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We study the problem of preparing a quantum many-body system from an initial to a target state by
optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence
for a universal spin-glasslike transition controlled by the protocol time duration. The glassy critical point is
marked by a proliferation of protocols with close-to-optimal fidelity and with a true optimum that appears
exponentially difficult to locate. Using a machine learning (ML) inspired framework based on the manifold
learning algorithm t-distributed stochastic neighbor embedding, we are able to visualize the geometry of
the high-dimensional control landscape in an effective low-dimensional representation. Across the
transition, the control landscape features an exponential number of clusters separated by extensive
barriers, which bears a strong resemblance with replica symmetry breaking in spin glasses and random
satisfiability problems. We further show that the quantum control landscape maps onto a disorder-free
classical Ising model with frustrated nonlocal, multibody interactions. Our work highlights an intricate but
unexpected connection between optimal quantum control and spin glass physics, and shows how tools from
ML can be used to visualize and understand glassy optimization landscapes.
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State preparation plays a quintessential role in present-
day studies of quantum physics. The ability to reliably
manipulate and control quantum states has proven crucial
to many physical systems, from quantum mechanical
emulators ultracold atoms [1–3] and trapped ions [4–6],
through solid-state systems like superconducting qubits [7],
to nitrogen-vacancy centers [8]. The nonequilibrium char-
acter of quantum state manipulation makes it a difficult and
not well-understood problem of ever-increasing importance
to building a large-scale quantum computer [9].
Analytically, state preparation has been studied using

both adiabatic perturbation theory [10] and shortcuts to
adiabaticity [11–15]. Unfortunately, these theories have
limited application in nonintegrable many-body systems,
for which no exact closed-form expressions can be
obtained. This has motivated the development of efficient
numerical algorithms, such as GRAPE [16,17], CRAB
[18], and Machine learning based approaches [19–31].
State preparation can be formulated as an optimal control
problem for which the objective is to find the set of controls
that extremize a cost function, i.e., determine the optimal
fidelity to prepare a target state, subject to physical and
dynamical constraints. However, cost functions are usually
defined on a high-dimensional space and are typically
nonconvex. For this reason, sophisticated algorithms must
be devised to guarantee finding the global optimum.
Moreover, optimality does not automatically imply stability
and robustness of the solution, which are required for

experimental applications. Establishing the general limi-
tations and constraints of quantum control is crucial for
guiding the field forward.
Recently, it was shown that the quantum state prepara-

tion paradigm supports a number of control phase tran-
sitions by varying the protocol duration T [22,32,33],
exhibiting overconstrained, controllable, correlated, and
glassy phases. Glasslike systems are expected to feature
slow equilibration timescales related to an underlying
extremely rugged free-energy landscape. Such features
have been extensively discussed in the context of spin-
glass physics [34–37] and in hard combinatorial [38–41]
and random satisfiability [42–48] problems.
In this work we provide evidence for the existence of a

generic glasslike control phase transition observed in the
manipulation of generic nonintegrable spin chains with a
single global control field. By sampling the optimization
landscape for this state preparation problem, we discover
the existence of a glasslike critical point marked by an
extremely rugged landscape with an exponential number
local extrema. This transition in the control landscape is
visualized using the manifold learning method known as
t-distributed stochastic neighbor embedding (t-SNE) [49],
which reveals the clustering of minima near the glass
transition. We further present a mapping of this dynamical
optimal control problem to a static frustrated classical spin
model with all-to-all multibody interactions, the energy
landscape of which is in one-to-one correspondence with
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the original optimization landscape. Similar to the problem
of finding the ground-state of spin glasses, we find strong
evidence for an exponential algorithmic complexity scaling
in the number of control degrees of freedom for the task of
locating the optimal protocol, suggesting that quantum state
preparation is nondeterministic polynomial time-complete
in the glassy phase.
Problem setup.—Consider a periodic chain of L inter-

acting qubits (Pauli operator Sμi ), controlled by a global
time-dependent transverse-field:

HðtÞ ¼ −
XL

i¼1

JSziþ1S
z
i þ gSzi þ hðtÞSxi ; ð1Þ

with interaction strength J ¼ 1 (sets the energy scale), and
an external magnetic field of a static z component g ¼ 1
and a time-varying x component hðtÞ. The presence of the
longitudinal z field renders the model nonintegrable at any
fixed time t, with no known closed-form expression for the
exact instantaneous eigenstates and eigenenergies. We
work in a nonperturbative regime with all couplings of
similar magnitude, and choose a bounded control jhðtÞj ≤ 4
reflecting the experimental infeasibility to inject unlimited
amounts of energy in the system.
The system is prepared at t ¼ 0 in the paramagnetic

ground state (GS) jψ ii of H½h ¼ −2�. Our goal is to find a
protocol h�ðtÞ which, following Schrödinger evolution for
a fixed short duration T ∈ ½0; 4�, brings the initial state jψ ii
as close as possible to the target state—the paramagnetic
GS jψ�i of H½h ¼ þ2�, as measured by the many-body
fidelity FhðTÞ ¼ jhψ�jψðTÞij2. The specific values of the
field for the initial and target states, h ¼ �2, were chosen to
be of similar magnitude as the interaction strength J ¼ 1.
We checked that the conclusions we draw in this work are
insensitive to this choice.
Whether preparing the target state with unit fidelity is

feasible in the thermodynamic (TD) limitL → ∞ is currently
an open question related to the existence of a finite quantum
speed limit [15,50,51]. Let us formulate this objective as
a minimization problem, and choose as a cost function
the (negative) log-fidelity ChðTÞ ¼ − logFhðTÞ=L. ChðTÞ
remains intensive in the TD limit, and we verified that our
results do not change qualitatively starting from L ≥ 6 [52].
Thus, the emerging log-fidelity landscape hðtÞ ↦ ChðTÞ
corresponds to the control landscape for quantum state
preparation [16,53,54] [Fig. 1(c)]. The optimal protocol
h�ðtÞ is defined as the global minimum of the log-fidelity
landscape. We divide the protocol duration T ¼ δtNT into
NT steps of size δt. We are interested in the properties of the
control landscape in the large NT limit. Motivated by
Pontryagin’s maximum principle and the optimal control
literature, we restrict the discussion to bang-bang protocols
[Fig. 1(a)]where the control field can take only themaximum
allowed values hðtÞ ∈ f�4g at each time step [55,56].
Control landscape and sampling method.—In general,

the control landscape ChðTÞ is a nonconvex functional

of hðtÞ: local minima obtained using a greedy optimization
approach depend on the initial starting points of the
algorithm. Using stochastic descent (SD) [52], we start
from a random protocol and flip the sign of hðjδtÞ at k
different time steps j1;…; jk chosen uniformly at random
[Fig. 1(b)]. A set of flips is accepted only if it decreases
ChðTÞ. We repeat this process until a local minimum is
reached (see Supplemental Material [52] for psuedocode).
A protocol hðtÞ is a SDk local minimum if all possible
k-flip updates increase the log fidelity. We use SDk
algorithms with k ¼ 1, k ¼ 2, and k ¼ 4 flips per local
update. The best found fidelity FhðTÞ as a function of
protocol duration is presented in Fig. 2 (black line).
Order parameters measured.—The structure of the

control landscape can be understood by measuring the
protocol correlator and the number of unique local minima
which we now define. Consider the set S ¼ fhαðtÞg of all
local log-fidelity minima. We sample M protocols from S
using SDk and denote h̄ðtÞ≡M−1PM

α¼1h
αðtÞ as the sample

average. Let us define the protocol correlator:

qSDk
ðTÞ ¼ 1

16NT

XNT

j¼1

fhðjδtÞ − h̄ðjδtÞg2; ð2Þ

which is related to the Edwards-Anderson order parameter
for replica symmetry breaking in spin glasses [57–59]. If
the landscape is convex (unique minimum), q ¼ 0; while if
all the sampled local minima are uncorrelated, q ¼ 1.

FIG. 1. Bang-bang protocols hðjδtÞ to control a quantum
system with high fidelity (a) are equivalent to classical spin
configurations hj with log fidelity playing the role of energy.
(b) Using k-flip stochastic descent, we explore the log-fidelity
landscape (c), and find a glasslike transition in the control
landscape described by the effective classical model Heff (d).
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In collectingM samples, we denoteM⋆ ≤ M as the number
of distinct protocols. We further define the fraction of
distinct local minima as

fSDk
≡M⋆=M: ð3Þ

For a fixed number of samples, this fraction is sensitive to
drastic changes in the number of distinct local minima in S.
Overconstrained and correlated phases.— The correla-

tor qSD1
as a function of the protocol duration T is shown

in Fig. 2. For T < Tð1Þ
c ≈ 0.35, fSD1

¼ 1=M, and the log-
fidelity landscape is convex. While the maximum attainable
fidelity is small, there exists a unique optimal protocol

which is easy to find using SD1. At T ¼ Tð1Þ
c , the control

landscape undergoes a phase transition from an overcon-
strained phase (qSD1

¼ 0, red region) to a correlated phase
(qSD1

> 0, blue region). This transition is characterized by
a rapid increase of the number of quasidegenerate SD1 local

minima as shown by fSD1
reaching unity for T > Tð1Þ

c .
However, these local minima are all separated by barriers
of width 2 in Hamming distance (number of sign flips
required to connect them). This is revealed by using SD2

just above Tð1Þ
c , for which fSD2

¼1=M and qSD2
¼0. At

T ≈ 1.2, qSD2
becomes nonzero, indicating the appearance

of multiple SD2 local minima. However, the unique fraction
of those minima fSD2

remains nearly zero. Remarkably,
the control landscape undergoes another transition at

Tð2Þ
c ≈ 2.3, characterized by a proliferation of SD2 local

minima, where fSD2
∼Oð1Þ.

Glassy phase.— To better understand the physics behind
this SD2 glassy transition, we visualize the log-fidelity
landscape using the nonlinear-manifold machine learning
method t-distributed stochastic neighbor-embedding [49]
(Fig. 3). t-SNE embeddings preserve local ordination of
data, and hence allow us to understand the geometry of the

control landscape. At Tð2Þ
c , the geometry of the control

landscape undergoes a drastic transition with the appear-
ance of distinct clusters in the space of near-optimal
protocols (see Fig. 3 and Supplemental Material [52] for
clustering procedure). Each cluster corresponds to a distinct
region of closely related SD2 minima. While protocols
within a cluster are similar and connected by small barrier
widths, protocols between clusters are separated by barriers
of width extensive in NT [52]. At longer protocol durations
T ≳ 3.0 [Figs. 3(c)–3(f)], the number of clusters appears to
be exponential in NT and all protocols are separated by
extensive barriers (Fig. 3(f) and see Supplemental Material
[52]). The number of SDk local minima is large, fSDk

→ 1,
and we find that it scales exponentially with NT [52].
Therefore, we expect that any local-flip algorithm (e.g.,
SDk with k subextensive in NT) will have exponential run
time for finding the global optimum. Having a landscape
with an exponential number of minima separated by
extensive barriers (in height and width) in the number of

FIG. 2. Preparing states in a chain of qubits with optimal many-
body fidelity FhðTÞ (black) features transitions from an over-
constrained phase (red region) to a correlated phase (blue region)

to a glasslike phase (purple region) at protocol durations Tð1Þ
c and

Tð2Þ
c . This is revealed by the nonzero fraction fSDk

ðTÞ order
parameter. We used k-flip stochastic descent (SDk) on the family
of bang-bang protocols with NT ¼ 200, L ¼ 6 and M ¼ 105.

FIG. 3. (a)–(c) t-SNE visualization of the control landscape

above the SD2 glass critical point Tð2Þ
c ≈ 2.3. Each data point

represents a local ChðTÞ minimum—a bang-bang protocol
embedded in a two-dimensional t-SNE space. Embedded proto-
cols are colored by their fidelity in the interval ½Fmin; Fmax� with
intervals [0.919, 0.920], [0.958, 0.959], [0.992, 0.997] from (a) to
(c). (a),(b) The local minima cluster are separated by extensive
barriers as seen in (d),(e), the Hamming distance matrix for the
local-minima protocols. distmax ¼ 0.5, 0.52, 0.61 for (d),(e),(f),
respectively. The protocols in the Hamming matrix are grouped
by their cluster index found using density clustering (see
Supplemental Material [52]). (c) At larger protocol duration
(T ¼ 3.4) large clusters fracture in an exponential number of
small clusters. The small clusters are separated by extensive
barriers (f). We used SD2 with NT ¼ 200, L ¼ 6 and sampled
5000 unique protocols.
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degrees of freedom is one of the landmarks of spin glasses,
and leads to extremely slow mixing times [35].
This glassy control transition is analogous to replica

symmetry breaking in spin glasses and random satisfiability
problems [60,61]. We verified that applying higher-order
SDk (k > 2) only slightly shifts the glass critical point to
larger T, as expected due to the presence of large and
numerous barriers [52].
Effective classical model.—To further evidence the

glassy character of the phase, we map the control problem
to an effective classical Ising model HeffðTÞ, which
governs the control landscape phase transitions. By study-
ing its properties, we establish a closer connection with spin
glasses. Similar to classical Ising-type models, in which
each spin configuration comes with its energy, we assign to
every bang-bang protocol the log-fidelity ChðTÞ of being in
the target state [Fig. 1(d)]. From the set of all ChðTÞ values,
which we refer to as the log-fidelity “spectrum,” we
reconstruct an effective classical spin model:

HeffðTÞ ¼ C0ðTÞ þ
XNT

j¼1

GjðTÞhj þ
1

NT

XNT

i≠j
JijðTÞhihj

þ 1

N2
T

XNT

i≠j≠k
KijkðTÞhjhjhk þ…: ð4Þ

Here the couplings Gj, Jij, Kijk, which can be uniquely
computed by tracing over all 2NT possible protocol con-
figurations [52], encode all the information about the
control landscape [52].
For T>TðcÞ

1 , we find that the effective two-body inter-
action Jij (which is nonlocal and antiferromagnetic) and the
one-body interaction compete, resulting in HeffðTÞ being
highly frustrated; i.e., a large fraction of the Jij bonds are
unsatisfied in the ground state [52]. For larger times,
higher-order (and possibly all) nonlocal multibody spin
interactions in HeffðTÞ are required to reliably capture the
behavior of the system in the glassy phase. We present
further evidence for these claims using an independent
procedure for learning couplings based on the RIDGE
algorithm for sparse linear regression [52,62,63]. The long-
range and multibody nature of the couplings is related to
the dynamic origin of the state preparation problem:
causality imposes that the value of the low-ChðTÞ protocols
at time t is correlated with the values at all previous times
t0 < t in the bang-bang sequence.
Density of states.— In order to understand the underlying

causes for the glassy phase, we examine the density of
states (i.e., protocols) of HeffðTÞ (DOS), obtained by
counting protocols in a small fidelity window (Fig. 4,
black line, left axis). Starting from a protocol h� with near-
optimal fidelity [i.e., a low-energy local minimum of
HeffðTÞ], we analyze the behavior of elementary excita-
tions [Fig. 1(d)], by computing the fidelity of all possible

protocols obtained after flipping 1, 2, and 4 bangs in h�.
These excitations can be classified by their “magnetization”
Mh ¼

P
jðhj − h�jÞ relative to the near-optimal protocol.

Below the SD2 glass transition, T < Tð2Þ
c ≈ 2.3, the bulk of

the excitations (shaded area, right axis) is located in a
region where the DOS is much smaller than the typical
DOS. Therefore, when searching for the optimal protocol,
starting from an initial protocol with large log fidelity,
finding one of the elementary excitations is relatively easy
since most of these excitations are in a region of extremely
small DOS (with respect to the typical DOS). In contrast,

for T > Tð2Þ
c in the glassy phase, the bulk of the excitations

moves to a region where the DOS is large. This implies that
if we miss one of the elementary excitations in the search
for a better protocol, it becomes infeasible to reach h�.
From an algorithmic perspective, this suggests a transition
from a subexponential complexity to an at least exponential
complexity in NT . We explicitly verified that this behavior
holds using exact numerical computation of all protocol
fidelities up to NT ≤ 28 [52].
Outlook/discussion.— Studying the properties of the

control landscape, we provided compelling evidence for
the existence of a glasslike phase in optimal ground state
manipulation of constrained quantum systems. Using
t-SNE we were able to reveal the complex geometry of the
high-dimensional control landscape, which features multi-
ple clusters separated by extensive barriers. We mapped this

FIG. 4. Normalized density of states (DOS) of Heff (black line,
left y axis), and the distribution of the Mh ¼ 0 and Mh ¼ 2-
magnetized excitations (shaded, right y axis) on both sides of the

glass critical point Tð2Þ
c ≈ 2.3 forNT ¼ 80, L ¼ 6. The position of

the best obtained fidelity using SD4 is marked by the vertical
dashed line.

PHYSICAL REVIEW LETTERS 122, 020601 (2019)

020601-4



out-of-equilibrium problem to an effective classical Ising
model with nonlocal and frustrated multibody interactions,
resulting in a complicated optimal protocol configuration.
Further, applying ideas from condensed matter physics to
reveal the microscopic origin of the putative glassy control
phase, we analyzed the behavior of the DOS in protocol
space of the distribution of local elementary excitations
above the low log-fidelity manifold. Our analysis suggest
that the state preparation paradigm in nonintegrable many-
body systems belongs to the class of nondeterministic
polynomial time-complete problems, with the optimal
protocol becoming exponentially hard to find in the glass
phase.
The approach outlined in this work has the potential to

further the understanding of quantum dynamics away from
equilibrium. It generalizes to control problems beyond state
preparation, for instance minimizing work fluctuations
[64], and highlights the application of machine learning
and glass-physics methods to quantum control tasks.

We thank A. Polkovnikov, C. Laumann, and C. Baldwin
for illuminating discussions. A. D. was supported by a
NSERC. A. D. and P. M. acknowledge support from
Simon’s Foundation through the MMLS Fellow program.
M. B. was supported by the Emergent Phenomena in
Quantum Systems initiative of the Gordon and Betty
Moore Foundation, the ERC synergy grant UQUAM,
and the U.S. Department of Energy, Office of Science,
Office of Advanced Scientific Computing Research,
Quantum Algorithm Teams Program. D. S. acknowledges
support of the FWO of the Research Foundation, Flanders.
This research was supported in part by the National Science
Foundation under Grant No. NSF PHY-1748958. We used
Quspin for simulating the dynamics of the qubit system
[65,66]. The authors are pleased to acknowledge that
the computational work reported on in this paper was
performed on the Shared Computing Cluster which is
administered by Boston University’s Research Computing
Services.

*agrday@bu.edu
†mgbukov@berkeley.edu

[1] M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E.
Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R.
Mannella, and O. Morsch, Nat. Phys. 8, 147 (2012).

[2] S. van Frank, M. Bonneau, J. Schmiedmayer, S. Hild, C.
Gross, M. Cheneau, I. Bloch, T. Pichler, A. Negretti, T.
Calarco et al., Sci. Rep. 6, 34187 (2016).

[3] P. B. Wigley, P. J. Everitt, A. van den Hengel, J. Bastian,
M. A. Sooriyabandara, G. D. McDonald, K. S. Hardman, C.
Quinlivan, P. Manju, C. C. Kuhn et al., Sci. Rep. 6, 25890
(2016).

[4] R. Islam, E. E. Edwards, K. Kim, S. Korenblit, C. Noh, H.
Carmichael, G.-D. Lin, L.-M. Duan, C.-C. Joseph Wang,
J. K. Freericks, and C. Monroe, Nat. Commun. 2, 377
(2011).

[5] C. Senko, P. Richerme, J. Smith, A. Lee, I. Cohen,
A. Retzker, and C. Monroe, Phys. Rev. X 5, 021026
(2015).

[6] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller,
R. Blatt, and C. F. Roos, Nature (London) 511, 202 (2014).

[7] R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo,
U. Las Heras, R. Babbush, A. Fowler, B. Campbell, Y. Chen
et al., Nature (London) 534, 222 (2016).

[8] B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J.
Heremans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk,
and D. D. Awschalom, Nat. Phys. 13, 330 (2017).

[9] M. A. Nielsen and I. Chuang, Quantum Computation and
Quantum Information (AAPT, 2002).

[10] M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov,
Phys. Rep. 697, 1 (2017).

[11] M. Demirplak and S. A. Rice, J. Phys. Chem. A 107, 9937
(2003).

[12] A. del Campo, Phys. Rev. Lett. 111, 100502 (2013).
[13] C. Jarzynski, Phys. Rev. A 88, 040101 (2013).
[14] D. Sels and A. Polkovnikov, Proc. Natl. Acad. Sci. U.S.A.

114, E3909 (2017).
[15] M. Bukov, D. Sels, and A. Polkovnikov, arXiv:1804.05399.
[16] S. J. Glaser, T. Schulte-Herbrüggen, M. Sieveking,

O. Schedletzky, N. C. Nielsen, O.W. Sørensen, and C.
Griesinger, Science 280, 421 (1998).

[17] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrueggen,
and S. J. Glaser, J. Magn. Reson. 172, 296 (2005).

[18] T. Caneva, T. Calarco, and S. Montangero, Phys. Rev. A 84,
022326 (2011).

[19] R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500
(1992).

[20] C. Chen, D. Dong, R. Long, I. R. Petersen, and H. A. Rabitz,
Phys. Rev. A 89, 023402 (2014).

[21] C. Chen, D. Dong, H.-X. Li, J. Chu, and T.-J. Tarn, IEEE
Trans. Neural Netw. Learn. Syst. 25, 920 (2014).

[22] M. Bukov, A. G. R. Day, D. Sels, P. Weinberg, A.
Polkovnikov, and P. Mehta, Phys. Rev. X 8, 031086
(2018).

[23] X.-C. Yang, M.-H. Yung, and X. Wang, Phys. Rev. A 97,
042324 (2018).

[24] V. Dunjko and H. J. Briegel, arXiv:1709.02779.
[25] M. August and J. M. Hernández-Lobato, arXiv:1802.04063.
[26] T. Fösel, P. Tighineanu, T. Weiss, and F. Marquardt,

Phys. Rev. X 8, 031084 (2018).
[27] J. J. Sorensen, M. Aranburu, T. Heinzel, and J. Sherson,

arXiv:1802.07521.
[28] X.-M. Zhang, Z.-W. Cui, X. Wang, and M.-H. Yung,

Phys. Rev. A 97, 052333 (2018).
[29] M. Y. Niu, S. Boixo, V. Smelyanskiy, and H. Neven,

arXiv:1803.01857.
[30] F. Albarrán-Arriagada, J. C. Retamal, E. Solano, and L.

Lamata, Phys. Rev. A 98, 042315 (2018).
[31] M. Bukov, Phys. Rev. B 98, 224305 (2018).
[32] M. Bukov, A. G. R. Day, P. Weinberg, A. Polkovnikov, P.

Mehta, and D. Sels, Phys. Rev. A 97, 052114 (2018).
[33] M. Larocca, P. Poggi, and D. Wisniacki, arXiv:1802.05683.
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[46] M. Mézard, M. Palassini, and O. Rivoire, Phys. Rev. Lett.
95, 200202 (2005).

[47] D. Hu, P. Ronhovde, and Z. Nussinov, Phys. Rev. E 86,
066106 (2012).

[48] S. C. Morampudi, B. Hsu, S. L. Sondhi, R. Moessner, and
C. R. Laumann, Phys. Rev. A 96, 042303 (2017).

[49] L. v. d. Maaten and G. Hinton, J. Mach. Learn. Res. 9, 2579
(2008).

[50] V. Jurdjevic and H. J. Sussmann, J. Differ. Equations 12,
313 (1972).

[51] T. Caneva, A. Silva, R. Fazio, S. Lloyd, T. Calarco, and S.
Montangero, Phys. Rev. A 89, 042322 (2014).

[52] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.020601 for details
about the stochastic descent algorithm, its implementation
and comparisons for various parameters (number of flips,
number of bangs allowed, etc.), discussion about clustering
and the methods used to identify the clusters, and finally, it
contains more details concerning the fitted couplings using
the effective Ising Hamiltonian.

[53] H. A. Rabitz, M. M. Hsieh, and C. M. Rosenthal, Science
303, 1998 (2004).

[54] K.W. Moore and H. Rabitz, J. Chem. Phys. 137, 134113
(2012).

[55] Z.-C. Yang, A. Rahmani, A. Shabani, H. Neven, and C.
Chamon, Phys. Rev. X 7, 021027 (2017).

[56] S. Bao, S. Kleer, R. Wang, and A. Rahmani, Phys. Rev. A
97, 062343 (2018).

[57] G. Parisi, Phys. Rev. Lett. 50, 1946 (1983).
[58] T. Castellani and A. Cavagna, J. Stat. Mech. 2005, P05012

(2005).
[59] L. O. Hedges, R. L. Jack, J. P. Garrahan, and D. Chandler,

Science 323, 1309 (2009).
[60] M. Mezard and A. Montanari, Information, Physics, and

Computation (Oxford University Press, Oxford, England,
2009).

[61] C. Moore and S. Mertens, The Nature of Computation
(Oxford University Press, Oxford, England, 2011).

[62] P.Mehta,M.Bukov,C. H.Wang,A. G. R.Day,C.Richardson,
C. K. Fisher, and D. J. Schwab, arXiv:1803.08823.

[63] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of
Statistical Learning, Springer Series in Statistics (Springer,
New York, 2001), Vol. 1.

[64] A. P. Solon and J. M. Horowitz, Phys. Rev. Lett. 120,
180605 (2018).

[65] P. Weinberg and M. Bukov, SciPost Phys. 2, 003 (2017).
[66] P. Weinberg and M. Bukov, arXiv:1804.06782.

PHYSICAL REVIEW LETTERS 122, 020601 (2019)

020601-6

https://doi.org/10.1080/14786435.2011.616547
https://doi.org/10.1080/14786435.2011.616547
http://arXiv.org/abs/1809.05440
http://arXiv.org/abs/1809.05440
https://doi.org/10.1103/PhysRevE.56.1357
https://doi.org/10.1103/PhysRevE.56.1357
https://doi.org/10.1088/0305-4470/34/22/303
https://doi.org/10.1088/0305-4470/34/22/303
https://doi.org/10.2478/v10155-010-0096-6
https://doi.org/10.1371/journal.pone.0034780
https://doi.org/10.1371/journal.pone.0034780
https://doi.org/10.1103/PhysRevE.63.026702
https://doi.org/10.1103/PhysRevE.63.026702
https://doi.org/10.1126/science.1073287
https://doi.org/10.1126/science.1073287
https://doi.org/10.1103/PhysRevE.70.036107
https://doi.org/10.1103/PhysRevE.70.036107
https://doi.org/10.1103/PhysRevLett.95.200202
https://doi.org/10.1103/PhysRevLett.95.200202
https://doi.org/10.1103/PhysRevE.86.066106
https://doi.org/10.1103/PhysRevE.86.066106
https://doi.org/10.1103/PhysRevA.96.042303
https://doi.org/10.1016/0022-0396(72)90035-6
https://doi.org/10.1016/0022-0396(72)90035-6
https://doi.org/10.1103/PhysRevA.89.042322
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.020601
http://link.aps.org/supplemental/10.1103/PhysRevLett.122.020601
https://doi.org/10.1126/science.1093649
https://doi.org/10.1126/science.1093649
https://doi.org/10.1063/1.4757133
https://doi.org/10.1063/1.4757133
https://doi.org/10.1103/PhysRevX.7.021027
https://doi.org/10.1103/PhysRevA.97.062343
https://doi.org/10.1103/PhysRevA.97.062343
https://doi.org/10.1103/PhysRevLett.50.1946
https://doi.org/10.1088/1742-5468/2005/05/P05012
https://doi.org/10.1088/1742-5468/2005/05/P05012
https://doi.org/10.1126/science.1166665
http://arXiv.org/abs/1803.08823
https://doi.org/10.1103/PhysRevLett.120.180605
https://doi.org/10.1103/PhysRevLett.120.180605
https://doi.org/10.21468/SciPostPhys.2.1.003
http://arXiv.org/abs/1804.06782

