound, nonsignaling state [Fig. 1(f)].
In this more abstract notation, it is easy to generalize the
three-state receptor considered above to a receptor with
Lþ 1 states [see Fig. 1(g)]: L of these states are signaling
states that cannot bind the ligand, while the remaining state,
0, corresponds to the nonsignaling state that can bind
ligands. For ease of analysis, in this Letter, we consider
receptors arranged in a ring only. However, our model is a
good approximation for more complicated receptors with
multiple pathways, so long as the receptor has a single path
(for example, of length L�) that dominates the probability
flux; see [23] for details. In that case, the complicated
receptor reduces to a single ring of length L�.
A straightforward calculation shows that for the archi-

tectures in Fig. 1 [24], the uncertainty of an estimate for the
concentration is given by [3]

hðδcÞ2i
c̄2

¼ 1

N̄

�
1þ hðδτSÞ2i

τ̄2S

�
≡ E

N̄
; ð4Þ
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whereN is the number of binding events, τ̄S is themean time
spent in the signaling state after binding a ligand, and
hðδτSÞ2i is the variance of the time spent in the signaling
states. In the second equality, we have defined the coefficient
E which measures the accuracy of an estimator, e.g., E ¼ 2
for the Berg-Purcell limit and E ¼ 1 for MLE. For a given
estimator (i.e., a specific architecture and a set of rates ~k),
we can calculate the mean and the variance of the signaling
time by a first passage calculation similar to that in [24,25].
Here we provide some intuition for Eq. (4). Notice that

all the information about the ligand concentration is
contained in the event of a ligand binding to the receptor,
and the unbinding of the ligand, or the exiting of the
signaling state, is independent of concentration. Thus, any
variation in the duration of the signaling state adds addi-
tional noise to the estimate but does not contain any more
information about the concentration. Therefore, the optimal
estimator is one where the signaling intervals are com-
pletely deterministic and hðδτSÞ2i ¼ 0. Comparing Eqs. (4)
and (3), we see that this corresponds to MLE. This is
consistent with the well-known fact that MLE is the optimal
unbiased estimator for large sample sizes. When the
durations of the signaling times are exponentially distrib-
uted, like for a two-state receptor hðδτSÞ2i ¼ τ̄2S, then
Eq. (4) reduces to the BP result given in Eq. (2).
Finally, in all cases, the uncertainty scales inversely with
the average number of binding events N̄ during the time
interval T. This scaling law follows from the central limit
theorem by treating each binding event as an independent
sample of the concentration.
The Markov representation allows us to calculate the

energy consumption using ideas from nonequilibrium stat-
istical physics. We focus on long time intervals, T ≫ 1, with
many binding events, where the receptor dynamics can be
modeled by nonequilibrium steady states (NESS). The
entropy production of the Markov process is the energy
per unit time (power) required to maintain this NESS, and,
therefore, calculating the entropy production is equivalent to
calculating the energy consumed by the biochemical net-
work [10,22]. The entropy production is given by [26]

ep ¼
XL
i¼0

XL
j≠i

pss
i kij ln

kij
kji

; ð5Þ

with pss
i is the steady state probability of state i, kij is the

transition rate from state i to state j, and we have set
kBT ¼ 1 [24]. For the architectures where the Markov
process forms a ring, the entropy production simplifies to

ep ¼ ðpss
0 k01 − pss

1 k10Þ ln
k01k12…kL0

k0Lk10…kL;L−1
¼ J ln γ; ð6Þ

where J is the net flux around the ring and ln γ is the free
energy per cycle [22,24]. For later reference, the total energy
released in ATP hydrolysis is approximately 20 kBT at room

temperature [27]. We note that previous work investigating
tradeoffs between accuracy and energy in Markov chains
used a nonthermodynamically feasible energy [28].
Our goal is to find the best performing estimator for a

given receptor architecture and entropy production (energy
consumption) rate. However, there are several biological
constraints that need to be considered when optimizing
over choices of kinetic parameters. First, the rate at which a
chemical ligand binds to a receptor is set by diffusion
limited binding [1] and hence k01 is not controlled by the
cell. Therefore, we set k01 ¼ 1 and do not optimize over
this rate. Second, a receptor needs to be specific. In
principle, both “correct” ligands (i.e., the ligands the
receptor has evolved to detect) and “wrong” ligands (any
other chemical) can bind the receptor. However, nonspe-
cific ligands quickly unbind and cause the receptor to
switch back to the nonsignaling state. Thus, the specificity
of a receptor is set by the mean duration of the signaling
state in the presence of the correct ligand, τ̄S. This is
incorporated by requiring a small nonspecific binding rate
(k0L ¼ ϵ ≪ 1 ¼ k01) and we do not optimize over k0L.
Lastly, since any statistical estimator is always improved
with more samples, to fairly compare different families of
estimates, we will fix the sampling rate, n̄ ¼ N̄=T, where N̄
is the expected number of samples and T is the signal
integration time. By fixing the nonspecific binding rate
(k0L) to be small [24], this implies τ̄S ≈ n̄−1 − 1. But since
we are also fixing the sampling rate, n̄, this fixes τ̄S. In
summary, our goal is to find the global minima for
uncertainty, given the above constraints.
We begin by analyzing the three-state receptor

[Fig. 1(f)]. Figure 2 shows the uncertainty as a function
of entropy production for the optimal three-state receptor
for four different choices of the ligand binding rate,
n̄ ¼ N̄=T. To generate these plots, we have used an analytic
ansatz [24] for the optimal parameters which we have
checked using simulated annealing (with agreement within
1.25%). Notice that learning more accurately (reducing
uncertainty) always increased energy consumption
(entropy production). At low energy consumption, the
receptor approaches the equilibrium BP limit (E ¼ 2),
while at high energy consumption (corresponding approx-
imately to the energy of ATP hydrolysis) the optimal
performance asymptotically approaches the infinite entropy
production analytic limit of

hðδcÞ2i
c̄2

∼
3

2N̄
: ð7Þ

One striking observation is that these curves exhibit a
data collapse when plotted as a function of the energy
consumption per ligand binding rate, ep=n̄. The inset of
Fig. 2 shows the same curves as the main graph as a
function of ep=n̄. Since each ligand binding event can be
viewed as an independent sample of the external
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concentration, this data collapse suggests that the natural
variable linking thermodynamics and inference is the
energy per independent sample consumed in constructing
an estimator.
The three-state receptor is not able to reach the MLE

limit of E ¼ 1 for any level of entropy production. To reach
the MLE limit, we consider a receptor with Lþ 1 states, L
of which are signaling states [see Fig. 1(g)]. This Markov
chain has 2L independent parameters, which makes it hard
to find the global optimum. For this reason, we analyzed a
simplified, but still biophysically realistic, rate structure
(without performing any optimization over parameters)
where k01, k0L, k10, kL0 can independently vary but all
other forward rates are fixed to be identical, ki;iþ1 ¼ f and
all other backward rates chosen so that kiþ1;i ¼ b, where
i ¼ 1…L − 1 [24]. Once again, for all choices of L, the
optimal uncertainty exhibits a data collapse as a function
of the energy consumption per ligand binding rate, ep=n̄
(see Fig. 3). At low energy consumption, the uncertainty
approaches the BP limit (E ¼ 2), while at high energy
consumption (corresponding approximately to the energy
of ATP hydrolysis) asymptotically approaches the infinite
entropy production analytic limit of

hðδcÞ2i
c̄2

∼
�
1þ 1

L

�
1

N̄
: ð8Þ

Thus, receptors with large energy consumption and many
signaling states (L ≫ 1) approach the MLE limit. In order
to perfectly achieve the MLE limit, all backward rates b

would need to be 0, leading to infinite entropy production.
An interesting feature of these curves is that beyond some
scale (which can be achieved by hydrolysis of only a few
ATP), the marginal gain in improvement that results from
consuming more energy becomes negligible. This is
reminiscent of the recently found transition in kinetic
proofreading where adding additional energy only margin-
ally improves the error threshold [23,29]. It will be
interesting to see if this is a generic feature of many
biochemical information processing circuits.
In conclusion, by analyzing the ability of cells to

estimate the concentration of an external chemical signal
using nonequilibrium receptors, we have established an
unexpected link between statistical inference and thermo-
dynamics. Specifically, we found that the efficacy of an
estimator for the concentration of a ligand depends on the
energy consumed per independent sample by the receptor.
Extrapolating this result suggests that there may be funda-
mental thermodynamic bounds on statistical inference.
The trade-off between accuracy and energy is general
and may be relevant for other signal transduction systems,
such as gene regulation [30], light-activated proteins
[31], or ligand-gated ion channels [32]. We note that
following the tradition of Berg and Purcell, in this Letter
we considered estimating a concentration only after a
long time T. However, in many related cases, such as
transcription [33], the speed is an important trade-off in
addition to accuracy and energy consumption. In the
context of phosphorelays, it is likely that the circuits can
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FIG. 2 (color online). Two signaling state estimator perfor-
mance. For varying sampling rate n̄ ¼ N̄=T, the plot shows
estimator performance (E) versus entropy production (ep, with
units of kBT ¼ 1). The symbols represent results from simulated
annealing, where k01 ¼ 1 and k02 ¼ ϵ ¼ 10−3, while the other
four rates are optimized. The continuous lines represent our
ansatz [24] for the global minima. At high entropy production,
the estimators asymptotically approach 1.5. The inset shows the
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dashed line corresponds to the approximate energy released by
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FIG. 3 (color online). Illustrative example of L signaling state
estimator performance. For a varying number of signaling states
L, the plot shows estimator performance (E) versus energy
consumption (ep=n̄). For an increasing L, at high energy
consumption the estimator approaches the maximum likelihood
limit of 1. The following parameters are fixed at n̄ ¼ 0.99,
k01 ¼ 1, k0L ¼ 10−3, α ¼ k10=b ¼ 10−3, and ω ¼ kL0=f ¼ 1,
while b was varied to keep n̄ fixed and θ ¼ f=b was varied to
change the estimator and the energy consumption. These param-
eters were chosen for convenience and are not global optima. The
vertical lines correspond to the approximate energy released by
hydrolysis of a single ATP (dashes) or two ATPs (dot dashes).
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respond quickly even for multistep cascades. For example,
the four-stage phosphorelay utilized for phototransduction
in the retina can still respond to stimuli in about half a
second [34]. Nonetheless, understanding these trade-offs
represents an important future research direction.
We conjecture that our observed scaling, (ep=n̄), reflects

a general principle: the efficiency of a statistical estimator
is limited by the energy consumed per sample during its
construction. Of course, much more investigation is needed
to see if this conjecture holds in general. In particular, it will
be interesting to see if these results change for receptors
modeled by heterogeneous Markov networks that are not
strictly ringlike in nature. Recent work indicates that at
large entropy production, the dynamics of such networks
may be independent of details of the underlying topology,
suggesting that our basic picture should hold even for more
complicated nonequilibrium receptors [35]. An additional
extension to our model would be to consider externally
varying concentrations by implementing a sensory adaptive
system as was done in recent papers [36,37]. These papers
found that the accuracy and energy consumption of the
sensory adaptive system depends on the time scale of
external concentration fluctuations. Finally, it is well
known that many receptors, such as G-protein coupled
receptors, actively consume energy in order to operate. Our
model presents one possible explanation for this observa-
tion. The energy consumption may help reduce noise in
the downstream signal, allowing cells to more accurately
determine external concentrations. Our model also shows
that hydrolysis of only one or two ATP nearly achieves the
theoretical minima of uncertainty. This may explain why
cell sensors often require only a few phosphorylation sites.

We would like to thank David Schwab and Javad
Noorbakhsh for the useful discussions. We also thank
Luca D’Alessio and D. J. Strouse for detailed comments
on the Letter. A. H. L. was supported by a National Science
Foundation Graduate Research Fellowship (NSF GRFP)
under Grant No. DGE-1247312. P. M. and C. K. F. were
supported by a Sloan Research Fellowship and NIH Grant
No. K25 GM086909.

*Corresponding author.
alexlang@bu.edu

†Corresponding author.
pankajm@bu.edu

[1] H. Berg and E. Purcell, Biophys. J. 20, 193 (1977).
[2] W. Bialek and S. Setayeshgar, Proc. Natl. Acad. Sci. U.S.A.

102, 10040 (2005).
[3] R. G. Endres and N. S. Wingreen, Phys. Rev. Lett. 103,

158101 (2009).
[4] B. Hu, W. Chen, W. Rappel, and H. Levine, Phys. Rev. Lett.

105, 048104 (2010).
[5] T. Mora and N. S. Wingreen, Phys. Rev. Lett. 104, 248101

(2010).

[6] V. Sourjik and N. S. Wingreen, Curr. Opin. Cell Biol. 24,
262 (2012).

[7] K. Kaizu, W. de Ronde, J. Paijmans, K. Takahashi, F.
Tostevin, and P. R. ten Wolde, Biophys. J. 106, 976 (2014).

[8] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[9] S. Laughlin, Curr. Opin. Neurobiol. 11, 475 (2001).

[10] P. Mehta and D. J. Schwab, Proc. Natl. Acad. Sci. U.S.A.
109, 17978 (2012).

[11] G. Lan, P. Sartori, S. Neumann, V. Sourjik, and Y. Tu,
Nat. Phys. 8, 422 (2012).

[12] C. C. Govern and P. R. ten Wolde, Phys. Rev. Lett. 109,
218103 (2012).

[13] C. C. Govern and P. R. ten Wolde, arXiv:1308.1449.
[14] A. C. Barato, D. Hartich, and U. Seifert, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys. 87, 042104 (2013).
[15] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R.

Dillenschneider, andE. Lutz,Nature (London)483, 187 (2012).
[16] D. Mandal and C. Jarzynski, Proc. Natl. Acad. Sci. U.S.A.

109, 11641 (2012).
[17] S. Vaikuntanathan and C. Jarzynski, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys. 83, 061120 (2011).
[18] T. Sagawa and M. Ueda, Phys. Rev. E: Stat., Nonlinear, Soft

Matter Phys. 85, 021104 (2012).
[19] S. Still, D. A. Sivak, A. J. Bell, and G. E. Crooks, Phys. Rev.

Lett. 109, 120604 (2012).
[20] X. Cheng, L. Merchan, M. Tchernookov, and I. Nemenman,

Phys. Biol. 10, 035008 (2013).
[21] J. E. Keymer, R. G. Endres, M. Skoge, Y. Meir, and N. S.

Wingreen, Proc. Natl. Acad. Sci. U.S.A. 103, 1786 (2006).
[22] T. L. Hill, Free Energy Transduction and Biochemical

Cycle Kinetics (Springer, New York, 1989).
[23] A. Murugan, D. A. Huse, and S. Leibler, Proc. Natl. Acad.

Sci. U.S.A. 109, 12034 (2012).
[24] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.113.148103 for addi-
tional details.

[25] G. Bel, B. Munsky, and I. Nemenman, Phys. Biol. 7,
016003 (2010).

[26] J. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 (1999).
[27] D. Voet and J. Voet, Biochemistry, 3rd ed. (John Wiley &

Sons, New York, 2004), p. 566.
[28] S. Escola, M. Eisele, K. Miller, and L. Paninski, Neural

Comput. 21, 1863 (2009).
[29] B. Munsky, I. Nemenman, and G. Bel, J. Chem. Phys. 131,

235103 (2009).
[30] D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U.

Schibler, and F. Naef, Science 332, 472 (2011).
[31] W. Bialek, Biophysics: Searching for Principles (Princeton

University, Princeton, NJ, 2012).
[32] L. Csanády, P. Vergani, and D. C. Gadsby, Proc. Natl. Acad.

Sci. U.S.A. 107, 1241 (2010).
[33] M. Depken, J. M. Parrondo, and S. W. Grill, Cell Rep. 5,

521 (2013).
[34] P. B. Detwiler, S. Ramanathan, A. Sengupta, and B. I.

Shraiman, Biophys. J. 79, 2801 (2000).
[35] S. Vaikuntanathan, T. R. Gingrich, and P. L. Geissler, Phys.

Rev. E: Stat., Nonlinear, Soft Matter Phys. 89, 062108 (2014).
[36] P. Sartori, L. Granger, C. F. Lee, and J. M. Horowitz,

arXiv:1404.1027.
[37] A. C. Barato, D. Hartich, and U. Seifert, arXiv:1405.7241.

PRL 113, 148103 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

3 OCTOBER 2014

148103-5

http://dx.doi.org/10.1016/S0006-3495(77)85544-6
http://dx.doi.org/10.1073/pnas.0504321102
http://dx.doi.org/10.1073/pnas.0504321102
http://dx.doi.org/10.1103/PhysRevLett.103.158101
http://dx.doi.org/10.1103/PhysRevLett.103.158101
http://dx.doi.org/10.1103/PhysRevLett.105.048104
http://dx.doi.org/10.1103/PhysRevLett.105.048104
http://dx.doi.org/10.1103/PhysRevLett.104.248101
http://dx.doi.org/10.1103/PhysRevLett.104.248101
http://dx.doi.org/10.1016/j.ceb.2011.11.008
http://dx.doi.org/10.1016/j.ceb.2011.11.008
http://dx.doi.org/10.1016/j.bpj.2013.12.030
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1016/S0959-4388(00)00237-3
http://dx.doi.org/10.1073/pnas.1207814109
http://dx.doi.org/10.1073/pnas.1207814109
http://dx.doi.org/10.1038/nphys2276
http://dx.doi.org/10.1103/PhysRevLett.109.218103
http://dx.doi.org/10.1103/PhysRevLett.109.218103
http://arXiv.org/abs/1308.1449
http://dx.doi.org/10.1103/PhysRevE.87.042104
http://dx.doi.org/10.1103/PhysRevE.87.042104
http://dx.doi.org/10.1038/nature10872
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1073/pnas.1204263109
http://dx.doi.org/10.1103/PhysRevE.83.061120
http://dx.doi.org/10.1103/PhysRevE.83.061120
http://dx.doi.org/10.1103/PhysRevE.85.021104
http://dx.doi.org/10.1103/PhysRevE.85.021104
http://dx.doi.org/10.1103/PhysRevLett.109.120604
http://dx.doi.org/10.1103/PhysRevLett.109.120604
http://dx.doi.org/10.1088/1478-3975/10/3/035008
http://dx.doi.org/10.1073/pnas.0507438103
http://dx.doi.org/10.1073/pnas.1119911109
http://dx.doi.org/10.1073/pnas.1119911109
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.148103
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.148103
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.148103
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.148103
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.148103
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.148103
http://link.aps.org/supplemental/10.1103/PhysRevLett.113.148103
http://dx.doi.org/10.1088/1478-3975/7/1/016003
http://dx.doi.org/10.1088/1478-3975/7/1/016003
http://dx.doi.org/10.1023/A:1004589714161
http://dx.doi.org/10.1162/neco.2009.08-08-843
http://dx.doi.org/10.1162/neco.2009.08-08-843
http://dx.doi.org/10.1063/1.3274803
http://dx.doi.org/10.1063/1.3274803
http://dx.doi.org/10.1126/science.1198817
http://dx.doi.org/10.1073/pnas.0911061107
http://dx.doi.org/10.1073/pnas.0911061107
http://dx.doi.org/10.1016/j.celrep.2013.09.007
http://dx.doi.org/10.1016/j.celrep.2013.09.007
http://dx.doi.org/10.1016/S0006-3495(00)76519-2
http://dx.doi.org/10.1103/PhysRevE.89.062108
http://dx.doi.org/10.1103/PhysRevE.89.062108
http://arXiv.org/abs/1404.1027
http://arXiv.org/abs/1405.7241

