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Appendix A: Interpretations of MacArthur’s Minimization Principle

MacArthur developed an interpretation of the minimization principle for the consumer resource

model with non-interacting resources, under the assumption that all species have the same re-

quirements mi = m and the same total harvesting ability ∑M
α=1 ciα = c (MacArthur 1970). This

same constraint has been discussed recently in the context of microbial ecology (Posfai et al.

2017), where it has been shown to give rise to non-generic behavior in highly diverse commu-

nities (Cui et al. 2019). In this scenario, MacArthur’s objective function from eq. (4) in the main

text can be written as:

Q(N) =
1
2 ∑

α∈M∗

Kα

rα
wα

[
rα

Kα

(
Kα −

m
cwα

)
−∑

j
cjαNj

]2

+
m
c

(
∑

α/∈M∗
cjα

)
∑

j
Nj (A1)

where M∗ is the set of resources where rα ≥ ∑j cjαNj, which can stably avoid extinction at the

current consumer population size.

When all the resource types survive, the final term in this expression simplifies (since there

are no resource labels α that are not in M∗), and the remaining part takes on the straightforward

physical meaning proposed by MacArthur. rα
Kα

(
Kα − m

cwα

)
is the production rate of resource α

when the abundance Rα is at the minimum value that supports consumer growth. The objective

function is a weighted sum of squared differences between this “available production” and the

community’s total harvest rate ∑j cjαNj. These ecological dynamics can thus be conceived of as

an algorithm for performing a least-squares fit of the harvest rate (with positive free parameters

Nj) to the available production.

But if any resources go extinct in the steady state, this interpretation is no longer valid. Now

some terms end up disappearing from the first sum, with corresponding modifications to the final

term, which has no clear biological meaning. Even in this case, however, a revised explanation by

Gatto (1990) still applies. In this reading, no constraints on mi or ciα are required, and one instead

directly interprets the two terms that already appeared in the original expression for Q in eq. (5)

The first term, which he calls the “unutilized productivity” U, is a weighted sum of squared
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differences between the maximal resource production rate rα and the current consumption rate:

U =
1
2 ∑

α∈M∗
r−1

α Kαwα

(
rα −∑

j
cjαNj

)2

. (A2)

While Gatto (1990) does not comment on the restriction of the sum to the surviving resources,

this interpretation of U is compatible with the restriction. If a resource is extinct, it is reasonable

to say that none of its (nonexistent) potential productivity is unutilized. The second term is

the “basal energy consumption” B which is the total consumption of nutritional value by the

community required to maintain the current population sizes:

B = ∑
j

mjNj. (A3)

This term is not affected by resource extinction, and the interpretation remains valid.

The full expression for Q in eq. (4) can also be rearranged in a different way, which sets the

stage for the present work. To obtain this form, we first note that the local equilibrium abundance

R̄α of resource α at fixed consumer population sizes Ni are given by

R̄α(N) = max

[
0, Kα

(
1− r−1

α ∑
i

Niciα

)]
. (A4)

This expression comes from the fact that there are two solutions to dRα/dt = 0, one where Rα = 0

and one given by the second term in the brackets. Since resource abundances must be positive,

we are required to take Rα = 0 if the nonzero solution turns out to be negative. If the nonzero

solution is positive, then the Rα = 0 solution is unstable to the addition of a small amount of

resource α. This consideration fully accounts for resource extinction, and so eq. (4) simplifies to

Q(N) = −1
2 ∑

α

wαrα

Kα
[Kα − R̄α(N)]2 −∑

i
Ni

(
∑
α

wαciαR̄α(N)−mi

)
(A5)

where the sums are no longer restricted. The first term now measures the difference between

the local equilibrium resource concentrations R̄α(N) and the carrying capacities Kα, while the

second term measures the total rate of biomass production. This form of Q(N) also makes it

easier to see that MacArthur’s minimization principle is the Lagrange dual of MEPP (Boyd and

Vandenberghe 2004). The first term is clearly minus the objective function d defined in eq. (14)
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of the main text, and the second term is the sum of the Lagrange multipliers times the active

constraints gi, with Rα replaced by R̄α(N) in both terms.

Appendix B: Derivation of Minimum Environmental Perturbation

Principle

In this Appendix, we justify the three mathematical results required for the derivation of MEPP

in the main text:

• that the impact vectors are related to the gradients of the growth rates by eq. (8) whenever

the environmentally mediated interactions between species are symmetric

• that this same symmetry implies that the rescaled supply vector hα/bα can be written as

the (negative) gradient of some function d, as done in eq. (13)

• that the unconstrained minimum of d coincides with the supply point of the resource dy-

namics.

We also explain how an extended version of MEPP can be obtained for asymmetric models by

using a modified supply vector.

Implications of symmetric interactions

In this section we deal with the first two points in the list, concerning the consequences of

symmetric interactions. To quantify the interactions between two species, we compute the effect

of a small change in the abundance of the first species on the growth rate of the second. We

introduce a scale factor ai that can depend on the environmental state, and measure abundances

as aiNi. Since the growth rates directly depend only on the resource abundances, we need

to imagine making the perturbation and then holding all the population sizes fixed until the

environment relaxes to its new equilibrium state R̄(N). Thus we define the interaction matrix αij
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as:

αij = −
dgi

d(ajNj)
= −∑

α

∂gi

∂Rα

∂R̄α

∂(ajNj)
. (B1)

Now we can compute ∂R̄α

∂(aj Nj)
by implicit differentiation of the local steady-state equation for

the environment:

0 = hα + ∑
i

Niqiα (B2)

To facilitate the derivation, we write the impact vector as:

qiα = −ai ∑
β

bi
αβ

∂gi

∂Rβ
. (B3)

for some functions bi
αβ(R) and ai(R). This does not impose any additional assumptions on the

form of qiα, as long as ∂gi
∂Rβ
6= 0. If the partial derivative does vanish, as in the case of essential

resources examined in Appendix C, a limiting procedure has to be taken to apply these results,

as will be explained in the context of that example.

If we now further assume that the bi
αβ are invertible, we can multiply by (bj)−1 and obtain:

0 = ∑
β

(bj)−1
αβ hβ −∑

iβγ

Niai(bj)−1
αβ bi

βγ

∂gi

∂Rγ
. (B4)

Taking the derivative of both sides with respect to ajNj gives:

0 = ∑
λ

∂

Rλ

(
∑
β

(bj)−1
αβ hβ

)
∂R̄λ

∂(ajNj)
− ∑

iβγλ

Niai(bj)−1
αβ bi

βγ

∂2gi

∂Rλ∂Rγ

∂R̄λ

∂(ajNj)
−

∂gj

∂Rα
(B5)

= −∑
λ

Aj
αλ

∂R̄λ

∂(ajNj)
−

∂gj

∂Rα
(B6)

where

Aj
αλ = − ∂

∂Rλ

(
∑
β

(bj)−1
αβ hβ

)
+ ∑

iβγ

Niai(bj)−1
αβ bi

βγ

∂2gi

∂Rλ∂Rγ
. (B7)

Now, further assuming that this matrix is invertible, we obtain:

∂R̄α

∂(ajNj)
= −∑

β

(Aj)−1
αβ

∂gj

∂Rβ
. (B8)
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Finally, inserting this into the definition of the interaction matrix yields

αij = ∑
αβ

(Aj)−1
αβ

∂gi

∂Rα

∂gj

∂Rβ
. (B9)

With this expression in hand, we can proceed to investigate the implications of symmetry

(αij = αji), by looking for conditions under which

∑
αβ

(Aj)−1
αβ

∂gi

∂Rα

∂gj

∂Rβ
= ∑

αβ

(Ai)−1
αβ

∂gj

∂Rα

∂gi

∂Rβ
. (B10)

Inspection of this equation reveals two important conditions. The first is that Aj
αβ is the same for

all j. Going back to the definition of Aj
αβ in eq. (B7), we find that this is true if and only if bj

αβ is

the same for all j. In this case, the definition simplifies to

Aαλ = − ∂

∂Rλ

(
∑
β

b−1
αβ hβ

)
+ ∑

i
Niai

∂2gi

∂Rλ∂Rα
. (B11)

The second condition is that Aαβ must itself be symmetric. The second term in eq. (B11) is always

symmetric, so we can focus on the first. Symmetry of this term means that

∂

∂Rλ

(
∑
β

b−1
αβ hβ

)
=

∂

∂Rα

(
∑
β

b−1
λβ hβ

)
. (B12)

For this to be satisfied in a generic model, bαβ must be diagonal (bαβ = bαδαβ). (If bαβ is not diag-

onal, very specific correlations between the R-dependence of b−1
αβ and the hα would be required

to satisfy the condition.) This, combined with eq. (B3), yields eq. (8) of the main text:

qiα = −aibα
∂gi

∂Rα
(B13)

The symmetry requirement can now be written as:

∂

∂Rλ

hα

bα
=

∂

∂Rα

hλ

bλ
, (B14)

Eq. (B14) is sufficient to guarantee that hα
bα

can be written as a gradient of some function, as

claimed in eq. (13) of the main text:

∂d
∂Rα

= −hα

bα
. (B15)
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In this case, Aαβ further simplifies to:

Aαλ =
∂2d

∂Rλ∂Rα
+ ∑

i
Niai

∂2gi

∂Rλ∂Rα
. (B16)

Thus we obtain the first two of the three key results listed at the beginning of this Appendix.

We can restate these corollaries of interaction symmetry in a particularly useful way by re-

turning to the dynamical equations. The preceding arguments show that the environmentally

mediated interactions between species in a generic niche model described by eqs. (6-7) are sym-

metric if and only if the dynamics can be rewritten as:

dNi

dt
= Nigi(R) (B17)

dRα

dt
= −bα

[
∂d

∂Rα
+ ∑

i
aiNi

∂gi

∂Rα

]
(B18)

for some functions bα(R) and ai(R).

In two of our examples, Aj
αβ is not invertible. To define symmetry in these cases, we add a

small additional self-limitation term −εR2
α to hα, and then evaluate αij/αji in the limit ε → 0. If

this ratio converges to 1, we consider the interactions to be symmetric.

Supply point as unconstrained minimum

In the main text, we made the assumption that bα > 0, and that the supply point R0 is a stable

fixed point of the intrinsic environmental dynamics dRα
dt = hα(R). We evaluate the stability of the

fixed point in the usual way, by computing the Jacobian ∂hα
∂Rβ

. The equilibrium point is stable if

and only if this matrix is negative definite, so that the dynamics tend to resist small perturbations

from equilibrium. Now from the definition of d in eq. (13) we have

∂hα

∂Rβ
= − ∂2d

∂Rβ∂Rα
bα −

∂d
∂Rα

∂bα

∂Rβ
(B19)

where the second term vanishes at the supply point R0 since hα = −bα
∂d

∂Rα
= 0 there. From the

remaining term and the fact that bα > 0, standard results on D-stability (cf. Hogben 2013) yield

that the Hessian ∂2d
∂Rβ∂Rα

is positive definite whenever ∂hα/∂Rβ is negative definite. Thus we arrive
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at the result stated in the main text, that the supply point R0 is an unconstrained local minimum

of d.

Extended MEPP for arbitrary niche models

Here we show how to obtain and use a minimization principle for models with asymmetric

interactions between species, where the impact vector and growth rate cannot be related by an

equation of the form of eq. (13). We do this by constructing a symmetric model that shares the

same stable equilibrium point N̄, R̄. The parameters of this model will depend on the location of

the equilibrium point, requiring an iterative method of estimating and updating the equilibrium

point in order to function as a practical algorithm.

We start by decomposing the impact vector into a part qS
iα = bα(R)ai(R)∂gi/∂Rα correspond-

ing to a convenient reference model with symmetric interactions, and a part qA
iα that contains the

rest of the impact:

qiα = qS
iα + qA

iα (B20)

This can clearly be done for any qiα, without loss of generality. Substituting in to the general

equation for the resource dynamics (7), we obtain

dRα

dt
= hα(R) + ∑

i
NiqA

iα(R)−∑
i

Niaibα
∂gi

∂Rα
. (B21)

We now construct our new symmetric model by freezing the asymmetric part of the impact

∑i NiqA
iα(R) at its equilibrium value ∑i N̄iqA

iα(R̄), and regarding it as part of the supply. The

resource dynamics for this new model are given by

dRα

dt
= −bα

[
− h̃α

bα
+ ∑

i
Niaibα

∂gi

∂Rα

]
(B22)

with

h̃α(R) = hα(R) + ∑
i

N̄iqA
iα(R̄). (B23)
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By construction, this new model has the same equilibrium state as the original model, and it is

nearly of the form of eq. (B18) that guarantees the applicability of MEPP. The remaining step is

to write −h̃α/bα as the gradient of a function d(R). For models with direct interactions among

resources, where hα depends on Rβ with β 6= α, it is possible that −h̃α/bα contains a curl, with

the result that no such d exists. In that case, we would also have to decompose hα into two parts,

freezing the part that produces the curl at its equilibrium value. But in the present work we focus

on cases where hα is a function of Rα alone, and in particular on the important case of externally

supplied resources hα = τ−1(R0
α − Rα). For this form of the supply, we can write

dRα

dt
= −bα

[
∂d(R̃0, R)

∂Rα
+ ∑

i
Niaibα

∂gi

∂Rα

]
(B24)

where d is the same function that would have been obtained in the true symmetric model with

qA
iα = 0, but with modified supply point

R̃0
α(N̄, R̄) = R0

α + τ ∑
i

N̄iqA
iα(R̄). (B25)

The modification is always equal to the asymmetric part of the impact from all the organisms

over one chemostat turnover time τ.

As noted in the main text, the difficulty of practically implementing the extended version of

MEPP is that computing the effective supply point via eq. (B25) requires prior knowledge of

the equilibrium state N̄, R̄. This problem of minimizing an objective function whose parameters

depend on the solution arises frequently in Machine Learning, in the context of fitting models

with latent variables (Mehta et al. 2019a). It can be solved with a simple iterative approach, called

Expectation Maximization (EM), where one starts by guessing the values of these parameters,

then minimizes the function, and then updates the estimates using the new solution. For the case

of externally supplied resources, the algorithm can be straightforwardly written as a discrete-time

dynamical system describing the evolution of a vector r0(t) which represents the effective supply

point calculated using the current estimate n(t), r(t) of the equilibrium state N̄, R̄. The parameter
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t represents the number of iterations. With these definitions, the algorithm is:

While ||r0(t)− r0(t− 1)|| > ε :

r0
α(t)← R0

α + τ ∑
i

ni(t)qA
iα(r(t))

r(t + 1)← argmin
R

d(r0(t), R) subject to gi(R) ≤ 0for all i

ni(t + 1)← λi

ai
where λi is the KKT multiplier corresponding to the constraint gi(R) ≤ 0

t← t + 1 (B26)

where ε is a small number that controls the precision of the numerical solution.

We can evaluate the stability of the fixed point r0
α = R̃0

α, by initializing the system at r0
α(0) =

R̃0
α + εα for some small perturbation εα. After the first iteration, the effective supply point has

updated to

r0
α(1) = R̃0

α + ∑
β

(
∑
γ

∂r0
α(t)

∂rγ(t)
∂rγ(t)

∂r0
β(t− 1)

+ ∑
j

∂r0
α(t)

∂nj(t)
∂nj(t)

∂r0
β(t− 1)

)
εβ (B27)

where the derivatives

∂r0
α(t)

∂rγ(t)
= τ ∑

i
ni(t)

∂qA
iα

∂Rγ
(B28)

∂r0
α(t)

∂nj(t)
= τqA

jα (B29)

come from differentiating the first step in the algorithm with respect to the components of the

equilibrium estimate n, r, and the other two derivatives measure how the new estimate of the

equilibrium point depends on the previous estimate of the supply point (via the minimization in

step 2). The change in the estimate of the effective supply point over this first iteration is thus:

δr0
α = r0

α(1)− r0
α(0) = ∑

β

Jαβεβ (B30)

where the Jacobian is

Jαβ = ∑
γ

∂r0
α(t)

∂rγ(t)
∂rγ(t)

∂r0
β(t− 1)

+ ∑
j

∂r0
α(t)

∂nj(t)
∂nj(t)

∂r0
β(t− 1)

− δαβ. (B31)

From eq. (B30), we see that the algorithm is stable near the fixed point if and only if the real

parts of all the eigenvalues of Jαβ are negative.
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Figure C1: Additional simulations with symmetric interactions. Simulations of the second two

models from fig. 2 with larger numbers of species and resources, compared with the predictions

of MEPP for the uninvadable equilibrium state. Consumer abundances are obtained from the

Lagrange multipliers that enforce the constraints during optimization. See Appendix D for all

simulation parameters.

Appendix C: Analysis of specific models

In this Appendix, we show in detail how to obtain the objective function d and the auxiliary

functions bα and ai for each of the seven models analyzed here. We do this by following the first

two steps of the procedure outlined in the main text, which are copied here for reference:

1. Find bα and ai by comparing the impact vectors with the derivative of the growth rates

using qiα(R) = −ai(R)bα(R) ∂gi
∂Rα

.

2. Compute d from bα and the supply vector using ∂d
∂Rα

= − hα(R)
bα(R)

.
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We also provide explicit expressions for the effective pairwise interaction matrix αij, using eq. (B7)

and (B9) from Appendix B above.

Noninteracting resources

We begin with the dynamical equations

dNi

dt
= eiNi

[
∑
α

wαciαRα −mi

]
(C1)

dRα

dt
=

rα

Kα
Rα(Kα − Rα)−∑

i
NiciαRα. (C2)

Comparing with the general niche theory scheme of eq. (6-7), we identify

gi(R) = ei

[
∑
α

wαciαRα −mi

]
(C3)

qiα(R) = −ciαRα (C4)

hα(R) =
rα

Kα
Rα(Kα − Rα), (C5)

as also given in table ??. The gradient of the growth rate is

∂gi

∂Rα
= eiwαciα. (C6)

Now we can follow Step 1 from the list above, comparing this to the impact vector to obtain

ai = e−1
i (C7)

bα =
Rα

wα
. (C8)

Step 2 now yields the expression for d:

∂d
∂Rα

= − rαwα

Kα
(Kα − Rα). (C9)

Integrating this expression, we find

d =
1
2 ∑

α

rαwα

Kα
(Kα − Rα)

2 (C10)
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which is equivalent to eq. (14) in the main text.

We are not quite finished, however, because the minimization of this expression for d subject

to gi ≤ 0 can produce negative values of R̄α. Physically, we know that the resource abundances

cannot be negative numbers, and the original dynamical equation (C2) ensures that Rα never

becomes negative as long as the initial conditions are positive. But this constraint is lost when we

divide by bα = Rα/wα in the derivation of the KKT conditions. To address this issue, one must

impose Rα ≥ 0 as an additional set of explicit constraints when performing the optimization.

This problem occurs for most models with self-renewing resources, and can always be resolved

by adding additional constraints in this way.

The effective pairwise interaction αij between species i and j in this model were shown by

MacArthur (1970) to be equal to the overlap between consumption vectors ciα and cjα. We can

also see this from our general formulas, using eq. (B7) and (B9) to compute:

Aj
αβ =

rαwα

Kα
δαβ (C11)

αij = ∑
αβ

(Aj)−1
αβ

∂gi

∂Rα

∂gj

∂Rβ
= ∑

α

wαKα

rα
eiejciαcjα. (C12)

Interacting self-regulation

We begin with the dynamical equations

dNi

dt
= eiNi

[
∑
α

wαciαRα −mi

]
(C13)

dRα

dt
= rαRα

(
1−∑

β

aβRβ

)
−∑

i
NiciαRα. (C14)
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Comparing with the general niche theory scheme of eq. (6-7), we make the same identifications

as for noninteracting resources, but with a modified supply vector:

gi(R) = ei

[
∑
α

wαciαRα −mi

]
(C15)

qiα(R) = −ciαRα (C16)

hα(R) = rαRα

(
1−∑

β

aβRβ

)
. (C17)

Since gi and qiα are unchanged, we have the same expressions for ai and bα:

ai = e−1
i (C18)

bα =
Rα

wα
. (C19)

Step 2 now yields the expression for d:

∂d
∂Rα

= −rαwα

(
1−∑

β

aβRβ

)
. (C20)

For generic aβ and wα, there is no function d that satisfies this expression, because the second

derivatives of the function would be:

∂2d
∂Rβ∂Rα

= −rαwαaβ 6=
∂2d

∂Rα∂Rβ
. (C21)

This means that the model is generically not symmetric. But if we set wα = waα and rα = r as

described in the main text, we find that

d =
wr
2

(
1−∑

α

aαRα

)2

(C22)

satisfies the equation.

In this case the effective pairwise interactions αij are ill-defined, because many sets of resource

concentrations can satisfy dRα/dt = 0 for the same set of species abundances. But we can still

evaluate symmetry by adding a small self-limitation term −εR2
α to hα, and then taking the limit

as ε→ 0. Using the modified hα, we obtain (see eq. B7):

Aj
αβ = wα(rαaβ + εδαβ). (C23)
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Then, using the Sherman-Morrison formula (Bartlett 1951), we find

(Aj)−1
αβ = ε−1w−1

β

(
δαβ −

rαaβ

∑γ aγrγ

)
. (C24)

Inserting this into eq. (B9), we find:

αij = ∑
αβ

(Aj)−1
αβ

∂gi

∂Rα

∂gj

∂Rβ
= ε−1 ∑

αβ

(
wαδαβ −

rαwαaβ

∑γ aγrγ

)
eiejciαcjβ. (C25)

We see that αij/αij = 1 for all ε, including ε → 0, when rα = r for all α and wα = waα. The

divergence of αij in this limit is reflected in the long transient of highly volatile dynamics in fig.

??.

Shared predators

We begin with the dynamical equations

dNi

dt
= eiNi

[
∑
α

wαciαRα −mi

]
−∑

a
piaPaNi (C26)

dRα

dt
=

rα

Kα
Rα(Kα − Rα)−∑

i
NiciαRα (C27)

dPa

dt
= ∑

i
ηi piaNiPa − uaPa (C28)

To situate this model within the general niche theory scheme of eq. (6-7), we must treat the preda-

tors as additional environmental factors, along with the resources. We denote the impact and

supply vectors for the resources by qR
iα and hR

α , and the corresponding vectors for the predators

by qP
ia and hp

a . We obtain:

gi(R, P) = ei

[
∑
α

wαciαRα −mi

]
−∑

a
piaPa (C29)

qR
iα(R) = −ciαRα (C30)

qP
ia(P) = ηi piaPa (C31)

hR
α (R) =

rα

Kα
Rα(Kα − Rα) (C32)

hP
a (P) = −uaPa. (C33)
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Following Step 1 from the general procedure with qR
iα as the impact vector yields the same results

for ai and bα as the previous two cases, while using qP
ia yields:

ai =
ηi

e0
(C34)

bP
a = e0Pa (C35)

for an arbitrary constant e0. We have added a superscript to bP
a , because there is a separate

set of these functions for the predators and for the resources. The scaling factor ai, however, is

only indexed by the species label, and must be the same for both the predator and the resource

impacts. This means that Step 1 of the general procedure outlined above can only be satisfied if

ei =
e0

ηi
(C36)

which is the requirement for symmetric interactions stated in the main text.

Under this assumption, we can apply Step 2 to obtain expressions for the derivatives of d:

∂d
∂Rα

= − rα

Kα
wα(Kα − Rα) (C37)

∂d
∂Pa

=
ua

e0
. (C38)

Integrating these expressions, we obtain:

d =
1
2 ∑

α

rα

Kα
wα(Kα − Rα)

2 +
1
e0

∑
a

uaPa (C39)

as reported in the main text.

This model also has an ill-defined interaction matrix, because a range of equilibrium predator

abundances are compatible with any given set of prey abundances. Following the procedure

outlined above, we add a small additional self-limitation term −εP2
a to the predator supply vector

hP
a . Using eq. (B7) and keeping track of the contributions of the predators and the resources, we

find (for general ηi):

Aj
αβ =

rαwα

Kα
δαβ (C40)

Aj
ab = ε

1
ηjej

δab. (C41)
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Note that we are finally using the j superscript on Aj
ab. The full matrix is thus completely

diagonal, with these two diagonal blocks, and the inverse is readily obtained, yielding:

αij = ∑
αβ

(Aj)−1
αβ

∂gi

∂Rα

∂gj

∂Rβ
= ∑

α

wαKα

rα
eiejciαcjα + ε−1 ∑

a
ηjej pia pja. (C42)

To have αij/αji = 1 for any ε, including ε→ 0, we need ηjej = e0 for some constant e0, as claimed

above.

Externally supplied resources

We begin with the dynamical equations

dNi

dt
= eiNi

[
∑
α

wαciαRα −mi

]
− τ−1Ni (C43)

dRα

dt
= τ−1(R0

α − Rα)−∑
i

NiciαRα. (C44)

Comparing with the general niche theory scheme of eq. (6-7), we identify

gi(R) = ei

[
∑
α

wαciαRα −mi

]
− τ−1 (C45)

qiα(R) = −ciαRα (C46)

hα(R) = τ−1(R0
α − Rα), (C47)

which is the same as for the original consumer resource model (1-2), except for the supply vector.

We thus obtain the same conversion factors:

ai = e−1
i (C48)

bα =
Rα

wα
. (C49)

Step 2 now yields the expression for d:

∂d
∂Rα

= −τ−1wα
R0

α − Rα

Rα
(C50)

Integrating this expression, we find

d = τ−1 ∑
α

wα

[
R0

α ln
R0

α

Rα
− (R0

α − Rα)

]
. (C51)
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which is eq. (??) in the main text. Note that this expression diverges as Rα → 0, so there is no

need to explicitly impose the resource feasibility constraints.

For this model, we can straightforwardly compute the interactions using eq. (B7) and (B9):

Aj
αβ =

τ−1wαR0
α

R̄2
α

δαβ (C52)

αij = ∑
αβ

(Aj)−1
αβ

∂gi

∂Rα

∂gj

∂Rβ
= τ ∑

α

wαR̄2
α

R0
α

eiejciαcjα. (C53)

Note that in this case the strength of the interaction depends directly on the equilibrium resource

abundances R̄α.

Microbial consumer resource model

We begin with the dynamical equations

dNi

dt
= eiNi

[
∑
α

(1− lα)wαciαRα −mi

]
(C54)

dRα

dt
= τ−1(R0

α − Rα)−∑
i

NiciαRα + ∑
iβ

NiDαβlβ

wβ

wα
ciβRβ. (C55)

Comparing with the general niche theory scheme of eq. (6-7), we identify

gi(R) = ei

[
∑
α

(1− lα)wαciαRα −mi

]
(C56)

qiα(R) = −ciαRα + ∑
β

Dαβlβ

wβ

wα
ciβRβ (C57)

hα(R) = τ−1(R0
α − Rα). (C58)

As noted in the main text, the generation of byproducts breaks the symmetry of interactions

between consumers, and so we must use the extended form of MEPP discussed above at the end

of Appendix B. In this case, the symmetric reference model has an impact vector qS
iα identical to

that of an ordinary consumer-resource model, and qA
iα encodes byproduct generation:

qS
iα = −ciαRα (C59)

qA
iα = ∑

β

Dαβlβ

wβ

wα
ciβRβ. (C60)
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We thus see that this model shares an equilibrium state with a pure competition model of the

form (C43-C44), but with a modified supply vector

h̃α = τ−1(R0
α − Rα) + ∑

iβ
N̄iDαβlβ

wβ

wα
ciβR̄β (C61)

and modified resource weights

w̃α = wα(1− lα). (C62)

The change to the supply vector is equivalent to a shift of the supply point from R0
α to

R̃0
α = R0

α + τ ∑
iβ

N̄iDαβlβ

wβ

wα
ciβR̄β, (C63)

which accounts for the total quantity of byproducts generated by all consumers over one chemo-

stat turnover time τ.

We can therefore use the same objective function obtained for the pure competition model in

eq. (24), but with these modified formulas for the weights wα and the supply point R̃0
α.

To compute the interactions in the original model, we need to write the full impact vector qiα

in the form of eq. (B3). We find:

ai = e−1
i (C64)

bi
αβ =

(
δαβ − Dαβlβ

wβ

wα

)
w̃−1

β Rβ = b̃αβw̃−1
β Rβ (C65)

where

b̃αβ = δαβ − Dαβlβ

wβ

wα
. (C66)

Using eq. (B7), we thus obtain:

Aj
αβ =

τ−1w̃α

R̄α

(
b̃−1

αβ −
δαβ

R̄α
∑
γ

b̃−1
αγ (R0

γ − R̄γ)

)
=

τ−1w̃α

R̄α
Wαβ (C67)

where

Wαβ = b̃−1
αβ −

δαβ

R̄α
∑
γ

b̃−1
αγ (R0

γ − R̄γ). (C68)
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Plugging in to eq. (B9), we have:

αij = ∑
αβ

(Aj)−1
αβ

∂gi

∂Rα

∂gj

∂Rβ
= τ ∑

αβ

w̃αR̄αW−1
αβ eiejciαcjβ. (C69)

Note that the factor of R̄α in the final expression generically breaks the symmetry even in special

cases where Wαβ is symmetric. Note also that Wαβ is fully determined by the intrinsic prop-

erties of the resources, encoding the information about the structure of the universal metabolic

byproduct network.

Alternative crossfeeding model

A different model of microbial resource exchange that has recently been proposed and analyzed

is (Butler and O’Dwyer 2018, 2020):

dNi

dt
= Ni

[
∑
α

(ciαRα − Piα)−mi

]
(C70)

dRα

dt
= τ−1(R0

α − Rα)−∑
i

NiciαRα + ∑
i

NiPiα. (C71)

Comparing with the general niche theory scheme of eq. (6-7), we identify

gi(R) = ∑
α

(ciαRα − Piα)−mi (C72)

qiα(R) = −ciαRα + Piα (C73)

hα(R) = τ−1(R0
α − Rα). (C74)

In general, there is no way of casting qiα into the form required by eq. (8), even when the

matrix Piα is square and symmetric. This means that the effective pairwise interactions are not

symmetric, as will be confirmed explicitly below. But we can still use the extended form of

MEPP discussed above. We obtain results similar to the MiCRM, but with a simpler asymmetric

component qA
iα:

qS
iα = −ciαRα (C75)

qA
iα = Piα. (C76)
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We thus see that this model shares an equilibrium state with a pure competition model of the

form (C43-C44), but with a modified supply vector

h̃α = τ−1(R0
α − Rα) + ∑

i
N̄iPiα. (C77)

The change to the supply vector is equivalent to a shift of the supply point from R0
α to

R̃0
α = R0

α + τ ∑
i

N̄iPiα, (C78)

which accounts for the total quantity of byproducts generated by all consumers over one chemo-

stat turnover time τ.

This model is known to exhibit both stable and unstable fixed points, depending on the

parameters, and explicit stability criteria were previously derived for the case where ciα = cδiα

and the mortality rates mi and supply rates τ−1R0
α are tuned such that the equilibrium population

sizes N̄i = N and resource abundances R̄α = R take on equal pre-specified values (Butler and

O’Dwyer 2018). The limit is also taken where τ−1 → 0 at fixed τ−1R0
α, so that all resource

depletion comes from consumption. Under these conditions, one can readily use eq. (B31) to

evaluate the stability of the EM algorithm introduced at the end of Appendix B. We find that the

elements of this Jacobian are given by:

Jij =
Pij

cR
− δij (C79)

where the resources α have been re-indexed in terms of the species i that specializes in each one.

For symmetric Pij, Butler and O’Dwyer (2018) showed that the fixed point is stable under the

original dynamics if and only if all the eigenvalues of Pij are less than cr. This is equivalent to

the stability condition for the EM algorithm, that the eigenvalues of Jij must all be negative.
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Liebig’s Law

We begin with the dynamical equations

dNi

dt
= Ni

[
min

β

({
µiβRβ

kiβ + Rβ

})
−mi

]
(C80)

dRα

dt
= τ−1(R0

α − Rα)−∑
i

Niναimin
β

({
µiβRβ

kiβ + Rβ

})
. (C81)

Comparing with the general niche theory scheme of eq. (6-7), we identify

gi(R) = min
β

({
µiβRβ

kiβ + Rβ

})
(C82)

qiα(R) = −ναimin
β

({
µiβRβ

kiβ + Rβ

})
(C83)

hα(R) = τ−1(R0
α − Rα). (C84)

Note that we have slightly changed the definition of gi, so that now dNi/dt = Ni(gi −mi). This

significantly simplifies the expressions in the derivation of the effective interaction matrix below.

Since mi is a constant, this has no effect on the key MEPP equation involving ∂gi/∂Rα.

As noted in the main text, the consumption of resources that are not currently limiting growth

breaks the symmetry of the interactions between consumers, and so we must use the extended

form of MEPP discussed above at the end of Appendix B. In this case, the symmetric reference

model has an impact vector qS
iα that only depletes the limiting nutrient, and qA

iα encodes the

consumption of non-limiting nutrients. To write explicit expressions for these quantities, it is

convenient to denote the index of the limiting resource by βi, so that min
β

({
µiβRβ

kiβ+Rβ

})
=

µiβi Rβi
kiβi+Rβi

.

Then we have

qS
iα = −νβiiδαβi

µiβi Rβi

kiβi + Rβi

(C85)

qA
iα = −ναi(1− δαβi)

µiβi Rβi

kiβi + Rβi

. (C86)

We obtain ai and bα by comparing qS
iα with the gradient of the growth rate

∂gi

∂Rα
= δαβi

µiβi kiβi

(kiβi + Rβi)
2 (C87)
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to find

ai = kiβi + Rβi (C88)

bβi =
νβii

kiβi

Rβi . (C89)

The competitive exclusion principle guarantees that there is at most one consumer species i

limited by each resource α, which allows us to unambiguously index the functions bα in this

way. Aside from the strange indexing, this is the same bα as in all the other resource competition

models discussed so far, with effective resource weights

wβi =
kiβi

νβii
. (C90)

We thus obtain an expression for d that is identical to the case of substitutable resources, but with

a modified supply point:

∂d
∂Rα

=
h̃α

bα
= −τ−1wα(R̃0

α − Rα)

Rα
(C91)

where the effective supply point is

R̃0
α = R0

α − τ ∑
i,α 6=βi

N̄iναi
µiβi Rβi

kiβi + Rβi

(C92)

with the second term accounting for the total consumption of resource α over a chemostat

turnover time by organisms that are limited by some other resource (βi 6= α).

Note that the weights wα in eq. (C90) are only defined for resources that are limiting for some

species. Resources that are not limiting for any species are not subject to any constraints in the

optimization, and always reach the effective supply point regardless of the values of the weights.

The weights can therefore be set arbitrarily for these resources, for example by taking them all to

equal 1.

To compute the interactions in the original model, we again need to write the full impact

vector qiα in the form of eq. (B3), with qiα = ai ∑β bi
αβ∂gi/∂Rβ. Doing this directly involves

division by zero. To proceed, we note that

min
β

({
µiβRβ

kiβ + Rβ

})
= lim

n→∞

[
∑
β

(
µiβRβ

kiβ + Rβ

)−n
]−1/n

. (C93)
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We can therefore perform the computations for finite n, and then take the limit. First, we define:

δn
αγi
≡
(

µiαRα

kiα + Rα

)n

∑
γ

(
µiγRγ

kiγ + Rγ

)−n

(C94)

which converges to δαγi in the limit n → ∞, where γi is the index of the most limiting resource

for species i. We thus find:

ai = 1 (C95)

bi
αβ = δαβ

ναiRα(kiα + Rα)

kiαδn
αγi

(C96)

∂gi

∂Rα
= δn

αγi
gi

kiα

Rα(kiα + Rα)
(C97)

∂2gi

∂Rα∂Rβ
=

δn
αγi

gikiα

Rα(kiα + Rα)

(
δn

βγi
kiβ

Rβ(kiβ + Rβ)
− δαβ

kiα + 2Rα

Rα(kiα + Rα)

)
. (C98)

Note that this is the first time we have need of the second term involving the second derivatives

of gi in eq. (B7), since gi is no longer linear in the resource abundances. We thus obtain:

Aj
αβ = δn

αγj
δαβ

τ−1k jα

ναj

R0
α(k jα + 2Rα)− R2

α

R2
α(k jα + Rα)

+ ∑
i

Ni
k jαδn

αγj
νiαgi

ναjRα(k jα + Rα)

(
δn

βγi
kiβ

Rβ(kiβ + Rβ)
− δαβ

kiα + 2Rα

Rα(kiα + Rα)

)
.

(C99)

Again, without loss of generality, we can reindex the species by their limiting resource at equilib-

rium, so that Nα = Ni when γi = α. If no species is limited by a given resource β, we introduce

a fictitious species with Nβ = 0. We find:

Aγ
αβ =

kγαδn
αγ

ναγRα(kγα + Rα)
Wγ

αβ (C100)

where

Wγ
αβ = δαβ

1
Rα

(
τ−1[R0

α(kγα + 2Rα)− R2
α]−∑

λ

Nλνλαgλ(kλα + 2Rα)

)

+ ∑
λ

δn
βλNλ

νλαgλkλβ

Rβ(kλβ + Rβ)
. (C101)

Plugging in to eq. (B9), we have:

αλγ = ∑
αβ

(Aγ)−1
αβ

∂gλ

∂Rα

∂gγ

∂Rβ

= ∑
αβ

(Wγ)−1
αβ δn

αλ

kλαgλgγ

Rα(kλα + Rα)
. (C102)
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Finally, taking the limit n → ∞, and replacing Nα, Rα with the equilibrium values N̄α, R̄α, we

conclude:

αij = ∑
β

(W j)−1
αi β

νβjkiαi gigj

R̄αi(kiαi + R̄αi)
(C103)

where again αi is the resource limiting the growth of species i, respectively, with

W j
αβ = δαβ

1
R̄α

(
τ−1[R0

α(k jα + 2R̄α)− R̄2
α]−∑

γ

N̄γνγαgγ(kγα + 2R̄α)

)
+ N̄β

νβαgβkββ

R̄β(kββ + R̄β)
. (C104)

Interactively essential resources

Another model not discussed in the main text due to space constraints, but of interest to some

readers, is the following scenario of interactively essential resources, with growth rate governed

by the product of all the incoming nutrient fluxes, each following Michaelis-Menten kinetics:

dNi

dt
= eiNi

[
∏

α

µiαRα

kiα + Rα
−mi

]
(C105)

dRα

dt
= τ−1(R0

α − Rα)−∑
i

Ni
µiαRα

kiα + Rα
. (C106)

Comparing with the general niche theory scheme of eq. (6-7), we identify

gi(R) = ei ∏
α

µiαRα

kiα + Rα
(C107)

qiα(R) = − µiαRα

kiα + Rα
(C108)

hα(R) = τ−1(R0
α − Rα). (C109)

As in the previous section, we have altered the definition of gi, so that now dNi/dt = Ni(gi−mi),

which again significantly simplifies the notation in the derivations. The gradient of the growth

rate is

∂gi

∂Rα
=

kiαgi

Rα(kiα + Rα)
. (C110)

In general, there are no functions ai and bα that relate this gradient to the impact vector in the

way required by Step 1 of the MEPP procedure. But if the low-density specific consumption rate
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µiα/kiα is the same for all species i, so that we can define wα = kiα/µiα with the left-hand side

independent of i, we obtain:

bα =
R2

α

wα
(C111)

ai =
1
gi

. (C112)

The resulting expression for d is:

∂d
∂Rα

= −τ−1wα(R0
α − Rα)

R2
α

. (C113)

Integrating this, we obtain a weighted KL divergence between the inverse resource concentrations

and the inverse supply point:

d(R0, R) = τ−1 ∑
α

R0
αwα

[
1

R0
α

ln
1/R0

α

1/Rα
−
(

1
R0

α

− 1
Rα

)]
. (C114)

To compute the effective pairwise interactions, we use eq. (B7) to obtain:

Aj
αβ =

τ−1k jα

Rαµjα
Wαβ (C115)

with

Wαβ = δαβ
2R0

α − R̄α

R̄2
α

+ τ ∑
i

N̄iµiα[kiβ(1− δαβ) + 2R̄βδαβ]

R̄β(kiα + R̄α)(kiβ + R̄β)
. (C116)

We thus find

αij = ∑
αβ

(Aj)−1
αβ

∂gi

∂Rα

∂gj

∂Rβ
= τ ∑

αβ

W−1
αβ

kiαµjβ

R̄α(kiα + R̄α)(kiβ + R̄β)
gigj. (C117)

We see that this matrix is symmetric only if kiα = wαµiα for some wα independent of i, as claimed

above.

Type II functional response

We begin with the dynamical equations

dNi

dt
= eiNi

∑
α

ciαRα

1 + ∑β
ciβRβ

Jiβ

−mi

− τ−1Ni (C118)

dRα

dt
= τ−1(R0

α − Rα)−∑
i

Ni
ciαRα

1 + ∑β
ciβRβ

Jiβ

. (C119)
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Comparing with the general niche theory scheme of eq. (6-7), we identify

gi(R) = ei

∑
α

ciαRα

1 + ∑β
ciβRβ

Jiβ

−mi

− τ−1 (C120)

qiα(R) = − ciαRα

1 + ∑β
ciβRβ

Jiβ

(C121)

hα(R) = τ−1(R0
α − Rα). (C122)

The gradient of the growth rate is

∂gi

∂Rα
= ei

(
1 + ∑β

ciβRβ

Jiβ

)
ciα −∑β ciβRβ

ciα
Jiα(

1 + ∑β
ciβRβ

Jiβ

)2 . (C123)

In general, there are no functions ai and bα that relate this gradient to the impact vector in the

way required by Step 1 of the MEPP procedure. But if the maximum uptake rates Jiα of a given

consumer i are the same for all resource types α, the gradient simplifies to

∂gi

∂Rα
= ei

ciα(
1 + ∑β

ciβRβ

Jiβ

)2 . (C124)

Now this can be related to qiα in the required way, yielding

ai =
1 + ∑β

ciβRβ

Jiβ

ei
(C125)

bα = Rα. (C126)

Since hα and bα are the same as for the original model with externally supplied resources and

linear functional response (with wα = 1, because we did not need the weight parameters to fit the

data of interest), the objective function is also the same. The only consequences of introducing the

saturating growth law are to modify the constraint region gi ≤ 0 and to change the conversion

factor ai required for extracting the species abundances from the Lagrange multipliers.

To compute the pairwise interactions for the general model, we note that if the Jiα are not

the same for all α, then casting the impact vector into the form of eq. (B3) requires bi
αβ to be
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dependent on the species index i:

bi
αβ = δαβ

Rα

1 + ∑β ciβRβ

(
1
Jiβ
− 1

Jiα

) . (C127)

For this model, we also need the second derivatives of the growth rate:

∂2gi

∂Rα∂Rβ
= eiciα

2 ∑γ
ciγciβRγ

Jiα Jiβ
−
(

1 + ∑γ
ciγRγ

Jiγ

)
ciβ

(
1
Jiβ

+ 1
Jiα

)
(

1 + ∑γ
ciγRγ

Jiγ

)3 . (C128)

Putting it all together using eq. (B7) and (B9), we obtain

Aj
αβ =

τ−1

R̄α

R0
α

1 + ∑γ cjγR̄γ

(
1

Jiγ
− 1

Jiα

)
R̄α

δαβ − (R0
α − R̄α)cjβ

(
1
Jiβ
− 1

Jiα

)
+ ∑

i
N̄iciα

1 + ∑β cjβR̄β

(
1

Jjβ
− 1

Jjα

)
1 + ∑β ciβR̄β

(
1
Jiβ
− 1

Jiα

) 2 ∑γ
ciγciβ R̄γ

Jiα Jiβ
−
(

1 + ∑γ
ciγ R̄γ

Jiγ

)
ciβ

(
1
Jiβ

+ 1
Jiα

)
(

1 + ∑γ
ciγ R̄γ

Jiγ

)2 (C129)

αij = ∑
αβ

(Aj)−1
αβ

∂gi

∂Rα

∂gj

∂Rβ
= ∑

α

(Aj)−1
αβ

eiejciαcjβ(
1 + ∑γ

ciγ R̄γ

Jiγ

)2 (
1 + ∑γ

cjγ R̄γ

Jjγ

)2 . (C130)

Note that when Jiα = Ji is independent of α, the first expression simplifies to

Aj
αβ =

τ−1R0
α

R̄2
α

δαβ − 2 ∑
i

N̄iciαciβ

Ji

(
1 + ∑γ

ciγ R̄γ

Ji

)2 (C131)

which is symmetric and independent of j, thus giving rise to symmetric interactions via eq. (B9).

Appendix D: Simulation details

All simulations and data analysis were performed in Python using the Scipy scientific computing

package (Jones et al. 2001–). Data and scripts (in Jupyter notebooks) to generate the figures can

be downloaded from https://github.com/Emergent-Behaviors-in-Biology/mepp.

The equations parameter values for all simulations are as follows. Note that for the sim-

ulations with more than two resources, parameter values were randomly sampled. The sym-

bol U (a, b) will represent a uniform probability distribution over the interval [a, b], and D(α) a

Dirichlet distribution with concentration parameters all equal to α.
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• Figure 2

– (a) eq. (1-2), c1α = (0.5, 0.3), c2α = (0.4, 0.6), Kα = (4.8, 2.85), r1 = r2 = m1 = m2 =

e1 = e2 = w1 = w2 = 1

– (b) eq. (15-16), c1α = (0.5, 0.3), c2α = (0.4, 0.6), mi = (0.2, 0.22), wi = (0.2, 0.15), e1 =

e2 = 1

– (c) eq. (18-20), c11 = 0.5, c21 = 0.4, p11 = 0.3, p21 = 0.6, K1 = 4, mi = (1, 0.5), u1 =

0.5, r1 = w1 = e1 = e2 = 1

– (d) eq. (22-23), c1α = (0.5, 0.3), c2α = (0.4, 0.6), R0
α = (4.8, 2.5), m1 = m2 = 0, e1 = e2 =

w1 = w2 = τ = 1

– (e) eq. (1-2), S = 10, M = 10, ciα ∼ U (0, 1), Kα ∼ U (5, 6), rα ∼ U (1, 2), mi ∼

U (1, 2), wα ∼ U (1, 2), ei = 1

– (f) eq. (15-16), S = 10, M = 15, ciα ∼ U (0, 1), mi ∼ U (0.033, 0.066), wα ∼ U (0.05, 0.1), ei =

1

• Figure 3

– (b) eq. (25-26), c1α = (0.5, 0.3), c2α = (0.4, 0.6), Dα1 = (0, 1), Dα2 = (1, 0), R0
α =

(4.5, 0.9), l1 = l2 = 0.5, m1 = m2 = w1 = w2 = e1 = e2 = τ = 1

– (c) eq. (25-26) S = 10, M = 5, ciα ∼ U (0, 1), Dαβ ∼ D(10), R0
α ∼ U (0, 10), lα ∼

U (0, 1), mi ∼ U (1, 2), wα ∼ U (1, 2), ei = τ = 1

– (e) eq. (28-29), µ1α = (6, 9), µ2α = (8, 5), k1α = k2α = (10, 10), ν1α = (1, 0.7), ν2α =

(0.7, 1), R0
α = (4.3, 4), τ = m1 = m2 = 1

– (f) eq. (28-29), S = 10, M = 3, µiα ∼ U (0, 30), kiα ∼ U (28.5, 31.5), R0
α ∼ U (20, 21), τ =

mi = 1. The ναi are generated by first sampling ν̃αi ∼ (kiα/µiα)
−1 + U (0, 0.1), in order

to increase the odds of finding stable consortia, and then normalizing with ναi =
ν̃αi

∑β ν̃βi
.

• Figure 4: In panel (b) an additional term −τ−1Ni was added to eq. (30) in the simulations,

to account for the dilution of consumers. This was not required for the fitting in panel
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(a), because the growth rates were measured using the change in population size between

dilutions.

• Figure 5: The same additional term −τ−1Ni was added to eq. (30) for the purpose of

computing the ZNGI’s.

• Figure A1

– (a) eq. (18-20), S = 10, MR = 10, MP = 10, ciα ∼ U (0, 1), pia ∼ U (0, 1), mi ∼

U (1, 2), ua ∼ U (1, 2), wα ∼ U (1, 2), rα ∼ U (1, 2), Kα ∼ U (0, 5), ei = 1

– (b) eq. (22-23), S = 9, M = 5, ciα ∼ U (0, 1), wα ∼ U (1, 2), R0
α ∼ U (1, 7), τ = ei = 1
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