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ABSTRACT: Fifty years ago, Robert MacArthur showed that stable
equilibria optimize quadratic functions of the population sizes in sev-
eral important ecological models. Here, we generalize this finding
to a broader class of systems within the framework of contemporary
niche theory and precisely state the conditions under which an opti-
mization principle (not necessarily quadratic) can be obtained. We
show that conducting the optimization in the space of environmen-
tal states instead of population sizes leads to a universal and transpar-
ent physical interpretation of the objective function. Specifically, the
equilibrium state minimizes the perturbation of the environment in-
duced by the presence of the competing species, subject to the con-
straint that no species has a positive net growth rate. We use this “min-
imum environmental perturbation principle” to make new predictions
for evolution and community assembly, where the minimum pertur-
bation increases monotonically under invasion by new species. We
also describe a simple experimental setting where the conditions of
validity for this optimization principle have been empirically tested.

Keywords: niche theory, community ecology, invasions.

Introduction

The past century of research in theoretical ecology has re-
vealed how simple mathematical models can have surpris-
ingly rich behavior, with results that are often difficult to
predict without running a numerical simulation. Thisis par-
ticularly the case when the number of simultaneously inter-
acting species becomes large and an exhaustive exploration
of the parameter space is no longer possible. But deriving
ecological insight from these models requires abstracting
from an individual simulation run, to find qualitative fea-
tures of the dynamics that generically follow from the basic
modeling assumptions.
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Fifty years ago, Robert MacArthur found hints of a gen-
eral principle of this kind, concerning the properties of sta-
ble equilibrium states (MacArthur 1969, 1970). In a model
of competition for substitutable resources, now known by
his name, he showed that the equilibrium states optimize a
certain quadratic function of the population sizes. Under
some additional assumptions, this function had a natural
interpretation in terms of the difference between available
resource production and the harvesting abilities of the con-
sumers. He obtained similar optimization principles for
several other models, including one with direct interaction
between resources and another representing competition
to avoid predators, suggesting that this result might extend
significantly beyond the specific context in which it was
originally found. But he was unable to find an ecological in-
terpretation of the objective function in these other cases,
and no broader framework had yet been developed for sys-
tematically generalizing the principle.

In this article, we complete MacArthur’s work by situat-
ing it in the context of contemporary niche theory (for a
thorough introduction, see Chase and Leibold 2003). This
mathematical and conceptual framework effectively general-
izes the original consumer resource model to allow for ar-
bitrary environmentally mediated interactions, including sat-
urating growth kinetics, competition for essential resources
(e.g.,as described by Liebig’s law of the minimum), and mi-
crobial systems with rampant by-product secretion. This
framework first of all allows us to state the general condi-
tions under which an optimization principle exists. But it
also provides another benefit, by focusing our attention on
the environmental state. Contemporary niche theory natu-
rally lends itself to a graphical analysis in the space of envi-
ronmental factors, where coexistence conditions can be geo-
metrically determined (for a recent review, see Koffel et al.
2016). It turns out that conducting the optimization in this
environmental space—instead of in the space of popula-
tion sizes—leads to a generalizable ecological interpreta-
tion of the objective function.

In the following sections, we first review MacArthur’s
original result and describe how his model is generalized
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by the niche theory framework. Then we describe the con-
ditions for the existence of a optimization principle in a
niche model and show how the principle can be interpreted
as a constrained minimization of the environmental per-
turbation induced by the competing species. We illustrate
the scope of the result with seven examples: the three con-
sidered by MacArthur and four scenarios that depart from
his assumptions in significant ways. One of these examples
is taken from a classic experimental article on resource com-
petition in rotifer populations (Rothhaupt 1988), where the
model was shown to provide an excellent description of the
experiments. We review how the conditions for an optimi-
zation principle can be directly verified in this case. Finally,
we discuss an important corollary of our result, that the en-
vironmental perturbation monotonically increases during
community assembly or evolution.

Background
MacArthur’s Minimization Principle

MacArthur originally considered a model of competition
among S consumer species for M substitutable resources
(MacArthur 1970). The resources, with population densi-
tiesR, (o = 1,2,..., M), do not interact with each other di-
rectly, and each resource type is independently self-limiting
with carrying capacity K,. The dynamics of the consumer
population densities N; (i = 1,2,...,S) and the resource
abundances are described by the following set of differen-
tial equations:

dN,‘
W = eiNi [zﬂ:waciaRa - mf] > (1)

drR, r,
dt K,

R(K, = R) =Y NewRy  (2)

where c,, is the successful encounter rate of species i search-
ing for resource o, m; is the “maintenance cost” or threshold
consumption level for growth, w, is the per capita “weight”
or nutritional value of each resource, e; is the quantity of
nutritional value required for reproduction of a given spe-
cies, and r, is the low-density resource growth rate. A cen-
tral feature of interest in any such model is the location of the
stable equilibrium state N, R. MacArthur showed that this
state can be identified by eliminating the R,s and minimiz-
ing a quadratic function of the Nis.

To eliminate the R,s, MacArthur assumed that the re-
sources relax quickly to the equilibrium state correspond-
ing to the current consumer population sizes. Solving for
R, as a function of N; in the equilibrium equations dR,/
dt = 0, one obtains a closed set of dynamics for the con-
sumer population sizes:

dN;,
— = ¢N; eralKawac,-a (ra — ZM%) — mi] .
dt aeM’ j

(3)

Here, the set M" is composed of resources with feasible
abundances R, = r, — > ;Nic, > 0. Any resources not
satisfying this constraint are driven to extinction under
the full dynamics. MacArthur noticed that these differen-
tial equations can be written in terms of the gradient of a
quadratic function of the Nis:

‘Z\t"‘ = —e,-N,g—](\% (4)
with
2
QIN) = %Zr;'Kawa To — chaNj + ijNj)
aEM’ j J

(5)

as is easily verified by performing the partial derivative
and comparing with the original equation. Equation (4)
implies that 0Q/0N; = 0 in equilibrium for all nonextinct
populations i. The negative sign guarantees that this sta-
tionary point is a local minimum rather than a maximum.
For the extinct populations, stability against reinvasion re-
quires dQ/0N; > 0. This means that setting N; = 0 also
minimizes Q along these directions, subject to the feasibil-
ity constraint N, > 0 (Gatto 1982, 1990). We have plotted
Q(N) for a community with two consumer species in fig-
ure 1a, along with the equilibrium state eventually reached
in a numerical simulation of equations (1) and (2).

This result was an important step forward in under-
standing the nature of equilibrium states in this model. It
shows, for example, that there is only one stable equilibrium
state, since Q is a convex function with a single local min-
imum. But this theorem as it stands is subject to several sig-
nificant limitations. First of all, the restriction of the sum to
the subset M" of resources with r, — > "¢, N; > 0 makes
the objective function more complicated than it initially
seems, since it is actually a piecewise function consisting
of sectors that are linear along some axes and quadratic
along others. This seems not to have been noticed by Mac-
Arthur, who took the sum over all M resources, or in sub-
sequent discussion of his work (MacArthur 1970; Case 1980;
Gatto 1982, 1990). In fact, the restriction of the sum prob-
lematizes the ecological interpretation MacArthur achieved
for one special case of the model, as discussed in appendix A
(apps. A-D are available online). Second, it remains unclear
what assumptions are actually required to obtain a minimi-
zation principle. MacArthur took some steps in that direc-
tion by extending his result to the case of interacting re-
sources and of competition to avoid predators. He noted
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Figure 1: Reinterpreting MacArthur’s minimization principle. a, Contour lines of MacArthur’s objective function Q(N) in the space of pop-
ulation sizes, as defined in full in equation (5). The cross (x) marks the equilibrium eventually attained in direct numerical simulation of equa-
tions (1) and (2) with the same parameters (r, = m; = w, = lforaw = 1,2,i = 1,2;K, = 4.8,K, = 2.85,¢,, = (0.5,0.3),¢,, = (0.4,0.6)). The
direct simulation ends up at the point where Q is minimized, as predicted by MacArthur. Also shown for illustration is a simplified expression for
Q with the r, and w, set to 1. b, Contour lines in the environmental space of resource abundances representing the dissimilarity measure
d(R’ R) with respect to the supply point R’. The uninvadable equilibrium state, indicated by the black circle, minimizes d under the uni-
nvadability constraint g;(R) < 0, which constrains the environmental state to lie within the shaded region Q bounded by the zero-net-growth
isoclines (ZNGIs; colored lines). For MacArthur’s model of competition for noninteracting resources with r, = w, = 1 as in the previous

panel, d is simply the Euclidean distance.

that for all of these cases, the key feature required was the
symmetry of the interaction matrix in an effective Lotka-
Volterra description of the scenario. But his approach can-
not be straightforwardly applied to other important sce-
narios, such as when abiotic nutrients are supplied by a
chemostat or when the growth kinetics saturate at high re-
source abundance.

The minimization principle has recently been extended to
larger classes of population dynamics that allow for che-
mostat models of resource supply, suggesting that an opti-
mization approach applies much more broadly than pre-
viously supposed (Tikhonov and Monasson 2017; Mehta
et al. 2019b). But the assumptions under which these new
results were obtained do not admit an obvious ecological
interpretation, and so the precise extent of the approach
remains unclear.

Contemporary Niche Theory

In the present work, we draw on the theoretical framework
of contemporary niche theory, as consolidated by Chase

and Leibold (2003), and define the complete class of mod-
els within this framework that are subject to an optimiza-
tion principle. Our results generalize MacArthur’s insight
about the symmetry of the environmentally mediated in-
teractions, revealing a minimization principle valid for all
niche models that are symmetric in the relevant sense de-
fined precisely below. We also show how the optimization
perspective can provide an efficient way of identifying equi-
librium states even for systems outside this class, where the
principle does not strictly apply.

Table 1 lists the key elements of the theory, which aims
to extract the essential features of MacArthur’s consumer
resource model (MCRM; eqq. [1], [2]). The first of these
features is the explicit consideration of the environment,
with the abundances R, of the M resources appearing along-
side the population densities N; of the S consumer species.
Niche theory follows this basic scheme but with a broader
notion of “resource” that includes any environmental fac-
tor that affects an organism’s growth rate (see Levin 1970;
Tilman 1982). In microbial ecology, for example, concen-
trations of quorum-sensing molecules and antibiotics can
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Table 1: Key quantities of niche theory

Symbol Description MCRM

N; Species abundance Consumer population density ([individuals]{length] )
R, Environmental factor Resource population density ([individuals][length] )
g Growth rate &> aWoCiaRy — m;] ([time] )

Gia Impact vector —ci R, ([length]°[time] ")

he Supply vector I%;(Ka — R,) ([individuals][length] "[time] ')

R, Supply point K, ([individuals][length] ")

Note: The final column lists how each quantity appears in MacArthur’s consumer resource model (MCRM,; eqq. [1], [2]), along

with its units. D is the spatial dimension of the ecosystem (2 for terrestrial, 3 for aquatic).

act as resources in this extended sense (Momeni et al.
2017).

The second feature of the MCRM is that the reproduc-
tive rates of the consumers depend only on the state of
the environment, as specified by the resource abundances.
Niche theory preserves this assumption but allows this de-
pendence to be described by an arbitrary set of functions
&(R). The consumers in the MCRM also affect the environ-
ment by depleting resources, with the per capita depletion
rate depending only on the resource abundances. In niche
theory, this assumption is encoded by representing the im-
pact of the organisms on their environment by a set of per
capita “impact vectors,” with the impact of species i on re-
source o described by a function g;(R) (Tilman 1982;
Leibold 1995). In the MCRM, the impacts are closely re-
lated to the growth rates, since resources contribute to the
growth rate only insofar as they are removed from the en-
vironment. But generalized resources can affect the growth
rate in other ways (e.g., production of antibiotics specifically
inhibiting growth of other species), so the niche theory
framework allows the impact vectors to be defined by an in-
dependent set of arbitrary functions.

Finally, the resources in the MCRM have their own in-
trinsic dynamics, described by a set of independent logistic
growth laws. Niche theory places no constraints on the form
of the intrinsic resource dynamics, which are described by
a “supply vector” with elements h,(R) (Tilman 1982; Chase
and Leibold 2003). Generally, however, it is assumed that
these dynamics have some stable equilibrium R{, which is
known as the “supply point.”

These definitions lead to the following set of differential
equations describing the population and environmental
dynamics in a general niche model:

dNi _

o = Na®), (6)
dR,

= )+ E,- Nigi(R). (7)

Graphical Analysis with Zero-Net-Growth Isoclines

The central assumption of niche theory is that all interac-
tions between species are mediated by environmental fac-
tors, such that g(R) and g,,(R) are functions of the environ-
mental state R alone and are independent of the population
sizes N, This assumption makes it possible to graphically
analyze the equilibrium states of these models in resource
space (Tilman 1982). Central to the graphical approach
is the hypersurface where g;,(R) = 0, called the zero-net-
growth isocline (ZNGI), depicted in a two-resource exam-
ple in figure 16 (Tilman 1982; Leibold 1995). Environmen-
tal states along the ZNGI support reproduction rates that
exactly balance death rates, leading to constant population
sizes. The ZNGIs play an essential role in the formulation
of our new optimization principle.

For a given collection of species, the ZNGIs fix the
boundaries of the “uninvadable” region  illustrated in fig-
ure 1b, defined as the set of environmental states R satisfy-
ing g:(R) < 0 for all species i. All stable equilibrium states
lie within this region, for any choice of supply vector and
impact vector. The interior of the region does not sup-
port growth of any species in the collection, so any interior
point can trivially be made into an “empty” stable equilib-
rium state by simply placing the supply point there and
driving all of the consumer species extinct. All nonempty
equilibrium points lie on the boundary of ©, which is the
outer envelope of the ZNGIs of all of the species in the
pool (see Koffel et al. 2016). Points that lie on a ZNGI
but are outside  can be valid equilibrium states, but they
are unstable against invasion by species within the focal
collection.

Results
General Criteria for Existence of Optimization Principle

Our first main result is that MacArthur’s observation on
the conditions for the existence of an optimization princi-
ple can be extended to all models within the niche theory
framework: equilibrium states of a niche theory model

This content downloaded from 076.024.025.208 on July 23, 2020 11:59:42 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



optimize an objective function whenever the environmen-
tally mediated interactions among species are symmetric.

Interaction symmetry is usually treated within the con-
text of a generalized Lotka-Volterra model, which repre-
sents the interactions with a matrix of constant coefficients.
But it can be defined more generally within niche theory
by considering a small externally imposed perturbation in
the abundance of a given species from some reference state.
This perturbation will slightly shift the equilibrium resource
abundances, which will in turn affect the growth rates of
the other species. These environmentally mediated interac-
tions are symmetric if the effect on the growth rate of spe-
cies j of a change in the abundance of species i is the same
as the effect on species i of the same change in species j.

When all species are very similar to each other, this con-
dition is straightforward to evaluate. But when species sig-
nificantly differ in body size or other important characteris-
tics, the quantification of abundance becomes ambiguous.
In the case of body size differences, measuring the popula-
tion in terms of total biomass gives a very different result
than counting the number of individuals. This makes it un-
clear whether “the same” change in abundance is the same
additional number of individuals or the same increase in
total biomass. Whether the interactions are symmetric will
depend on the choice of unit of measurement.

To resolve this ambiguity, we define the interactions to
be symmetric whenever there is at least one way of quan-
tifying abundance under which symmetry is achieved. Math-
ematically, this can be expressed as the requirement that
dg;/d(a;N;) = dg;/d(a;N;) for some choice of positive scal-
ing factors a;. This flexibility in the relevant notion of sym-
metry was already noted by Gatto (1982) in the context
of MacArthur’s original work and is here generalized to
arbitrary models within the niche theory framework. It is
actually slightly more general even than Gatto realized, be-
cause the scaling factors need not be constant but can de-
pend on the current state of the ecosystem. This flexibility
makes a wide variety of resource competition models sym-
metric in the relevant sense.

Since the effect of a change in population size on the
environment is determined the impact vector while the ef-
fect of the change in environment on other species is deter-
mined by their growth rates, symmetry clearly requires the
growth rates and impact vectors to be related in a special
way. In appendix B, we show that the required relationship
takes the following form:

09;
4u(R) = ~a,R)b,(R) 5", ®)

where g, is the scaling factor introduced above and b,, are
functions of R that are the same for all species but can vary
from resource to resource. Since the scaling factors a; have
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already been defined to be positive, the new functions b,
should also be positive so that each species acts on the re-
source in a way that limits its own growth (see Tilman 1982).
This proof of equation (8) as the condition for symmetry is
somewhat technical, but once it is established, we can sub-
stitute this expression into equations (6) and (7) to obtain
the following set of conditions for a stable equilibrium:

Steady populations 0 = a;,N,g(R), (9)

hoz(R) _ agl
b~ 2= Nigp, (10

Steady environment 0 =

Noninvasibility 0 > g,(R), (11)

Feasible populations 0 < a;N.. (12)

These are almost identical to the well-known Karush-Kuhn-
Tucker (KKT) conditions for constrained optimization un-
der the constraints g; < 0, with the scaled population sizes
a;N; playing the role of the generalized Lagrange multipliers
(also called KKT multipliers) and with h,(R)/b,(R) taking
the place of the negative gradient of the optimized func-
tion (Bertsekas 1999; Boyd and Vandenberghe 2004). These
conditions generalize the theory of Lagrange multipliers to
the case of inequality constraints, with the first equation set-
ting the Lagrange multipliers a:N; to zero for points below
the constraint surface (g; < 0), where the constraint has no
effect. The KKT conditions were also employed by Gatto
in his analysis of MacArthur’s minimization principle, and
they also appear in a different context within optimal forag-
ing theory (Gatto 1982; Tilman 1982).

It turns out, as shown in appendix B, that interaction
symmetry also requires that h,(R)/b,(R) can be written
as the gradient of a function, which we will call d(R):

9d _ h(R)
oR,  b,(R)’

(13)

The equilibrium conditions listed above thus guarantee
that d(R) is locally extremized over the uninvadable region
Q bounded by the outer envelope of the ZNGIs. Since the
intrinsic dynamics of the environment push the state R
along the direction of the supply vector h, equation (13)
implies that this extremum is in fact a minimum.

This result generalizes MacArthur’s minimization prin-
ciple to all niche models with symmetric environmentally
mediated interactions. Stable equilibria of such models can
be determined in four basic steps: (1) find b, and a; by com-
paring the impact vectors with the derivative of the growth
rates using equation (8); (2) compute d from b, and the
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supply vector using equation (13); (3) impose constraints
g <0, requiring that the environment lie in the uninvada-
ble region; and (4) minimize d(R) under these constraints.
The minimizing value is the equilibrium state R of the en-
vironment, and the Lagrange multipliers that enforce the
constraints are equal to a,N i

Objective Function Measures Environmental
Perturbation from Surviving Species

Our second result is that the quantity d(R) has a natural
and universal ecological interpretation. From equation (13),
we see that the unconstrained minimum of d lies at the
supply point R® where h(R°) = 0. Since this equation
only defines the minimized function d(R) up to a constant
offset, we are free to set its minimum value to be zero:
d(R") = 0. We now have a quantity that is always positive
and equals zero only when the environment is in its unper-
turbed equilibrium state. This makes d(R) a natural way of
quantifying the “distance” to the supply point. To indicate
the fact that the function measures the size of the change
from R’ to R, from now on we will put both of these vectors
as arguments and write d(R°, R).

In light of this interpretation of the objective function,
we can state the minimum environmental perturbation
principle (MEPP), valid for all symmetric niche models:
uninvadable equilibrium states minimize the perturbation
of the environment away from the supply point, subject
to the constraint that no species in the regional pool has
a positive growth rate.

Extension to Asymmetric Models

Our third result is an extension of MEPP to models with-
out symmetry. Any impact vector g, can be decomposed
into a sum of two terms q,, = g3, + g, where g, satisfies
equation (8) and g, accounts for the rest of the impact. If
the model has a stable equilibrium point, the minimization
principle can be recovered by simply fixing the “excess”
impact N,q., of each species to its equilibrium value and
treating it as part of the supply vector h,,. This extra supply
leads to a shift in the supply point from R’ to a new value
1:10, defined as the point where the effective supply vector
hy = h, + > ;N,qi(R) vanishes. We can thus formulate
an extended statement of MEPP, valid under these broader
conditions: uninvadable equilibrium states minimize the
perturbation of the environment away from the effective
supply point R, subject to the constraint that no species
in the regional pool has a positive growth rate.

It is not immediately obvious how to use this result to
find an unknown equilibrium state, however, because R’
depends on the equilibrium values of N; and R,. In ap-
pendix B, we describe how the minimization problem can

be solved without prior knowledge of N; and R, using an
approach inspired by related problems in machine learn-
ing. In brief, the algorithm iteratively solves the minimiza-
tion problem using the current estimate of these equilibrium
values and then updates the estimate with the results of
the minimization. In the section on asymmetric examples
below, we show numerically that this algorithm can suc-
cessfully converge to the true equilibrium state for two im-
portant kinds of asymmetry. In both of these cases, the
modified supply vector also has a clear ecological interpre-
tation in terms of the specific mechanisms that break the
symmetry of the interactions.

Examples and Discussion

To illustrate our general results, the following sections re-
port the minimized function d for seven commonly used
ecological models that can be cast in the language of con-
temporary niche theory. Of the infinite variety of possible
ways of quantifying environmental changes, we will see
that this function holds a privileged status, since it natur-
ally reflects the importance of a given change for the eco-
logical dynamics of the community. Full derivations of
all results can be found in appendix C, where we also re-
port explicit expressions for the matrix of effective pair-
wise interactions.

Symmetric Examples

We begin with the three models considered by MacArthur
in his original article on the minimization principle (Mac-
Arthur 1970): the model of competition for noninteract-
ing resources discussed above and two generalizations. The
first of these allows for interaction between different re-
source types (e.g., plants competing for space or water),
and the second includes competition among consumers
to avoid shared predators. MacArthur obtained minimiza-
tion principles in the space of population sizes for all of
these models, under the condition that the environment-
ally mediated interactions among consumer species remain
symmetric. By performing the minimization in resource
space, we obtain a unified physical interpretation in terms
of the environmental perturbation, with the different mod-
els giving rise to different perturbation measures d, which
reflect the ways in which environmental changes impact
the community. This reinterpretation also allows us to read-
ily generalize the minimization principle to a scenario not
considered by MacArthur, one where nutrients are sup-
plied externally via a chemostat.

Figure 2 graphically depicts the optimization problem
of each of these four scenarios and also compares the re-
sults of constrained optimization of d with direct numeri-
cal integration of the dynamical equations for two of them.
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Figure 2: Examples with symmetric interactions. a-d, Zero-net-growth isoclines, uninvadable region Q, and contours of perturbation mea-
sure d(R’,R) for the four examples discussed in the text where the environmentally mediated interactions are symmetric and the minimum
environmental perturbation principle (MEPP) straightforwardly applies. The black circle indicates the final state of a numerical simulation of
the corresponding differential equations. e,f, Simulations of two of the models with larger numbers of species and resources, compared with the
predictions of MEPP for the uninvadable equilibrium state. Consumer abundances are obtained from the Lagrange multipliers that enforce the
constraints during optimization. See appendix D for all simulation parameters.

See figure C1 (available online) for simulations of the other
two examples.

Noninteracting Resources. We begin with MacArthur’s
primary model, presented in equations (1) and (2). This
is a model of competition for noninteracting self-renewing
resources, whose intrinsic population dynamics in the ab-
sence of consumers are described by independent logistic
growth laws. The objective function in this case is simply
the weighted Euclidean distance of the resource abundance
vector from the supply point:

ARR) = 53w K R~ B (14)

where the supply point R}, = K is here simply equal to the
vector of resource carrying capacities. The contribution of
each resource to this distance is weighted by the ecological
significance of changes in its abundance. This weight has
three components. The first factor, w,,, measures the nutri-
tional value of the resources. Resources with low values of

w, contribute less to the growth for consumer populations,
and changes in their abundance are therefore less important.
The second factor, r,, controls the rate of resource renewal.
Abundances of resources with high rates of self-renewal are
more difficult to perturb than those of resources that grow
back slowly, and so a given shift in abundance is more sig-
nificant for the former than for the latter. Finally, the factor
of K,,' reflects the fact that a perturbation of the same ab-
solute size is less significant if the carrying capacity is larger.

As discussed in appendix C, an important feature of the
optimization perspective in all of MacArthur’s examples
is that the resource feasibility constraint R, > 0 must be
enforced explicitly. This causes difficulties for the interpre-
tation of MacArthur’s original principle in the space of
population sizes, but it fits easily into the resource space
picture. For any niche model, the minimization is always
subject to the constraint that the environment must lie in
the uninvadable region 2, and the feasibility condition sim-
ply means that the lower boundary of this region must also
be included in the optimization protocol.
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Interacting Self-Regulation. In reality, self-renewing re-
sources like plants or algae usually compete directly with
each other for space, water, light, and nutrients. MacArthur
therefore generalized his model to allow for this kind of
interaction. For concreteness, we focus on the case where
the resources are plants competing for space, with each in-
dividual of species o occupying an area a,. In this two-
dimensional example, N; and R, are both naturally mea-
sured in units of individuals per land area. The fraction of
the land that is available for new plant growth is then given
by 1 — > ,a.R,. This results in the following set of equa-
tions, with the per capita growth rate of the plants equal
to a bare rate r, times the free space fraction:

dN;
E = ¢N,; l;waciaRa - m;| > (15)

dR,
dt = rozRo( (1 - ;aﬁR;;) - ZC,‘QN,‘RO‘. (16)

As MacArthur points out, the model with interacting re-
sources requires additional assumptions to guarantee sym-
metry (MacArthur 1970). In appendix C, we show that a
sufficient assumption is to make the growth rates r, the
same for all resources (r, = r) and the nutritional value
of each plant species proportional to its size (w, = way,).
In this case, the objective function is

2

dR) = % (1 - ZaaRa>

We have dropped the R° from the argument of d for this
example because in the absence of consumers there is a
multiplicity of equivalent unperturbed equilibrium states.
In fact, every combination of plants that fills all of the avail-
able space is a possible equilibrium. The objective function
straightforwardly measures the perturbation away from this
set of states and is simply proportional to the square of the
free area fraction.

(17)

Competition to Avoid Predators. MacArthur’s final exam-
ple adds another trophic level, allowing the consumer spe-
cies to compete to avoid predators in addition to the com-
petition for resources. The predators contribute an extra
mortality term to the dynamics for the consumer popula-
tion densities, which depends on the predator densities
P, (a = 1,2,3,...,Mp). If we assume the same mass-
action model for predation as for primary resource con-
sumption, we obtain the following model:

% = ¢N; lZWaCiaRa - m,-‘| — ZpiuPaNi’ (18)

dR T

“ = _*R(K.—R) — R, 1
dt Ka a( « 0() ZNxcxaRa ( 9)
dpP,
dt = ZnipiuNiPa - uaPua (20)

where p,, is the rate of predation of predator a on species i,
u, is the intrinsic mortality rate for predator species a, and
7, is the nutritional value for predators of consumer (prey)
species i.

MacArthur claims that this model generically produces
symmetric interactions, probably because he was not con-
sidering the role of the consumer nutritional content #;
(MacArthur 1970). For arbitrary », and e; this turns out
to be false, but we show in appendix C that symmetry is
restored if we assume that the biomass conversion effi-
ciencies of the consumers are proportional to the inverse
of their nutritional values (¢, = e,/7;). This assumption is
in fact well motivated on physical grounds, since e; ' mea-
sures the amount of excess consumption required to pro-
duce a new individual of species i. If more consumption
is required to produce an individual of a given species, then
that individual should also hold more nutritional value for
its predators.

In this symmetric case, we can obtain a minimization
principle by treating the predators as components of the
environment. The objective function is

1 T 1
0 PO _ - o — ROV 4
d(R%P°,R,P) = 2 E Wo(Ry — R)™ + . Eﬂ u,P,,

K,
(21)

with supply point R}, = K,, P} = 0. This is the same as
for the original consumer resource model, with the addi-
tion of the predator-dependent term 3,u,P,. The new term
is minimized when all of the predators are extinct, which
is the “unperturbed state” for predators that cannot survive
in the absence of prey. Each predator is weighted by its
mortality rate, reflecting the same logic as the presence of
r, in weights of the resource perturbations. Finally, the bal-
ance between the importance of the resource and predator
terms is set by e,, which controls the efficiency of energy
transfer between trophic levels. Perfect efficiency corre-
sponds to e, = 1. Larger values of e, correspond to lower
efficiency, which makes the contributions of the predators
less important.

3

Externally Supplied Resources. In the three preceding ex-
amples, resources are self-renewing with exponential growth
atlow densities. Microscopic ecosystems, however, are com-
monly maintained in the laboratory using serial dilutions,
whereby a fraction f of the sample volume is periodically
transferred to fresh media with resource abundances R?
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at time interval T, with the rest discarded or frozen for later
analysis. This creates a new timescale 7 = T/(1 — f) over
which the resource concentrations relax toward R® in the
absence of reproduction or consumption, leading to the
following set of dynamical equations:

dN,‘
— =N, [EWQ%RQ — m,.] — 7 'N,, (22)

dR,
dt

7R, = R,) = > NicuR.. (23)

Note that we have also added an extra term, 7 'N,, to the
dynamics of the consumers, to account for the dilution of
the consumer populations caused by this protocol. Adding
this term is equivalent to modifying the maintenance cost
m;, but writing it explicitly allows us to preserve the phys-
iological meaning of m; as an intrinsic property of the con-
sumer species.

This model produces symmetric interactions between con-
sumer species regardless of the choice of parameter values.
The objective function is no longer quadratic, however, but
is given by a weighted Kullback-Leibler divergence:

0

R
0 — 1 0 *_ 0 __
dR%R) =7 Ea Wy {RalnR (R =R (24)

3

This is a natural way of quantifying the difference between
two vectors with all positive components, such as probabil-
ities or chemical concentrations (Rao and Esposito 2016).
As in the original MacArthur model, the contribution of
each resource is weighted by its nutritional value w,. But
now the feasibility constraint R, > 0 need not be enforced
explicitly because d(R’, R) diverges as R, — 0, guarantee-
ing that the constrained optimum will always lie in the fea-
sible region.

Asymmetric Examples

We now turn to two important scenarios where interac-
tions are unavoidably asymmetric: a recently introduced
microbial consumer resource model (MiCRM) where con-
sumers generically produce metabolic by-products, and
competition for essential resources described by Liebig’s
law of the minimum. The fundamental asymmetry of these
models results from the fact that organisms can affect the
environment in ways that are unrelated to their own growth
rate, whether by producing novel by-products or by con-
suming resource types that do not limit their growth. In this
section, we describe how this “extra” supply or consump-
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tion is accounted for by a shift in the effective supply point
R’, as illustrated in figure 3.

Microbial Consumer Resource Model. The MiCRM de-
scribes microbial consumers that generically produce met-
abolic by-products, as illustrated in figure 3a (Goldford
et al. 2018; Marsland et al. 2019, 2020). A fraction [, of
the growth value resulting from uptake of resource « is
released back into the environment, after being trans-
formed into a variety of other resource types through inter-
nal metabolic reactions. A matrix Dy, specifies the fraction
of by-product from consumption of resource « that is re-
leased as resource (3. This results in the following dynam-
ical equations:

dN,‘

? = eiNi ;(1 - lo()w«xcio(Ra - m;|, (25)
dR, B w

dt =T 1(R2( — Ra) - ZN;CiaRa + Zﬁ:NiDﬂﬁlﬁw—iCiBRﬁ.

(26)

The addition of by-product secretion breaks the symmetry
of the effective interactions in the original consumer re-
source model. When species A produces a by-product that
benefits species B, species B may not produce any by-product
accessible to species A. Even in cases where the exchange is
mutual, there is no reason why the size of the benefit would
be identical in both directions. In appendix C, we analyze
a different cross-feeding model introduced by Butler and
O’Dwyer (2018), where by-products are produced at a con-
stant rate, and show that the effective interactions remain
asymmetric even when the secretion matrix is symmetric.
This is due to the fact that the actual benefit accrued to
each species still depends on the current standing resource
abundances and is not fully determined by the intrinsic
properties of the species.

The equilibrium state of the MiCRM minimizes the
same objective function as the chemostat model discussed
above in equation (24) but with a modified supply point:

~0 = W =
R, = R} + TZNiDaBZBVCiBRB' (27)
i

a

The second term is equal to the total quantity of resource o
produced by all consumer species over the chemostat turn-
over time 7. This modification thus accounts in an intuitive
way for the extra supply due to by-product secretion. Fig-
ure 3 shows the location of the true supply point R” and the
effective supply point R’ for an example with two species
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Microbial Consumer Resource Model
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Figure 3: Examples with asymmetric interactions. a, Microbial consumer resource model (eqq. [25], [26]). The model describes microbial
ecosystems where by-products of resource metabolism can be used as growth substrates for other organisms. b, Zero-net-growth isoclines (ZNGIs;
colored lines) and the uninvadable region (shaded) for a pair of microbial species in the presence of two interconvertible resources. Contour lines
represent the function d(R’,R) that is minimized in the uninvadable equilibrium state. The square is true supply point R” and the cross (x) is
effective supply point R, accounting for the by-products generated in one chemostat turnover time 7. The black circle is the equilibrium state
reached by a direct numerical simulation. ¢, Simulation of 10 microbial species and five resource types, along with extended minimum environ-
mental perturbation principle (MEPP) predictions obtained using the iterative algorithm described in appendix B. d, Liebig’s law of the minimum
(eqq. [28], [29]). The law describes the dependence of an organism’s growth rate on several essential nutrients (square and star), which must all
be present in sufficient abundance in order for the organism to reproduce. e, ZNGIs, uninvadable region, objective function, and supply points.
f, Simulation of 10 species competing for three essential resources, along with extended MEPP predictions. See appendix D for parameters.

and two resource types. Although the environment is di-
rectly supplied with very low levels of resource 2, the by-
product secretion moves the supply point up higher in that
direction, allowing both species to coexist.

As noted above, the correction to the supply point de-
pends on the equilibrium population sizes N; and resource
abundances 1_26, and it can therefore be calculated exactly
only when the problem is already solved. But figure 3¢ shows
that a simple iterative algorithm (described in app. B) suc-
cessfully finds a self-consistent solution that agrees with di-
rect numerical simulation.

Liebig’s Law of the Minimum. In all of the examples pre-
sented above, resources were perfectly substitutable. But

there are many ecological scenarios where different re-
source types serve different biological needs, and all of them
must be simultaneously present at sufficient abundance in
order to sustain growth, as illustrated in figure 3d. One
typical example is competition of plants for nitrogen, phos-
phorous, and water, which are all required for the pro-
duction of biomass. Such growth kinetics are commonly
described by Liebig’s law of the minimum, where the growth
rate is determined by the availability of the most limit-
ing resource. The standard choice of impact vector for this
model assigns each species i a constant stoichiometry »,,,
which specifies the fraction of total consumption allo-
cated to each resource type (Tilman 1982; Letten et al.
2017). Using Michaelis-Menten growth kinetics for each
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resource with maximum velocities u;, and Michaelis con-
stants k;,, we have

dN,' _ . [L,'ﬁRﬁ N
i =N e(Te) e

ar, . . pisRs
dt =T (Ra Ra) ZN,-Vw-mﬁln ({]M .

If each species were to deplete only its limiting resource,
the effective interactions in this model would remain sym-
metric and the equilibrium state would minimize the per-
turbation away from the true supply point, as measured by
equation (24). But this is biologically unreasonable, since
the whole point of “essential” resources is that all of them
must be taken up together in order to generate growth. The
consumption of nonlimiting resources shifts the effective
supply point R, by subtracting the amount of each resource
o consumed over the chemostat turnover time 7 by orga-
nisms that are not limited by this resource. Figure 3e shows
this drop in the supply point for an example with two re-
sources and two consumers.

In figure 3f, we apply the same iterative scheme men-
tioned above to self-consistently obtain the equilibrium state

(@)

1 0B. calyciflorus on Chlamydomonas

B. calyciflorus on Monoraphidium
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and effective supply point and compare the results with
direct numerical simulation. This model generically exhib-
its multiple alternative stable states, and so care must be
taken to ensure that both methods end up in the same one. In
the simulations shown here, we simply initialized the direct
simulation close to the MEPP prediction.

Application to Zooplankton Competition Experiments

In the 1980s, Karl Rothhaupt performed a set of detailed
experiments on resource competition in zooplankton to
test Tilman’s recent graphical formulation of niche theory
(Rothhaupt 1988). This study provides a convenient set-
ting for illustrating how the key assumption of symmetric
interactions can be confirmed or rejected and how the per-
turbation d(R’ R) can be measured.

Figure 4 shows growth rates for the zooplankton Bra-
chionus rubens and Brachionus calyciflorus fed with differ-
ent concentrations of the algae Chlamydomonas sphaeroi-
des and Monoraphidium minutum. These plots show that
the growth rates saturate at high levels of resource concen-
tration, and it turns out that the relevant concentrations for
the competition experiments lie well outside the initial lin-
ear regime. This means we must consider a model that goes
beyond any of the examples discussed above and explicitly
incorporates the saturation.
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Figure 4: Applying the minimum environmental perturbation principle (MEPP) to laboratory experiments. a, Growth rate measurements
reported in Rothhaupt (1988) for two species of zooplankton (Brachionus rubens and Brachionus calyciflorus) fed with different concentrations
of two species of algae (Chlamydomonas sphaeroides and Monoraphidium minutum). Black lines are simultaneous fits to equation (30), with
resource-independent maximal uptake rates J,, = J; and with the maximal clearance rates c,, equal to the directly measured values listed in
table 2. Inferred parameter values are also listed in the table. For B. rubens on Chlamydomonas, additional ecological mechanisms came into
play at high food densities that are not captured by a type II growth model, and so only the three lowest densities were used for fitting. b, Sim-
ulations and MEPP predictions using the parameters in table 2, with supply point w.R? = 6, w,,R), = 4 (ugC/mL), and 7 = 5 days.
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Saturating Growth Kinetics. We model the saturation of
the growth kinetics using Holling’s type II functional re-
sponse, combining the contributions of the two resources
in the manner appropriate to a well-mixed environment
(Holling 1959; Vincent et al. 1996). We can use the same
parameters with the same definitions as in the MCRM but
with the addition of a set of handling times t,, for each
consumer-resource pair:

ID(R
= eN; Zw ¢ - m;|. (30)

1+ Zc,ﬁtﬁRﬁ

In the experiments of interest, the intrinsic value w,, of each
species of algae is taken to be proportional to its carbon
content, accounting for the significant difference in size
between the two species, and resource abundances are re-
ported as carbon concentrations w,R,. It is therefore con-
venient to analyze the model in terms of the maximum
carbon uptake rate defined by

Ju = — (31)

instead of using the handling time directly.

In the wild, we would expect the resource equation for
this system to have the same logistic supply vector as Mac-
Arthur’s original model (eq. [2]), with modified impact
vectors to account for the saturation. But Rothhaupt’s com-
petition experiments follow the serial dilution protocol
described above in the “Externally Supplied Resources”
section, with algae supplied at a given concentration from
an external source at fixed time intervals and with experi-
ments performed in the dark to minimize algae growth.
We therefore use the chemostat supply vector of equation
(23) and obtain

dR : Cia Ry,
f = R -R) - Y N e
dt 2 1+ Zc,gt,BRB (32)

i

In general, this model gives rise to asymmetric interactions.
But they become symmetric when the maximum carbon
uptake rates J,, for each species i are independent of the
food source «. In this case, as shown in appendix C, MEPP
applies and the equilibrium state minimizes the same ob-
jective function as the ordinary chemostat model given in
equation (24). The only difference is in the formula for the
boundaries of the uninvadable region €, which are now
given by equation (30). In terms of the weighted concentra-
tion w.R, of Chlamydomonas and the concentration w,R,,

of Monoraphidium with supplied concentrations w.R! and
w,,R),, the perturbation measure is

dR° R)
R W,.R,

+ w,,R), In

W Wil

— (WR* — wR) |,

(33)

where wR = w.R. + w,R,, and wR’* = w.R® + w,,R’, are
the total carbon concentrations in the ecosystem and in
the supply, respectively. MEPP predicts that the equilibrium
concentrations of Chlamydomonas and Monoraphidium
minimize this function, subject to the constraint that the
growth rates of both zooplankton species given by equa-
tion (30) are zero or negative.

Testing the Model. The key assumption about the maxi-
mum carbon uptake rates can be directly tested in principle
by supplying the animals with large concentrations of each
type of food and checking whether the growth rates are
the same in both cases. Figure 4 confirms that the maxi-
mum growth rate of B. calyciflorus is indeed the same for
both food sources, to within experimental uncertainty. The
growth kinetics of B. rubens at large Chlamydomonas con-
centrations are nonmonotonic, however, which Rothhaupt
attributes to mechanical disturbance of the feeding process
that is not reflected in Holling’s type II growth law (Roth-
haupt 1988). Thus, we can only use the model in equa-
tions (30) and (32) for this case at low food concentrations,
where this additional mechanism can be neglected. The
resource independence of w, /t,, can therefore only be tested
indirectly for this organism, using the goodness of fit of the
low-concentration data points to equation (32) when this
condition is imposed.

There is also a second, hidden assumption, which was
already made in MacArthur’s original model with linear
growth kinetics, concerning the dual role of the parameter
Cior This parameter has units of volume/time in an aquatic
scenario and mechanistically represents a clearance rate,
that is, the volume of water cleared of food organisms by
an individual consumer per unit time. In the saturating
model the actual clearance rate is a function of food density,
but ¢, still represents the maximal clearance rate, when
food is scarce and handling time is not the limiting factor.
This parameter can thus be directly measured by simply
counting the number of food organisms ingested by an in-
dividual consumer over a short period of time over which
the food density is approximately constant. Rotthaupt
carried out such measurements using radiolabeled algae
and reported the maximum clearance rates for all four
consumer-resource pairs. The mean values over at least
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Table 2: Parameter values for zooplankton competition experiments

Symbol

Description

Value

Brachionus calyciflorus:

e Individuals produced per unit carbon uptake 13.8 individuals/ug carbon
J. Maximal carbon uptake rate .0927 pg carbon/day

m, Minimum viable carbon uptake rate .0363 pg carbon/day

Coe Maximal Chlamydomonas clearance rate 427 mL/day

Com Maximal Monoraphidium clearance rate .211 mL/day

Brachionus rubens:

e}'

I Maximal carbon uptake rate

m, Minimum viable carbon uptake rate

Cre Maximal Chlamydomonas clearance rate
c

rm

Individuals produced per unit carbon uptake

Maximal Monoraphidium clearance rate

72.8 individuals/ug carbon
.0202 pg carbon/day
.00947 pg carbon/day
.0490 mL/day
.252 mL/day

Note: Maximal clearance rates are reproduced from a table of measurements using radiolabeled algae reported in Rothhaupt (1988), con-
verted to a consistent set of units. The other parameters come from fitting equation (30) to an independent set of growth rate measurements

reported in the same study, as shown in figure 4.

10 independent measurements are reproduced in table 2
(for complete methods, number of replicates, and uncer-
tainties, see Rothhaupt 1988).

The assumption made in both the MCRM and in equa-
tions (30) and (32) is that the same parameters c;, also de-
termine the relative effects of different resource types on
the consumer growth rate. To test this assumption, we per-
formed a simultaneous nonlinear regression of equation (30)
for each species to sets of growth rate measurements on

D B. rubens

. B. calyciflorus @ Chlamydomonas

O Monoraphidium

(b)

Chlamydomonas (mgC/l)

both food sources, as shown in figure 4. The clearance rates
cio Were held fixed at their directly measured values, and the
maximum carbon uptake rates were assumed to be inde-
pendent of food source, leaving three free parameters: e,
J> and m;. The best-fit values are tabulated along with the
clearance rates in table 2. These three parameters are suffi-
cient to provide an excellent fit to both growth curves, with
the exception of the high Chlamydomonas concentrations
with B. rubens mentioned above.
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Figure 5: Consequences for community assembly. a, Schematic of a hypothetical community assembly experiment, taking place in a chemostat
supplied with a constant influx of Monoraphidium and Chlamydomonas as food. The system is first allowed to relax to equilibrium with Brachionus
calyciflorus as the only consumer species, and then Brachionus rubens is added to the chamber. b, Zero-net-growth isoclines (solid colored lines)

and contour lines of d (dotted) using the experimentally determined parameters in table 2, at dilution rate 7

-1 —

0.45/day and supply levels

w.R! = 6and w,,R), = 4 (ug C/mL). The initial equilibrium of the assembly experiment is indicated by the black square, where d is minimized
subject only to the constraint that B. calyciflorus has a vanishing growth rate. The final equilibrium is represented by the black circle and lies on a

higher contour line of d.
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Consequences for Community Assembly
and Eco-Evolution

In addition to providing a clear interpretation of Mac-
Arthur’s principle and facilitating generalization, MEPP
makes new predictions for scenarios where new species
are added to an existing community. Specifically, MEPP
implies that the perturbation measure d(R’, R) is a mono-
tonically increasing function under successive invasions
for any monostable niche model with symmetric environ-
mentally mediated interactions.

To illustrate this result, we consider the hypothetical
community assembly experiment depicted in figure 5. We
take the setup of Rothhaupt described above and start with
both resources present but with B. calyciflorus as the only
consumer. Serial dilutions are performed according to
the same protocol until species and resource abundances
reach equilibrium, and then B. rubens is added to the sys-
tem. MEPP implies that the initial equilibrium minimizes
d(R° R) of equation (33) under the single constraint that
the net growth rate of B. calyciflorus vanishes. When B.
rubens is introduced, a second constraint is added, leading
to a new constrained optimum R. Since the new optimiza-
tion is subject to more constraints, the new minimum is
necessarily further from zero than the original, as is clear
from figure 5b.

The fact that d increases monotonically under all suc-
cessful invasions has a number of significant consequences
for monostable ecosystems with symmetric interactions.
First of all, it implies that community assembly and evolu-
tion are unidirectional processes under these conditions
and that limit cycles or chaos in the space of community
compositions do not occur (for examples of such complex
evolutionary dynamics in models that violate these assump-
tions, see Doebeli et al. 2017). In fact, given two snapshots of
an evolving system, one can determine which came earlier
and which came later by measuring the resource abun-
dances and computing d. Without knowing anything about
the consumer species, one can say that the snapshot with
the higher value of d must have come later. This also makes
it possible to rule out possible trajectories for community
assembly. If one observes two systems with the same re-
source supply in different equilibrium states, one can de-
termine whether one of them can be assembled from the
other by invading with the missing species. If community
A has a larger value of d than community B, then changing
the composition of A to match B requires directly killing
off some species and cannot be accomplished through any
set of successive invasions.

Conclusions

MEPP provides a new perspective on niche theory, which
opens up a number of interesting avenues for further in-

vestigation. First of all, measuring the environmental per-
turbation d could shed light on the robust empirical cor-
relation between diversity and productivity (Tilman et al.
2014). Since each species places an independent constraint
on the domain of optimization, as noted above, d will be
positively correlated with species richness whenever MEPP
applies. Larger d means that the equilibrium resource abun-
dances are further from the supply point for more diverse
communities, which typically implies that more of the avail-
able resources are being converted to biomass. In cases where
increased diversity fails to improve biomass yields, part of the
explanation may lie in a significant asymmetry in the inter-
actions that causes a major shift in the effective supply point.

MEPP also has important implications for evolution.
It was recently shown that the graphical methods of niche
theory can be applied to evolution through consideration
of a continuum of ZNGIs, representing all possible pheno-
types (Koffel et al. 2016). Any evolutionarily stable pheno-
type (or collection of coexisting phenotypes) must lie on
the outer envelope formed by all of these ZNGIs. Since
MEPP is valid for any number of species, it also applies to
this continuum limit as long as the essential condition of
interaction symmetry holds.

The fact that d is strictly nondecreasing under sequential
invasions also suggests a connection to recent work on evo-
lutionary optimization in the presence of environmental
feedbacks (Metz et al. 2008). By computing the minimum
value of d for every possible combination of coexisting phe-
notypes, one can construct a community-level fitness land-
scape on which all evolutionary trajectories always travel
monotonically uphill. These connections have yet to be fully
explored and remain an important area for future study.
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