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Cells often perform computations in order to respond to environ-
mental cues. A simple example is the classic problem, first consid-
ered by Berg and Purcell, of determining the concentration of a
chemical ligand in the surrounding media. On general theoretical
grounds, it is expected that such computations require cells to
consume energy. In particular, Landauer’s principle states that
energy must be consumed in order to erase the memory of past
observations. Here, we explicitly calculate the energetic cost of
steady-state computation of ligand concentration for a simple
two-component cellular network that implements a noisy version
of the Berg–Purcell strategy. We show that learning about external
concentrations necessitates the breaking of detailed balance and
consumption of energy, with greater learning requiring more
energy. Our calculations suggest that the energetic costs of cellular
computation may be an important constraint on networks de-
signed to function in resource poor environments, such as the
spore germination networks of bacteria.
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The relationship between information and thermodynamics
remains an active area of research despite decades of study

(1–4). An important implication of the recent experimental con-
firmation of Landauer’s principle, relating the erasure of infor-
mation to thermodynamic irreversibility, is that any irreversible
computing device must necessarily consume energy (2, 3). The
generality of Landauer’s argument suggests that it is true regard-
less of how the computation is implemented. A particularly inter-
esting class of examples relevant to systems biology and biophy-
sics is that of intracellular biochemical networks that compute
information about the external environment. These biochemical
networks are ubiquitous in biology, ranging from the quorum-
sensing and chemotaxis networks in single-cell organisms to net-
works that detect hormones and other signaling factors in higher
organisms.

A fundamental issue is the relationship between the informa-
tion processing capabilities of these biochemical networks and
their energetic costs (5–8). It is known that energetic costs place
important constraints on the design of physical computing devices
as well as on neural computing architectures in the brain and re-
tina (9–11), suggesting that these constraints may also influence
the design of cellular computing networks.

The best studied example of a cellular computation is the
estimation of the steady-state concentration of a chemical ligand
in the surrounding environment (12–14). This problem was first
considered in the seminal paper by Berg and Purcell who showed
that the information a cell can acquire about its environment is
fundamentally limited by stochastic fluctuations in the occupancy
of the membrane-bound receptor proteins that detect the ligand
(12). In particular, they considered the case of a cellular receptor
that binds ligands with a concentration-dependent rate koff

4 and
unbinds particles at a uniform rate koff

4 (see Fig. 1). They argued
that cells could estimate the ambient chemical concentration by
calculating the average time a receptor is bound during a chosen
measurement time T ≫ 1. Recently, however, it was shown that
the optimal strategy for a cell is instead to calculate the average
duration of the unbound intervals during T or, equivalently, the
total time that the receptor was unbound during T. This later

computation implements maximum likelihood estimation (MLE)
(14). In these previous studies, the biochemical network down-
stream of the receptors that implements the desired computa-
tions was largely ignored because the authors were primarily
interested in calculating fundamental limits on how precisely
cells can compute external concentrations. However, calculating
energetic costs requires us to explicitly model the downstream
biochemical networks that implement these computations (15).

Here, we consider a simple two-component biochemical net-
work that encodes information about ligand concentration in the
steady-state concentration of the activated form of a downstream
protein (as shown in Fig. 1). Such two-component networks are
a common signal transduction motif found in bacteria and are
often used to sense external signals through receptor-catalyzed
phosphorylation of a downstream response regulator (16). The
membrane-bound receptors can be in an either an active “on”
state or an inactive “off” state. For simplicity, as in previous works
(12–14), we assume that the binding affinity of the on state is
extremely high such that all ligand-bound receptors are always
in the on state and all unbound receptors are in the off state.
Receptors can switch between the off state and on state at a con-
centration-dependent rate koff

4 and from the on state to the off
state at a concentration-independent rate kon

4 . Receptors addi-
tionally convert a downstream signaling protein from an inactive
formX to an active formX �, by, for example, phosphorylation, at
a state-dependent rate ks

2, where s ¼ on; off. The proteins are
deactivated at a state-independent rate k1. The dependence of
ks
2 on the receptor state is what propagates information about

ligand concentration downstream. The biochemical network
described above contains all the basic elements of a computing
device (see Table 1).

Importantly, the deactivation rate of the off state is small yet
must be nonzero for thermodynamic consistency (17). We also
note that for the case where proteins are activated through phos-
phorylaltion, koff

2 includes nonspecific phosphorylation arising
from other kinases as well as contributions from the reverse re-
actions of the phosphotases. The inactivation rate sets the scale
for the effective measurement time T ∝ k−1

1 because it is the rate
at which information encoded in downstream proteins is lost due
to inactivation. In order to compute external concentrations
accurately, the measurement time must be much longer than the
typical switching times between receptor states, k1 ≪ kon

4 ; koff
4 .

We show below that this simple network in fact implements a
noisy version of the original Berg–Purcell calculation. Our
explicit construction allows us to study the relationship between
information and power consumption in this network.

The paper is organized as follows. In the first section, we
compute the steady-state behavior of the system, first within the
linear-noise approximation and then through an exact solution of
the corresponding master equation. In the next two sections, we
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quantify the efficacy of chemosensation through the variance in
estimated concentration (using the linear-noise approximation)
and calculate the power consumption required to maintain the
network in steady state (using the exact solution). Finally, we
show there exists a tradeoff between these two quantities and dis-
cuss implications for the design of cellular sensing systems. We
begin each section with a general discussion that summarizes
the major ideas, results, and interpretations followed by a more
technical and mathematical discussion.

Characterization of the Network’s Steady-State Properties
In this section, we derive the steady-state properties of the
cellular network considered above. The network translates the
external ligand concentration into an internal concentration of
activated proteins. This mapping between external ligand concen-
tration and downstream protein number is probabilistic due to
the stochasticity inherent in biochemical networks. For this
reason, we can characterize the output of the network by a prob-
ability distribution of activated proteins, pðnÞ. The shape of the
distribution pðnÞ depends explicitly on the kinetic parameters (k1,
ks
2, k

on∕off
4 ) (see Fig. 2). In the following sections, we focus on the

fast-switching regime where receptors switch between the on and
off states quickly as compared to the deactivation rate, and as we
will see, pðnÞ is unimodal (see Fig 2B).

In this regime, two important characteristics of the distribution
pðnÞ are the mean, protein number, n̄, and variance hδn2i. The
mean protein number is the cell’s best estimate of the external
ligand concentration. On the other hand, the variance charac-
terizes the cell’s uncertainty about external ligand concentrations
due to stochasticity in the underlying biochemical network.
Though it is possible to decrease the variance by increasing
the mean protein number, it will be always be nonzero due to
fluctuations in the state of the receptors (12).

We begin by first deriving the steady-state mean and variance of
the number of activated proteins, n, within the linear-noise approx-
imation. Afterwards, we will study the full probability distribution.
The deterministic dynamics of the biochemical network in Fig. 1 is
captured by simple rate-equations for the time dependence of the
receptor state probabilities and the mean number of activated
proteins.We can augment these equations to account for stochastic
fluctuations within the linear-noise approximation by adding
appropriate Langevin noise terms. In the remainder of this paper,

we assume for simplicity that proteins are abundant and ignore
saturation effects. The dynamics of the circuit is therefore de-
scribed by a pair of Langevin equations for the probabilities pon
and poff (i.e. 1 − pon) for the receptor to be in the on or off states,
respectively, together with the number of activated proteins n,

dpon
dt

¼ koff
4 ð1 − ponÞ − kon

4 pon þ ηrðtÞ; [1]

dn
dt

¼ kon
2 pon þ koff

2 ð1 − ponÞ − k1nþ ηnðtÞ: [2]

The variance of the Langevin terms is given by the Poisson noise in
each of the reactions:

Fig. 1. A cellular network for the computation of an external ligand concen-
tration. External ligands are detected by a receptor that can exist in two con-
formations: A high-activity on state and a low-activity off state. Receptors
switch between states at rate koff and kon. Receptors in state s ¼ fon; offg
can post-translationally activate (i.e., phosphorylate) a downstream protein
at a rate ks

2. The protein is deactivated (i.e., dephosphorylated) at a constant
rate k1.

Table 1. Summary of the biological realization of basic computational elements

Computational element Biological realization

Memory Number of activated (phosphorylated) proteins
Writing to memory Concentration dependent activation (phosphorylation) of proteins
Erasure of memory Deactivation (dephosphorylation) of proteins
Energy dissipation Entropy production due to a lack of detailed balance in chemical kinetic of activation/deactivation
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Fig. 2. Top Slow switching regime, k1 ≫ kon
4 ; koff

4 , with a bimodal distribu-
tion of activated proteins. Probability of having n activated proteins at stea-
dy-state (black solid line), probability of having n activated proteins when
receptor is in the on state (blue dash-dot line), probability of having n acti-
vated proteins when receptor is in the off state (red dashed line).Middle Fast
switching regime, k1 ≪ kon

4 ; koff
4 , where the distribution of activated proteins

is unimodal. Total probability (black solid line), probability when receptor is
in the on state (blue dash-dot line), probability when receptor is in the off
state (red dashed line). Bottom The uncertainty in ligand concentration,
ðδcrms∕c̄Þ2 as a function of k1 with mean number of active proteins n̄ ¼ 25

(dashed red line) and n̄ ¼ 100. This can be compared to the Berg–Purcell
result (solid black line). Parameters: koff

2 ¼ 0.01; kon
1 , kon

4 ¼ koff
4 ¼ 1.
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hηnðtÞηnðt 0Þi ¼ ½kon
2 p̄on þ koff

2 ð1 − p̄onÞ þ k1n̄�δðt − t 0Þ
hηrðtÞηrðt 0Þi ¼ ½koff

4 ð1 − p̄onÞ þ kon
4 p̄on�δðt − t 0Þ; [3]

where δðt − t 0Þ denotes the Dirac-delta function and the overbar
denotes the mean steady-state value of the respective quantity
(18, 19).

At steady-state, we can calculate the mean probability and
number of proteins by setting the time derivative in Eq. 2 equal
to zero while ignoring noise terms, yielding

p̄on ¼ 1 − p̄off ¼
K off

4

K off
4 þK on

4

; [4]

and

n̄ ¼ ðK on
2 −K off

2 Þp̄on þK off
2 ; [5]

where we have defined the dimensionless parametersKs
j ¼ ks

j∕k1
with j ¼ f2; 4g and s ¼ fon; offg. For the biologically realistic
case K off

2 ≪ K on
2 pon, the mean number of proteins is simply pro-

portional to the kinase activity in the on state times the probabil-
ity of being in the on state, n̄ ≈K on

2 pon, as expected. One can
further calculate the variance in protein numbers (SI Text)

hðδnÞ2i ¼ n̄þ ðΔK on
2 Þ2 p̄onp̄off

1þK on
4 þK off

4

: [6]

The first term on the right-hand side of the equation results from
Poisson noise in the synthesis and degradation of activated pro-
tein, whereas the second term is due to stochastic fluctuations in
the state of the receptors.

In addition to the mean and variance, we will need the full stea-
dy-state probability distribution for n to calculate the power con-
sumption of the network. The steady-state distribution can be
calculated from the master equation for the probability, psðnÞ,
of there being n active proteins with the receptor in a state s:

dpsðnÞ
dt

¼ k1ðnþ 1Þpsðnþ 1Þ þ ks
2psðn − 1Þ þ ks

4psðnÞ
− ðk1nþ ks

2 þ ks
4ÞpsðnÞ; [7]

where s̄ ¼ off (on) when s ¼ on (off). This equation is similar to
those found in (20, 21) and the steady-state distribution can be
solved via a generating function approach (see SI Text).

Depending on the parameters, the steady-state distributions
can have two qualitatively distinct behaviors as shown in Fig. 2.
In the “slow switching” regime with koff

2 ≪ kon
2 and kon

4 ;
koff
4 ≪ k1, receptors switch at rates much slower than the protein

deactivation rate k1. The result is a bimodal distribution of acti-
vated proteins that can be intuitively understood to arise from the
superposition of the probability distributions of activated proteins
when the receptor is the on and off states. Similar behavior has
been found in the steady-state expression of a self-regulation of a
gene (22). As kon

2 approaches koff
2 , the distributions in the two

states merge and the overall probability distribution becomes un-
imodal. On the other hand, in the “fast switching” regime, char-
acterized by kon

4 ; koff
4 ≪ k1, the distribution of activated proteins

is always unimodal. In this limit, the measurement time, T ∝ k−1
1 ,

is much longer than the average time a receptor remains in the on
or off state, and the biochemical network “time-averages” out the
stochastic fluctuations in receptor states. In what follows, we re-
strict our considerations to this latter regime.

Quantification of Learning
The biochemical circuit in Fig. 1 “computes” the external concen-
tration of a chemical ligand. As emphasized by Berg and Purcell
in their seminal paper (12), the chief obstacle in determining ex-
ternal concentration is the stochastic fluctuations in the state of
the ligand-binding receptors. Berg and Purcell argued that a rea-
sonable measure of how much cells learn is the uncertainty cells
have about external concentration as measured by the variance
of the estimated concentration, ðδcÞ2. ðδcÞ2 measures the uncer-
tainty about the external ligand concentration based on the prob-
ability distribution of downstream activated proteins. Using stan-
dard arguments, we show below that this uncertainty is directly
related to the variance, ðδnÞ2, of the corresponding protein prob-
ability distribution. This framework allows us to use the results of
the last section to quantify how much cells learn about external
ligand concentrations as a function of kinetic parameters. The
results are plotted in Fig. 2C.

To compute uncertainty, Berg and Purcell assumed that the
cell computes the average receptor occupancy by time-averaging
over a measurement time T. They showed (12) that

ðδcBPÞ2
c2

¼ 2kon
4

Tp̄on
¼ 2∕Nb; [8]

where koff
4 ¼ kþc, kon

4 ¼ k− is independent of c, and Nb is the
number of binding events during the time T. It was later shown
that cells could compute concentration more accurately by imple-
menting MLE with (14, 23)

ðδcMLÞ2
c2

¼ 1

2
×
ðδcBPÞ2

c2
: [9]

The factor of two decrease in uncertainty derives from the fact
that MLE ignores noise due to unbinding of ligands from the cell.
We note that this "forgetting" of ligand unbinding, in turn, re-
quires the receptors themselves to be out of equilibrium, further
contributing to the system’s energy consumption. We do not,
however, consider the additional energetic costs of nonequili-
brium receptors here.

To quantify learning in our biochemical circuit, we follow Berg
and Purcell and estimate the fluctuations in ðδcÞ2 as

ðδcÞ2
c2

¼
�
c
∂n̄
∂c

�
−2
ðδnÞ2; [10]

with ðδnÞ2 ¼ hn2i − n̄2. Substituting koff
4 ¼ kþc and kon

4 ¼ k−
and computing the derivative using Eq. 5 gives

�
c
∂n̄
∂c

�
2

¼ ðp̄onp̄offΔK2Þ2: [11]

Substituting Eqs. 5 and 6 into Eq. 10 yields

ðδcÞ2
c2

¼ n̄
ðp̄onp̄offΔK2Þ2

þ 1

ðp̄onp̄offÞð1þK on
4 þK off

4 Þ : [12]

Similar to the linear-noise calculation, the first term on the right-
hand side arises from the Poisson fluctuations in activated protein
number, while the second term results from the stochastic fluc-
tuations in the state of receptors. Fig. 2 shows the uncertainty,
ðδcÞ2∕c2, as a function of the degradation rate of activated pro-
tein, k1, when n̄ ¼ 25 and n̄ ¼ 100 and kon

2 ≫ koff
2 .

By identifying the degradation rate with the inverse measure-
ment time, k1 ¼ 2T −1, we can also compare the results with
Berg–Purcell. The factor of two is due to the slight difference
in how the variance of the average receptor occupancy is calcu-
lated for a biochemical network when compared to the original
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Berg–Purcell calculation (23). As shown in Fig. 2, when n̄ is
increased, the Poisson noise in protein production is suppressed
and the performance of the cellular network approaches that due
to Berg-Purcell. To make the connection with Berg–Purcell more
explicit, it is helpful to rewrite Eq. 12 in terms of the average num-
ber of binding events, Nb, during the averaging time, T:

ðδcÞ2
c2

¼ n̄
ðn̄ −K off

2 Þ2p2
off

þ 2

Nb

�
1 −

k1
kon
4 þ koff

4 þ k1

�
: [13]

This form allows us to see the approach to the Berg–Purcell limit.
When the measurement time is much longer than the timescale of
fluctuations in receptor activity, i.e., kon;off

4 ≫ k1 (or equivalently
K on

2 ≫ K off
2 ≫ 1) and the average number of activated proteins is

large, n̄ ≫ K off
2 ≫ 1, the expression above reduces to ðδcÞ2∕c2 ≈

2∕Nb in agreement with Eq. 8.

Power Consumption and Entropy Production in Steady
State
We now compute the energy consumed by the circuit in Fig. 1 as a
function of the kinetic parameters. To do so, we exploit the fact
that dynamics of the circuit can be formulated as a nonequilbrium
Markov process (see Fig. 3). A nonequilibrium steady-state
(NESS) necessarily implies the breaking of detailed balance in
the underlying Markovian dynamics and, therefore, possesses a
nonzero entropy production rate. The entropy production rate
is precisely the amount of power consumed by the biochemical
circuit in maintaining the nonequilibrium steady state. Thus, by
calculating the entropy production rate as function of kinetic para-
meters, we can calculate the power consumed by the biochemical
network implementing the computation. To calculate entropy pro-
duction, we utilize the full steady-state probability distribution and
standard formulas from the theory on nonequilibrium Markov
processes.

Consider a general Markov process with states labeled by σ
and transition probability from σ to σ 0 given by kðσ; σ 0Þ. Defining
the steady-state probability of being in state σ by Pσ, the entropy
production rate, EP, for a NESS is given by (24)

EP ¼ ∑
σ;σ 0

PðσÞkðσ; σ 0Þ log kðσ; σ
0Þ

kðσ 0; σÞ : [14]

For our problem this general formula reduces to

EP ¼ k1 ∑
s¼fon;offg

∑
n

psðnÞ
�
Ks

2 log
Ks

2

nþ 1
− n log

Ks
2

n

�
; [15]

where we again use Ks
2 ¼ ks

2∕k1 (see SI Text). In deriving this for-
mula, we assumed that the receptors were in thermal equilibrium
and obeyed detailed balance. Using explicit expressions for the
steady-state distributions, psðnÞ, we can calculate the energy con-
sumption of the network as a function of kinetic parameters (see
SI Text). The physical content of this expression is summarized in
Fig. 3. The expression states that any nonzero cyclic flux must
necessarily produce entropy. Otherwise, one would have a che-
mical version of a perpetual motion machine. Figs. 3 and 4 show
the power consumption as a function of ΔK2 ¼ K on

2 − K off
2 and

k1. Notice that the power consumption tends to zero as both these
parameters go to zero. Note that we cannot, however, set k1 ¼ 0
identically because there then no longer exists a steady-state
distribution.

Energetics, Information, and Landauer’s Principle
We now highlight the fundamental connection between the en-
ergy consumed by the network and the information the network
acquires about the environment and briefly discuss its relation to
Landauer’s principle. First, note that learning information about
the environment requires energy consumption by the network.
This relationship can be seen in Fig. 3, which shows that as
Δk2 → 0, the uncertainty about the concentration tends to infi-
nity. Moreover, we show in the SI Text that the entropy produc-
tion, Eq. 15, is zero if and only if Δk2 ¼ 0. In conjunction with
Eq. 12, which diverges as Δk2 → 0, these observations imply that
learning requires consuming energy. Mathematically, in the limit
where Δk2 ¼ 0, the dynamics of the Markov process in Fig. 3
become “one-dimensional” instead of a two-legged ladder, and
the dynamics obeys detailed balance. Physically, in this limit the
number of downstream proteins becomes insensitive to external
ligand concentrations because all information about concentra-
tion is contained in the relative probabilities of being in the
on or off state.

Second, as shown in Fig. 4, the power consumption of the cir-
cuit tends to zero as k1 → 0. This result is consistent with, and a
manifestation of, Landauer’s principle: Entropy production stems
from erasing memory in a computing device. The number of
activated proteins serves the function of a memory of ligand con-
centration, which is erased at the dephosphorylation rate k1.
Thus, as the erasure rate of the memory tends to zero, the device
consumes less energy per unit time, as expected. Yet despite the
fact that the power consumption tends to zero as k1 decreases, the
total energy consumed per measurement, namely the power times
the measurement time, T ≃ 2k−1

1 , still increases (see Fig. 4).
Thus, learning more requires consuming more total energy de-
spite the fact that power consumption is decreasing. In effect,
one is approaching the reversible computing limit where memory
is erased adiabatically. Again note, however, that when erasure is
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performed infinitely slowly, k1 ¼ 0, the system no longer has an
NESS and our formalism does not apply.

Finally, we note that one of the important open problems in
our understanding of chemosensation is a full characterization of
the constraints placed on the measurement time T. In principle,
cells can always learn more by measuring the environment for
longer periods of time. However, in most biological systems, these
measurement times are observed to be quite short. There are a
number of constraints that can limit this measurement time,
including rotational diffusion (12) (in the case of swimming bac-
teria) and the restrictions placed on motility. Here, we highlight
another restriction that may be important in resource-starved en-
vironments: Sensing external concentration necessarily requires
cells to consume energy.

Discussion and Conclusion
Cells often perform computations using elaborate biochemical
networks that respond to environmental cues. One of the most
common simple networks found in bacteria are two-component
networks where a receptor phosphorylates a downstream re-
sponse regulator (16). In this work, we have shown that these
simple two-component networks can implement a noisy version
of the Berg–Purcell strategy to compute the concentration of
external ligands. Furthermore, by mapping the dynamics of the
biochemical network to nonequilibrium steady-states in Markov
processes, we explicitly derived expressions for the power con-
sumed by the network and showed that learning requires energy
consumption. Taken together, these calculations suggest that,
much like man-made and neural computing (3, 9–11), energetic
considerations may place important constraints on the design of
biochemical networks that implement cellular computations.
They also suggest a fundamental tradeoff between the efficiency
of cellular computing and the requisite energy consumption.

Bacterial cells such as Bacillus subtilis can sporulate during
times of environmental stress and remain metabolically dormant
for many years. Although sporulation is relatively well under-
stood, the reverse process of germination is much more difficult
to study. One current model for how a spore knows when to ger-
minate in response to external cues involves integrating the signal

and triggering commitment when an accumulation threshold is
reached (25, 26). Such a scheme corresponds to the limit of
vanishingly small k1 in our model, so that power consumption
is minimized at the expense of retaining the entire integrated sig-
nal. Our results indicate that this behavior may be due to the ex-
treme energetic constraints imposed on a metabolically dormant
spore, rather than an evolutionarily optimized strategy.

An important insight of this work is that even a simple Berg–
Purcell strategy for sensing external concentrations requires the
consumption of energy. It is likely that more complicated strate-
gies that increase how much cells learn, such as maximum like-
lihood, require additional energetic inputs. For example, it was
argued in (23) that MLE can be implemented by a network simi-
lar to the perfect adaptation network where bursts are produced
in response to binding events. These bursts break detailed bal-
ance and therefore require energy consumption. It will be inter-
esting to investigate further how the tradeoff between learning
and energy consumption manifests itself in the design of compu-
tational strategies employed by cells.

In this work, we restricted ourselves to the simple case where
cells calculate the steady-state concentration of an external
signal. In the future, it will be useful to generalize the analysis
performed here to other computations such as responding to
temporal ramps (23) and spatial gradients (27, 28). It will also be
interesting to understand how to generalize the considerations
here to arbitrary biochemical networks. An important restriction
on our work is that we reduced our considerations to nonequili-
brium steady states. It will be interesting to ask how to generalize
the work here to biochemical networks with a strong temporal
component.
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SI Text
Variance from the Linear-Noise Approximation. Consider the Lange-
vin equations for the ordinary differential equations found in the
main text,

dpon
dt

¼ koff
4 ð1 − ponÞ − kon

4 pon þ ηrðtÞ
dn
dt

¼ kon
2 pon þ koff

2 ð1 − ponÞ − k1nþ ηnðtÞ: [S1]

We can linearize (with bar denoting average) to get

dδpon
dt

¼ −ðkoff
4 þ kon

4 Þδpon − τ−1
P δpon þ ηrðtÞ

dδn
dt

¼ ðkon
2 − koff

2 Þδpon − k1δnþ ηn; [S2]

where

hηrðtÞηrðtÞi ¼ koff
4 ð1 − p̄onÞ þ kon

4 p̄on ¼ 2ðkoff
4 þ kon

4 Þp̄onð1 − p̄onÞ
¼ 2τ−1

P p̄onð1 − p̄onÞ [S3]

and hηnðtÞηnðtÞi ¼ 2k1n̄. Now we Fourier transform the above
equations and use the fact that

hðδnÞ2i ¼
Z

dω
2π

hδn̂ðωÞδn̂�ðωÞi [S4]

to get

hðδnÞ2i ¼ n̄þ ðΔkon
2 Þ2
k2
1

k1
k1 þ τ−1

P

¼ n̄þ ðΔK on
2 Þ2 p̄onp̄off

1þK on
4 þK off

4

; [S5]

where we have used Ks
i ¼ ks

i ∕k1.

Generating Function for Probability Distribution. The steady-state
distribution can be calculated from the master equation for
the probability, psðnÞ, of there being n active proteins with the
receptor in a state s:

dpsðnÞ
dt

¼ k1ðnþ 1Þpsðnþ 1Þ þ ks
2psðn − 1Þ þ ks̄

4ps̄ðnÞ
− ðk1nþ ks

2 þ ks
4ÞpsðnÞ; [S6]

where s̄ ¼ off (on) when s ¼ on (off). At steady state, the left-
hand side of Eq. S6 is equal to zero and

K s̄
4ps̄ðnÞ ¼ −ðnþ 1Þpsðnþ 1Þ −Ks

2psðn − 1Þ
þ ðnþKs

2 þKs
4ÞpsðnÞ: [S7]

Eq. S7 is similar to those equation is similar to those found pre-
viously 1, 2 and can be solved via a generating function approach.
First, we define a pair of generating functions:

GsðnÞ ¼ ∑
∞

n¼0

psðnÞzn; [S8]

with s ¼ on; off. We can then rewrite Eq. S7 in terms of the gen-
erating functions as

½ðz − 1Þ∂z −Ks
2ðz − 1Þ þKs

4�GsðzÞ ¼ K s̄
4Gs̄ðzÞ: [S9]

This equation must be supplemented by initial conditions
for the functions, GsðzÞ, which follow from the observation that
Gonð1Þ ¼ p̄on and Goffð1Þ ¼ p̄off ¼ 1 − p̄on, where p̄on is given by
Eq. S4 of the main text.

Adding the equations for s ¼ on; off and dividing through by
ðz − 1Þ gives

ð∂z −K on
2 ÞGonðzÞ ¼ −ð∂z −K off

2 ÞGoffðzÞ: [S10]

To proceed further, it is useful to define the quantity HsðzÞ
related to the generating functions GsðzÞ by

GsðzÞ ¼ eK
s
2
zHsðzÞ: [S11]

It is clear that

ð∂z − Ks
2ÞGsðzÞ ¼ eK

s
2
z∂zHsðzÞ: [S12]

Thus, we can rewrite Eq. S10 as

eK
on
2
z∂zHonðzÞ ¼ −eK off

2
z∂zHoffðzÞ: [S13]

Similarly, we can rewrite Eq. S9 as

ðz − 1ÞeK s
2
z∂zHsðzÞ þKs

4e
K s

2
zHsðzÞ ¼ K s̄

4e
K s̄

2
zHs̄ðzÞ: [S14]

Multiplying the equation by e−K
s̄
2
z, taking the derivative

with respect to z, substituting Eq. S13, and defining ΔKs
2 ¼

K s̄
2 − Ks

2s one has

∂zHsðzÞ − ΔKs
2ðz − 1Þ∂zHsðzÞ þ ðz − 1Þ∂ 2

z HsðzÞ
−Ks

4ΔKs
2HsðzÞ þKs

4∂zHsðzÞ ¼ −K s̄
4∂zHsðzÞ: [S15]

Regrouping terms one has

ðz − 1Þ∂ 2
z HsðzÞ þ ð1 − ΔKs

2ðz − 1Þ þKs
4

þK s̄
4Þ∂zHsðzÞ −Ks

4ΔKs
2HsðzÞ ¼ 0. [S16]

Defining

u ¼ ΔKs
2ðz − 1Þ; [S17]

one can rewrite Eq. S16 in terms of u as

u∂ 2
uHsðuÞ þ ð1þKs

4 þK s̄
4 − uÞ∂uHsðzÞ −Ks

4HsðuÞ ¼ 0. [S18]

Eq. S18 is just the confluent hypergeometric equation. We can
immediately write the solutions in terms of confluent hypergeo-
metric functions of the first and second kind. In particular, the
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general solution to this equation is given by (assuming that we
need a power series in u with integer cofficients) the confluent
geometric function:

HsðuÞ ¼ cs1F1ðKs
4; 1þKs

4 þK s̄
4;uÞ; [S19]

with cs a constant of integration. Thus, we have

GsðzÞ ¼ cseK
s
2
z
1F1½Ks

4; 1þKs
4 þK s̄

4;ΔKs
2ðz − 1Þ�: [S20]

To determine the constants, notice that

Gsð1Þ ¼ cseK
s
2 ¼ p̄s ¼

K s̄
2

Ks
2 þK s̄

2

; [S21]

so that

cs ¼
e−K

s
2K s̄

2

Ks
2 þK s̄

2

: [S22]

Combining Eqs. S20 and S22 gives the final expression

GsðzÞ ¼
K s̄

4e
K s

2
ðz−1Þ

Ks
4 þK s̄

4
1F1½Ks

4; 1þKs
4 þK s̄

4;ΔKs
2ðz − 1Þ�: [S23]

Variance from Generating Functions.We now calculate the variance
ðδnÞ2 directly from the generating function and see that it
matches the linear noise calculation. To do so, write

ðδnÞ2 ¼ ∑
s

ð∂zz∂zGsðzÞÞjz¼1 − n̄2 ¼ ∑
s

ðz∂ 2
z GsðzÞÞjz¼1 þ n̄ − n̄2:

[S24]

First, note that

∂zGsðzÞ ¼
Ks

4

Ks
4 þK s̄

4

�
Ks

2e
K s

2
ðz−1Þ

1 F1ð·; ·;ΔKs
2ðz − 1ÞÞ

þ eK
s
2
ðz−1Þ ðK s̄

2 −Ks
2ÞKs

4

1þKs
4 þK s̄

4
1F1ðþ;þ;ΔKs

2ðz − 1ÞÞ
�
;

[S25]

where we have used

z∂z1F1ða; b; zÞ ¼ z
b
a 1F1ðaþ; bþ; zÞ: [S26]

Taking the second derivative and setting (z ¼ 1) yields

ðz∂ 2
z GsðzÞÞjz¼1 ¼

Ks
4

Ks
4 þK s̄

4

�
ðKs

2Þ2

þ ΔKs
2K

s
4

1þKs
4 þK s̄

4

�
2Ks

2 þ
ΔKs

2

2þKs
4 þK s̄

4

��
:

[S27]

After some algebra, one has

∑
s

ðz∂ 2
z GsðzÞÞjz¼1 ¼ ponðK on

2 Þ2 þ poffðK off
2 Þ2

− ponpoffðΔKs
2Þ2

K on
4 þK off

4

1þK on
4 þK off

4

: [S28]

Eq. S24 then becomes

ðδnÞ2 ¼ n̄þ ponðK on
2 Þ2 þ poffðK off

2 Þ2 − ponpoffðΔKs
2Þ2

×
K on

4 þK off
4

1þK on
4 þK off

4

− n̄2; [S29]

¼n̄þ ponðK on
2 Þ2 þ poffðK off

2 Þ2 − ponpoffðΔKs
2Þ2

×
K on

4 þK off
4

1þK on
4 þK off

4

− ðponK on
2 þ poffK

off
2 Þ2; [S30]

¼n̄þ ponpoff
ðK on

2 −K off
2 Þ2

1þK on
4 þK off

4

; [S31]

¼n̄þ ponpoff
ðΔK on

2 Þ2
1þK on

4 þK off
4

: [S32]

This result is identical to [S5] calculated using the linear noise
approximation.

Entropy Production.Consider a general Markov process with states
labeled by σ and transition probability from σ to σ 0 given by
kðσ; σ 0Þ. Defining the steady-state probability of being in state
σ by Pσ, the entropy production rate for a Markov process is gi-
ven by 3

dS
dt

¼ ∑
σ;σ 0

PðσÞkðσ; σ 0Þ log kðσ; σ
0Þ

kðσ 0; σÞ

− ∑
σ;σ 0

Pðσ 0Þkðσ; σ 0Þ log kðσ; σ
0Þ

kðσ 0; σÞ : [S33]

The first term of the right-hand side is the entropy production
whereas the second term is the entropy expelled from the system.
As steady state, dS

dt ¼ 0 and the entropy production rate, EP, is
equal to the energy expelled and is given by

EP ¼ ∑
σ;σ 0

PðσÞkðσ; σ 0Þ log kðσ; σ
0Þ

kðσ 0; σÞ : [S34]

For the biochemical network described under consideration,
the entropy production becomes

EP ¼ ∑
s¼on;off;n

psðnÞ
�
ks
2 log

ks
2

k1ðnþ 1Þ þ k1n log
k1n
ks
2

þ ks
4 log

ks
4

ks̄
4

�
:

[S35]

Because the receptors are in thermodynamic equilibrium, from
detailed balance we know that

∑
s;n

psðnÞks
4 log

ks
4

ks̄
4

¼ 0; [S36]

so that

EP ¼ k1 ∑
s¼on;off

∑
n

psðnÞ
�
Ks

2 log
Ks

2

nþ 1
− n log

Ks
2

n

�
; [S37]

where Ks
2 ¼ ks

2∕k1. The calculation is completed by substitution
of the steady-state distributions, psðnÞ, which can be found
from Eq. S23.

Energy Consumption is Required for Signaling.We show is thatEP ¼
0 if and only if ΔKs

2 ¼ 0. To do so we will use the expressions for
the probability distribution, Eq. S23, and average entropy pro-
duction, Eq. S37. Let us start by writing Eq. S37 as
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k−1
1 EP ¼ −ðhnion logK on

2 þ hnioff logK off
2 Þ

þ∑
n

ðK on
2 ponðnÞ logK on

2 þK off
2 poffðnÞ logK off

2 Þ

þ∑
n

ð½ponðnþ 1Þ − K on
2 ponðnÞ� logðnþ 1ÞÞ

þ∑
n

ð½poffðnþ 1Þ −K off
2 poffðnÞ� logðnþ 1ÞÞ; [S38]

where hnis ¼ ∑nnpsðnÞ for s ¼ on; off. We will now examine
each of these terms one by one. Notice that

hnis ¼ ∂zGsðz ¼ 1Þ ¼ K s̄
2K

s̄
4

Ks
4 þK s̄

4

; [S39]

so we have that

ðhnion logK on
2 þ hnioff logK off

2 Þ ¼ ∑
s

K s̄
2K

s̄
4

Ks
4 þK s̄

4

logKs
2: [S40]

Notice that because ∑ psðnÞ ¼ Gsð1Þ, the second term in the
sum above is just

∑
n

ðK on
2 ponðnÞ logK on

2 þK off
2 poffðnÞ logK off

2 Þ

¼ ∑
s

K s
2K

s̄
4

Ks
4 þK s̄

4

logKs
2: [S41]

Substituting these expressions into Eq. S38 yields

Ap

k1
¼ −∑

s

K s
4ΔKs

2

Ks
4 þK s̄

4

logKs
2

þ∑
n

ð½ponðnþ 1Þ − K on
2 ponðnÞ� logðnþ 1ÞÞ

þ∑
n

ð½poffðnþ 1Þ −K off
2 poffðnÞ� logðnþ 1ÞÞ: [S42]

In order for Eq. S42 to equal zero, we know that

psðnþ 1Þ ¼ Ks
2

nþ 1
psðnÞ; [S43]

because each of the terms in the sum above must equal zero in-
dividually. Therefore, the generating functional in detailed bal-
ance, GDB

s ðzÞ, must be given by

GDB
s ∝ eK

s
2
z: [S44]

Comparing with [S23] implies that ΔKs
2 ¼ 0. In addition, the first

term of [38] also disappears in this case. Thus, we have detailed
balance if and only if ΔKs

2 ¼ 0.
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