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A fundamental problem in community ecology is understanding how ecological processes such as selection,
drift, and immigration give rise to observed patterns in species composition and diversity. Here, we analyze a
recently introduced, analytically tractable, presence-absence (PA) model for community assembly, and we use
it to ask how ecological traits such as the strength of competition, the amount of diversity, and demographic
and environmental stochasticity affect species composition in a community. In the PA model, species are treated
as stochastic binary variables that can either be present or absent in a community: species can immigrate into
the community from a regional species pool and can go extinct due to competition and stochasticity. Building
upon previous work, we show that, despite its simplicity, the PA model reproduces the qualitative features
of more complicated models of community assembly. In agreement with recent studies of large, competitive
Lotka-Volterra systems, the PA model exhibits distinct ecological behaviors organized around a special (“critical”)
point corresponding to Hubbell’s neutral theory of biodiversity. These results suggest that the concepts of
ecological “phases” and phase diagrams can provide a powerful framework for thinking about community
ecology, and that the PA model captures the essential ecological dynamics of community assembly.
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A central goal of community ecology is to understand
the tremendous biodiversity present in naturally occurring
communities. The observed patterns of species composition
and diversity stem from the interaction of a number of eco-
logical processes. Traditional models of community assembly
(referred to as “niche” models) emphasize the important role
played by competition and ecological selection in shaping
community structure [1–5]. However, due to the introduction
of the neutral theory of biodiversity, the past 15 years have
seen a renewed interest in the role of drift, or stochasticity, in
shaping community assembly [6–9]. In the neutral theory, all
species have identical birth and death rates so that all variation
in species abundances is due entirely to random processes.
A complete theory of community assembly must take into
account other ecological processes, such as immigration
and speciation, in addition to selection and drift [10,11].
This has led to a renewed interest in using methods from
statistical physics to understand the basic principles governing
community assembly [12–17].

One common approach for modeling community assembly
in complex communities is to consider generalized Lotka-
Volterra models (LVMs) [13,15,18]. In generalized LVMs,
ecological dynamics are modeled using a system of nonlinear
differential equations for species abundances. Each species is
characterized by a carrying capacity—i.e., its maximal popu-
lation size in the absence of other species. Species interactions
are modeled using a matrix of “interaction coefficients.” In
general, it is extremely difficult to precisely measure these
interaction coefficients [19]. However, for ecosystems with
many species, we can overcome this difficulty by considering
a “typical ecosystem” for which species interaction matrices
are drawn from a random matrix ensemble [18].

Historically, LVMs emphasized the role of ecological
selection and resource availability. For this reason, LVMs were
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traditionally analyzed as deterministic ordinary differential
equations (ODEs). However, several recent studies have
moved beyond deterministic ODE models to incorporate the
effects of immigration and stochasticity on ecological dynam-
ics [13,15]. These recent studies on typical ecosystems have
demonstrated that communities can exhibit distinct ecological
“phases” (i.e., regimes with qualitatively different species
abundance patterns) as ecological parameters such as immi-
gration rates and the strength and heterogeneity of competition
are varied. For example, by numerically simulating stochastic
differential equation-based implementation of a generalized
LVM, Ref. [13] showed that communities can exhibit a sharp
transition between a selection-dominated regime dominated
by a single stable equilibrium and a drift-dominated regime
where species abundances are uncorrelated and the ecological
dynamics is well approximated by neutral models. The
selection-dominated regime is favored in communities with
large population sizes and relatively constant environments,
whereas the neutral phase is favored in communities with
small population sizes and fluctuating environments. Similarly,
Ref. [15] used a stochastic LVM to analyze a local community
of competing species with weak immigration from a static
regional pool and identified four distinct ecological regimes
organized around a “critical point” corresponding to Hubbell’s
neutral model [6].

Although LVMs are among the standard tools of theo-
retical ecology, they are difficult to analyze with analytic
techniques—especially in the stochastic setting. For this
reason, Ref. [13] introduced an immigration-extinction pro-
cess [referred to as the presence-absence (PA) model] for
community assembly that attempts to capture the essential
ecology of LVMs using a simpler model. In the PA model,
species are treated as stochastic binary variables that are
either present or absent in a local community. A species may
become extinct (i.e., absent) in the local community due to
competitive exclusion and stochasticity, but it can reappear
in the community by immigrating from a regional species
pool. In contrast to LVMs, the PA model is amenable to
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analytical arguments using techniques from statistical physics
related to the study of disordered spin systems. For example,
the aforementioned sharp transition between the selection-
dominated regime and the drift-dominated regime seen in
generalized LVMs corresponds to the analog of the “freezing
transition” in the PA model [13]. Despite this previous work,
the dynamics of the PA model are not fully understood and
warrant further study.

In this work, we address the extent to which the PA model
reproduces the qualitative behaviors and ecological regimes
found in more complicated LVMs. In particular, we use the PA
model to analyze a local community of competing species with
weak immigration from a static regional pool, and we compare
it to the ecological dynamics seen in numerical simulations of
the generalized LVMs [15]. We numerically simulate the PA
model and examine ecological patterns of species abundances
to see how ecological processes such as selection, drift, and
immigration affect species abundance patterns. We supplement
these results with analytic arguments. We then compare and
contrast the results obtained from the PA model and LVMs.
Finally, we discuss the implications of our results for modeling
complex ecological communities.

Throughout this paper, for simplicity, we employ some
abuses of terminology. In particular, we refer to plots depicting
ecological behaviors as a function of ecological parameters
as “phase diagrams.” We also refer to a special point in
parameter space that separates three qualitatively distinct
ecological behaviors as a “critical point.” In the statistical and
condensed-matter physics literature, these terms are defined
based on strict technical criteria that are not fulfilled by our
plots. Our terminology is therefore not exact. Indeed, the
behaviors shown here are more akin to crossovers in statistical
and condensed-matter physics [20,21].

I. THE PRESENCE-ABSENCE (PA) MODEL

A. Ecological motivation

The goal of introducing the PA model is to capture the
essential ecological features present in LVMs in a simple,
analytically tractable model. For the sake of tractability, the
PA model ignores species abundances and instead focuses
on a simpler question: is a species present or absent in the
community? The basic idea behind the definition of the PA
model is, roughly speaking, that the propensity of a species
to be present or absent is determined by a quantity called its
“effective carrying capacity.” The effective carrying capacity
of a species i, which generally depends on both environmental
factors as well as the abundances of other species, sets the
maximum possible abundance of a species i in the presence
of the others. Therefore, species i may persist if its effective
carrying capacity is positive, whereas it will go extinct if its
effective carrying capacity is negative.

To gain intuition about the role of effective carrying
capacities in the definition of the PA model, it is helpful
to recount the results on species invasion in Lotka-Volterra
communities derived by MacArthur and Levins in their classic
1967 paper [5], wherein effective carrying capacities played
a crucial role. Species abundances, �x, are modeled using a
system of ODEs of the form dxi/dt = λi + xifi(�x), with λi

Carrying capacity in Isolation
Effective carrying capacity 

increases for mutualistic reactions   
Effective carrying capacity 

decreases for competitive reactions 

(a)

(b)
Regional Species Pool Immigration Extinction

FIG. 1. The presence-absence model. (a) Species i has a carrying
capacity, Ki , in the absence of other species. Species i’s interaction
with species j is characterized by the interaction coefficient, cij .
Depending on whether they are mutualistic or competitive, the
interactions can increase or decrease the effective carrying capacity
of species i. (b) Species i can be present in the community,
si = 1, or absent from the community, si = 0. Species can immigrate
from a regional community pool and go extinct in the community
proportional with a rate equal to the exponential of the ratio of
effective carrying capacity to the stochasticity parameter, ω.

the rate of immigration and fi(�x) the ecological fitness of
species i, which is a function of the species abundances �x. In
general, fi(�x) may be a complicated function due to nonlinear
functional responses or other phenomena. Regardless of the
exact form of fi(�x), the ecological fitness can always be
linearized near an equilibrium point, �x ∗, where the dynamics
are approximately described by LVM equations.

In the LVM, the ecological fitness, fi(�x) = Ki − xi −∑
j cij xj , is a linear function of the carrying capacity, Ki , and

interaction coefficients, cij , which measure how the presence
of species j affects the growth rate of species i. The interaction
coefficients, cij < 0, are negative when interactions with
species j benefit the growth of species i, cij > 0 when species
j competes with species i, and cij = 0 if species i and j do not
interact (see Fig. 1). We interpret fi(�x) + xi = Ki −∑

j cij xj

as an effective carrying capacity, Keff
i (�x), for species i, and we

write dxi/dt = λi + xi[Keff
i (�x) − xi]. In general, the effective

carrying capacity is a function of the abundances of all the
species in the community.

MacArthur and Levins [5] used the idea of an effective
carrying capacity to ask whether a new species i could
invade a community with species abundances �x ∗. Using
graphical stability arguments, they showed that species i can
invade successfully if its effective carrying capacity is positive
[Keff

i (�x ∗) = Ki −∑
j cij x

∗
j > 0] but it will be unsuccessful

if its effective carrying capacity is negative [Keff
i (�x ∗) =

Ki −∑
j cij x

∗
j < 0]. Therefore, the mean extinction time

of a species in the local community depends strongly on
the effective carrying capacity; the time to extinction is
long for Keff

i (�x ∗) > 0 and short for Keff
i (�x ∗) < 0. Based on

these observations, we hypothesize that the extinction rate
of a species depends exponentially on the effective carrying
capacity. This assumption is used in the definition of the PA
model.
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B. Definition of the PA model

The PA model describes the probability that various
collections of species will be present (or absent) in a local
ecological community, which we assume is attached to a large
regional species pool containing S species. We parametrize
the presence (or absence) of species i ∈ {1, . . . ,S} by a binary
random variable si , where si = 1 if species i is present and
si = 0 if it is absent. Therefore, the state of the ecosystem is
described by the random vector �s = (s1, . . . ,sS) ∈ {0,1}S . We
denote the probability distribution to observe a particular state
�s at time t by Pt (�s). The probability distribution is governed by
a differential equation called a master equation, which defines
the dynamics of the PA model.

Prior to writing down the master equation, we specify
two kinds of rates. First, there is the rate at which species
i immigrates into the local community from the regional pool,
i.e., the rate at which si = 0 → 1:

RI
i (�s) = λi.

There is also the rate of an extinction event si = 1 → 0, RE
i (�s),

given by

RE
i (�s) = exp

(
− 1

ω
Keff

i (�s)

)
,

Keff
i (�s) := Ki −

j=S∑
j=1

Kjcij sj .

Here, Keff
i (�s) represents the effective carrying capacity of

species i given that the state of the ecosystem is �s. Ki

denotes the carrying capacity of species i in the absence of
other species, whereas cij denotes an interaction coefficient
describing how species j influences the effective carrying
capacity of species i (with the convention that cii = 0). The
number ω parametrizes the impact of random noise on species
extinction, and is thus called the “noise strength.” The units of
time have been set so that the rate of extinction equals 1 in the
limit that ω → ∞.

With these rates, the time evolution of Pt (�s) is given by the
master equation:

dPt (�s)

dt
=

i=S∑
i=1

{[
RE

i (�s + �ei)Pt (�s + �ei) − RI
i (�s)Pt (�s)

]
(1 − si)

+ [
RI

i (�s − �ei)Pt (�s − �ei) − RE
i (�s)Pt (�s)

]
si

}
, (1)

where �ei denotes the vector whose ith component is unity, and
all other components are zero.

C. Choosing carrying capacities and interaction coefficients

The ecological dynamics of the PA model depend on the
choice of carrying capacities and interaction coefficients. For
an ecosystem with S species, this involves specifying S2

parameters. Deriving all of the parameters describing the
dynamics of a real community from observations is a daunting
task for ecosystems with many species (S � 1). However, it is
possible to make progress by analyzing a “typical” ecosystem
where the interaction coefficients and carrying capacities are
drawn randomly from an appropriate probability distribution
[18].

For simplicity, we restrict our analysis to purely competitive
species interactions cij > 0. We draw interaction coefficients
independently for each pair i �= j , from a γ distribution with
mean μc/S and variance σ 2

c /S:

pc(cij ) = 1

θ
kc
c �(kc)

c
kc−1
ij exp

(
−cij

θc

)
,

where � denotes the Gamma function and

kc := μ2
c

Sσ 2
c

, θc := σ 2
c

μc

.

The 1/S scaling of the mean and variance of cij is necessary
to prevent pathological behaviors when S becomes large. In
physics terminology, this ensures a well-defined thermody-
namic limit [22].

The carrying capacities are also drawn independently from
a log-normal distribution with mean μK and variance σ 2

K :

pK (Ki) = 1

KizK

√
2π

exp

(
− 1

2z2
K

[ln(Ki) − lK ]2

)
,

where

lK := ln

⎛
⎝ μ2

K√
μ2

K + σ 2
K

⎞
⎠ , zK :=

√
ln

(
1 + σ 2

K

μ2
K

)
.

These choices of probability distributions ensure that both
the interaction coefficients and the carrying capacities are
strictly positive while simultaneously allowing for analytic
calculations. Considering typical ecosystems for which Ki and
cij are random variables circumvents the proliferation of free
parameters by reducing the number of relevant parameters
from S2 to four, namely the means and variances of the inter-
action coefficients and carrying capacities μc, σc, μK , and σK .

D. Relation to island biodiversity

The PA model describes the dynamics of a well-mixed,
isolated community of competing species with weak immigra-
tion from a static regional pool. For this reason, the model is
well-suited for discussions in the context of island biodiversity.
Island biodiversity, the study of the species richness and
ecological dynamics of isolated natural communities [10,23],
has played an important role in the development of theoretical
ecology. For example, it was a precursor to Hubbell’s neutral
theory [6]. The success of the neutral theory of biodiversity and
biogeography [6,9] at explaining patterns in biodiversity has
resulted in a vigorous debate on the processes underlying com-
munity assembly and, in particular, on the relative importance
of selection and stochasticity in shaping ecological dynamics
and species abundance patterns [9,16,24–32]. Overall, insular
communities provide a tractable arena for studying the effects
of selection and stochasticity while minimizing the effect
of other ecological processes, such as complicated dispersal
phenomena.

The PA model allows one to study the roles of selection
and stochasticity within the context of island biodiversity.
In particular, one may use the PA model to describe the
dynamics of a local island community of competing species
with weak immigration from a static regional pool, i.e., a
nearby mainland. This situation was recently analyzed using

022423-3



BENJAMIN DICKENS, CHARLES K. FISHER, AND PANKAJ MEHTA PHYSICAL REVIEW E 94, 022423 (2016)

FIG. 2. (a) Mean number of species M , (b) the freezing parameter α, and (c) the composite order parameter C(M,α) (see the main text for
definitions) computed from numerical dynamics simulations, with S = 20, μK = 100, λ = 0.01, ω = 1, and Ki =: μK for all i. The dynamics
exhibit three distinct regimes: the coexistence regime (CR) with C(M,α) 
 −1, the partial coexistence regime (PCR) with C(M,α) 
 0, and
the noisy regime (NR) C(M,α) 
 1. (I), (II), and (III) illustrate the typical dynamics of the CR, PCR, and NR.

LVMs and found to exhibit distinct regimes of ecological
dynamics and species abundances centered around a special
critical point corresponding to Hubbell’s neutral theory of
biodiversity [15]. Inspired by earlier work showing that the PA
model can reproduce the sharp transitions between a nichelike
selection-dominated regime and a neutral-like drift-dominated
regime [13], we numerically simulated the PA model to test
whether it can reproduce the basic phenomenology seen in
much more complicated LVMs. This is discussed in the next
section.

II. NUMERICAL SIMULATIONS

To see if the PA model can reproduce the basic behaviors
exhibited by more complicated LVMs [13,15], we numerically
simulated the PA model dynamics. We found that the dynamics
of the PA model can be classified into three broad regimes
(see the bottom panels of Figs. 2 and 3): a coexistence regime
(CR) where all species are present, a partial coexistence regime
(PCR) where only a small fraction of species are stably present
in the community, and a noisy regime (NR) where all species
fluctuate between being present and absent over small time
scales. Using order parameters measured in the numerical
simulations, we summarized our findings by constructing
phase diagrams for these ecological regimes. As seen in
Ref. [15], the regimes organize themselves around a special
“critical” point corresponding to Hubbell’s neutral theory. We
discuss simulation details and results in this section.

A. Simulation details

In all simulations, we assume that all species have the same
immigration rate λi =: λ, and we ask that ω |ln(λ)| � μK ,
where μK denotes the average value of all carrying capacities.
Roughly speaking, this assumption assures that the probability
for a species to be present or absent is determined primarily
by the weakness or strength of that species’ extinction rate,
exp[−Keff

i (�s)/ω]. Thus, in our simulations, the propensity for
a species to survive in the local community is determined
by its interactions with other species and its environment, as
described by the effective carrying capacity, Keff

i (�s), rather
than its immigration ability.

Numerical simulations of the PA model master equation
were performed using Gillespie’s algorithm [33]. To compare
with the results of [15], we started by simulating the PA
model for the case in which all species have the same carrying
capacities (μK = 100,σK = 0). For each choice of (μc,σc),
30 random realizations of cij ’s were independently drawn
from a γ distribution of mean μc/S and variance σ 2

c /S.
We took S = 20, λ = 0.01, and ω = 1 in these simulations.
For each realization, PA model dynamics were simulated for
T = 400 000 units of PA model time, with �s(t) sampled in
time steps of τs 
 2000. In addition to heterogeneity in the
interaction coefficients, we wanted to investigate the effect
of the heterogeneity in the carrying capacities of species.
Thus, we also performed simulations with random carrying
capacities for each choice of (μc,σK ), in which 30 random
realizations of the Ki vector were independently drawn from

022423-4



ANALYTICALLY TRACTABLE MODEL FOR COMMUNITY . . . PHYSICAL REVIEW E 94, 022423 (2016)

FIG. 3. (a) The mean number of species M , (b) the freezing parameter α, and (c) the composite order parameter C(M,α) (see the main
text for definitions) computed from numerical dynamics simulations, with S = 20, μK = 100, λ = 0.01, ω = 0.5, and cij =: μc/S fixed for
all i. For this choice of parameters, σK/μK = 0.9, the PA model never reaches the NR until μc 
 S The dynamics exhibit two regimes: the
coexistence regime (CR) with C(M,α) 
 −1 and the partial coexistence regime (PCR) with C(M,α) 
 0. (I) illustrates the typical dynamics
of the CR, whereas (II) and (III) illustrate the typical dynamics of the PCR.

a log-normal distribution of mean μK = 100 and variance
σ 2

K , with S = 20, λ = 0.01, and ω = 0.5. Dynamics were
simulated for each realization for T = 400 000 units of PA
model time.

The numerical phase diagrams in Figs. 2 and 3 exhibited,
for μc > 1, artifacts of finite-size effects inherent in numerical
simulation. To smooth out these artifacts without destroying
the essential features of the plots—specifically, their behavior
near μc = 1 and σc/K = 0—the μc direction of all order-
parameter plots was convolved with a variable Gaussian kernel
of increasing variance equal to μc. We expect that a similar
smoothing would be achieved by increasing both S and the
number of random realizations of species, but this quickly
becomes computationally expensive.

B. Order parameters for ecological dynamics

We constructed phase diagrams for the PA model to sum-
marize our findings about its ecological dynamics. Simulations
revealed three regimes of qualitatively distinct dynamics:
the CR, the PCR, and the NR. These three regimes can be
distinguished between by measuring two order-parameter-like
quantities from numerical simulation data: the mean number of
species and a “freezing parameter.” To define these quantities,
it is necessary to introduce two kinds of averages: time
averages, which we denote as 〈· · · 〉, and averages over random
draws of the ecological parameters cij or Ki , which we denote
by [· · · ]av.

Define the mean number of species present in the commu-
nity as

M :=
i=S∑
i=1

[〈si〉]av. (2)

It is a “mean” in two senses: it is the number of species
averaged over both time and random draws of species
parameters. Intuitively, M tells us whether or not the PA model
is exhibiting the coexistence regime. In particular, we expect
that M = S in the CR and M < S otherwise. Inspired by the
theory of disordered systems, we also define the “freezing
parameter”

α := 4

S

i=S∑
i=1

(
[〈si〉2]av − [〈si〉]2

av

)
.

α is proportional to the sum of the variances of 〈si〉 over
random draws of species traits, and it tells us whether or not
the PA model is in the PCR. Our intuition for this quantity is
as follows. In the PCR, we expect dominant species to emerge
that stay in the ecosystem for almost all time. If species i is
such a dominant species, then we have 〈si〉 
 1. On the other
hand, nondominant species in the PCR will remain absent
from the ecosystem for almost all time, hence a nondominant
species j in the PCR will satisfy 〈sj 〉 
 0. Moreover, the subset
of species that are dominant depends on the random draw of
species parameters cij and Ki . For this reason, if the variance in
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cij and Ki is appreciable, then the variance in which species are
dominant will also be appreciable; in particular, the variance
in 〈si〉 over random draws of species traits will be maximal,
and we expect α 
 1. On the other hand, if the PA model is
exhibiting either CR or NR, then no species is dominating over
the others (recall that in the CR all species are present, and in
the NR all species are fluctuating between present and absent),
regardless of the random draw of cij ’s and Ki’s. In this case,
fluctuations in cij ’s and Ki’s over random draws will not lead
to a nonzero variance in 〈si〉, and the freezing parameter will
be close to zero, α 
 0. Thus, α measures whether or not there
are dominant species in the ecosystem. For this reason, we
expect that α 
 1 in the PCR and α 
 0 otherwise. The name
“freezing parameter” comes from the interpretation that, in
the PCR, the ecosystem appears “frozen” or stuck for almost all
time in a configuration in which dominant species are present
and nondominant species are absent. In this sense, we can say
that α measures whether or not the ecosystem is “frozen.”

To summarize, we expect that M = S and α 
 0 in the CR,
M < S and α 
 1 in the PCR, and M < S and α 
 0 in the
NR; thus, between these two quantities, we can distinguish
between all three regimes from numerical simulation data (see
Figs. 2 and 3).

To compare with phase diagrams obtained by analytic
calculations and through other models, it is useful to define a
composite order parameter C(M,α) whose value distinguishes
all three dynamical regimes. We ask that it satisfies C(M,α) 

−1 in the CR, C(M,α) 
 0 in the PCR, and C(M,α) 
 1 in the
NR. Moreover, C(M,α) should be continuous and monotonic
in both M and α. Many functions satisfy these properties. Here
we choose

C(M,α) := (1 − α)gS,γ (M),

where

gS,γ (x) :=
{

γ−x

S−γ
if x > γ,

γ−x

γ
if x < γ.

When S = 20 and γ = 19, C(M,α) will be negative whenever
M > γ = 19 and positive if M < γ = 19. With this defini-
tion, C(M,α) satisfies the desired properties.

C. The PA model phase diagrams

To understand the effect of competition on the dynamics
of the PA model, we constructed a phase diagram as a
function of the mean strength of competition (μc) and the
competition diversity (σc) when all species have identical
carrying capacities (σK = 0). The results are shown in Fig. 2.
As expected, the average number of species present in
the community (M) decreases with increasing competition.
Furthermore, for uniform interaction coefficients (σc = 0),
all species are present in the community until a critical
competition strength, μc = 1, after which species start going
extinct. The middle panel in the figure shows the freezing
parameter (α), which measures whether a subset of species are
consistently in the environment. Notice that this occurs around
μc 
 1 when the interaction coefficients are heterogeneous.

Taken together, these numerical observations suggest that
the competitive CR is favored when the mean competition
strength is low, whereas the NR-type dynamics are favored

when competition is very strong. This is consistent with
our intuition that a species i should tend to be present if
Keff

i (�s) > 0 or tend to be absent if Keff
i (�s) < 0. To see this, note

that Keff
i (�s) = μK − μK

∑
j �=i cij sj in this case. Therefore,

Keff
i (�s) > 0 for all i precisely when competition is sufficiently

low, namely when the CR occurs. On the other hand, we
expect to see Keff

i (�s) < 0 in the presence of some species
when mean competition is high, which is when the NR is
observed. In the NR, the dynamics appear to be dominated
by stochasticity and drift because species quickly go extinct
after immigrating into the community. This can be explained
by the fact that negative carrying capacities Keff

i (�s) < 0 set
a fast extinction rate. At intermediate levels of competition,
μc 
 1, and in the presence of heterogeneity in the interaction
coefficients, the ecological dynamics are characterized by
partial coexistence where only a subset of species remains
present in the community. This PCR is consistent with the
statement that Keff

i (�s) < 0 for some species, namely the absent
ones, and Keff

i (�s) > 0 for the present species. Thus, in the PCR
regime, some species are more fit for the environment than
others, leading to reproducible species abundance patterns.

We also examined the effect of heterogeneity in carrying
capacities on the dynamics of the PA model. To do this, we
constructed phase diagrams as a function of the carrying
capacity diversity (in units of the mean carrying capacity,
i.e., σK/μK ) and the mean competition strength for uniform
interaction coefficients, assuming that σc = 0 (see Fig. 3). The
resulting phase diagram once again exhibits three phases with
the NR favored when there is strong competition and the CR
favored when competition is weak.

A striking aspect of the phase diagrams is that the dynamical
regimes organize themselves around a special point in the PA
model parameter space where μc = 1 and σc/K = 0. Just as
in generalized LVMs [15], we can identify this point with
Hubbell’s neutral theory. To see this, note that all species
are equivalent with respect to their ecological traits, such as
immigration rates, carrying capacities, and competition coef-
ficients at this point. Moreover, the intraspecies competition,
described by Ki , balances the interspecies competition, given
by

∑
j �=i Kj cij sj . More precisely, if all species are present in

the community (si = 1 for all i), then the effective carrying
capacity of every species is zero, Keff

i (�s) = 0. This holds
because cij = 1/S for all pairs i �= j , so

Keff
i (�s) = μK

⎛
⎝1 − 1

S

∑
j �=i

si

⎞
⎠ = 1

S

 0

for S � 1. These are precisely the conditions characterizing
Hubbell’s neutral model [6–9]. Small perturbations around
this Hubbell point can lead to qualitatively different species
abundance patterns and dynamical behaviors.

III. ANALYTIC RESULTS

To better understand our numerical simulations, we per-
formed analytic calculations on the PA model. Recall that a
species i will tend to persist in the local community provided
that its extinction rate exp[−Keff

i (�s)/ω] is small (much less
than 1), and it will tend to go extinct if its extinction rate is large
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(much bigger than 1). It follows that a species will probably
persist if it tends to have a positive effective carrying capacity,
whereas it will go extinct quickly if its effective carrying
capacity tends to be negative. This basic observation suggests
criteria for classifying the three dynamical regimes analytically
in terms of effective carrying capacities. We emphasize that
this discussion is relevant only when μK/ω is large. Since
the noise strength, ω, simply provides the units in which
to measure Keff

i (�s), we may take ω = 1 here without loss
of generality and ask that μK is taken “large.” μK = 100 is
sufficient for our purposes, as in our numerical simulations.

To provide precise criteria for the three regimes in terms of
Keff

i (�s), we introduce a quantity

κi = κi(c, �K) = −μK ln

〈
exp

(
− 1

μK

Keff
i (�s)

) 〉

= 〈
Keff

i (�s)
〉− μK

2
Vart

[
1

μK

Keff
i (�s)

]
+ h.o.t.c.,

where vart [· · · ] denotes a time-variance and “h.o.t.c.” stands
for terms proportional to the “higher-order time cumulants”
of Keff

i (�s)/μK . In statistics language, κi is proportional to
the cumulant-generating function of −Keff

i (�s)/μK evaluated
at unity, where the averages are over time fluctuations of the
species. We sometimes employ the notation κi(c, �K) to remind
ourselves that κi depends on randomly drawn cij and Ki .

Our basic intuition about κi can be summarized as fol-
lows. The above equation shows that κi equals the mean
〈Keff

i (�s)〉, minus some cumulant terms that represent the
“typical fluctuations” of the effective carrying capacity. Denote
the sum of these cumulant terms by δKeff

i , so that κi =
〈Keff

i 〉 − δKeff
i , and note that δKeff

i is positive-definite due to
Jensen’s inequality. By comparing 〈Keff

i 〉 and δKeff
i , we obtain

important information about how often Keff
i (�s) will be positive

or negative and, by extension, whether or not we expect species
i to survive or go extinct. For example, if 〈Keff

i 〉 > δKeff
i ,

then we expect that Keff
i (�s) will tend to fluctuate in the

positive real line, hence species i will persist. On the other
hand, if 0 < 〈Keff

i 〉 < δKeff
i , then Keff

i (�s) fluctuates between
being positive and negative, hence species i fluctuates between
states of probable persistence and probable extinction. If,
instead, 〈Keff

i 〉 < 0 and 〈Keff
i 〉 < δKeff

i , then Keff
i (�s) is almost

always negative and species i is almost always absent unless
it attempts to immigrate. This intuition suggests the following
criteria for the PA model ecological regimes:

(i) Coexistence regime (CR): The CR occurs when
κi(c, �K) > 0 for all i ∈ {1, . . . ,S}. In this regime, all species
tend to coexist stably in the local community because their
effective carrying capacities tend to fluctuate in the positive
real line, permitting all species to survive. As we will
show in the Appendixes B 1 and C 1, this criterion reduces
approximately to a simpler criterion: the CR occurs when
Ki(�s) > 0 for all i ∈ {1, . . . ,S}, when all species are present.

(ii) Noisy regime (NR): The NR occurs when κi(c, �K) < 0
for all i ∈ {1, . . . ,S}. In this regime, the effective carrying
capacities of species are either fluctuating between being
positive and negative or they are fluctuating in the negative real
line. In either case, no species should persist in the ecosystem
for a very long time because negative effective carrying
capacities do not permit them to survive. As a result, all species

fluctuate between being present and absent over small time
scales, yielding dynamics that appear to be noise-dominated.

In the Appendix B 3, we show that this criterion has a natural
interpretation in terms of robustness to a typical fluctuation in
species abundances. Denote the average number of species in
the local community by M . Define a new quantity,


 := 1

μcμK

i=S∑
i=1

[
δKeff

i

]
av,

with δKeff
i = 〈Keff

i 〉 − κi a “typical fluctuation” of the effec-
tive carrying capacity for species i. In the Appendix B 3,
we show that the system will be in NR if Ki(�s) < 0 for all
i ∈ {1, . . . ,S}, whenever M + 
 species are present, where M

is the mean species abundance defined in Eq. (2). In particular,
when the number of species fluctuates a threshold fluctuation

 above the mean, no species should persist for very long
because their carrying capacities become negative.

(iii) Partial coexistence regime (PCR): This occurs when
κi(c, �K) < 0 for a fraction of species i ∈ {1, . . . ,S} and
κi(c, �K) > 0 for other species i. In this regime, we expect
dominant species to emerge in the community, namely those
with positive κi(c, �K), and remain in the ecosystem for almost
all time. Meanwhile, those species with negative κi(c, �K) will
attempt and fail to invade, going extinct quickly and fluctuating
between presence and absence.

Given these criteria, one can use a mean-field-theoretic
approach to analytically calculate M and a phase diagram for
the PA model (see the Appendix A for details). The results
are shown in Fig. 4. To determine the phase boundary of the
CR, we calculated the probability, PCR, that κi(c, �K) > 0 when
M = S species are present in the community, given random
draws of cij or Ki (see the Appendixes). This is plotted in the
blue region of the left-hand side of the analytic phase diagrams
in Fig. 4. To determine the boundary of the NR, we calculated
the probability PNR that κi(c, �K) < 0. The results of these
calculations are shown in the red region of the right-hand side
of the analytic phase diagrams in Fig. 4. The PCR occurs in
the white region where neither the CR nor the NR is probable.

In the NR, the statistics of species abundances appear to
be “neutral” (“statistically neutral” in the language of [13]).
Thus, we assumed that species are statistically independent,
and we neglected contributions from the heterogeneity in cij

and Ki . The latter assumption implies that an equilibrium
probability distribution will be reached as t → ∞ and that
all species have the same mean value m = 〈si〉. The former
assumption allows us to write a species probability distribution
Q(�s) = ∏i=S

i=1 Qi(si) in equilibrium that factorizes into indi-
vidual probability distributions Qi(si). We approximate these
marginal distributions, Qi(si), as Gaussian distributions with
mean m and variance σ 2

m = m(1 − m) by neglecting cumulants
of si of higher order than the variance. This yields the same
answer one would obtain by neglecting the moments of cij

and 1
S
Kj of third and higher order. Similar approximations

were also employed to compute the CR phase boundary, but
no Gaussian approximation was needed. See the Appendixes
for details.

The agreement between analytic and numerical results is
remarkable. The mean-field calculations of M agree with
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FIG. 4. (a) Left panel: Mean number of species M computed analytically with λ = 0.01, ω = 1, and μK = 100 in the absence of species
heterogeneity. Middle and right panels: For comparison, we display M computed numerically, using the data shown in Fig. 2 (middle panel) and
Fig. 3 (right panel). (b) and (c) Probability to exhibit the CR (blue) or the NR (red), as calculated analytically. Long-dashed curves mark where
the probability to exhibit a regime is, P = 0.98, whereas dotted curves indicate a probability of P = 0.90. In (b), each cij is independently
drawn from a γ distribution of mean μc/S and variance σ 2

c /S, while Ki = μK is fixed for all i (σK = 0). In (c), each Ki is drawn independently
from a log-normal distribution of variance σ 2

K and fixed mean μK , whereas cij =: μc/S for all i �= j (σc = 0). In (b) and (c), λ = 0.01, ω = 1,
and μK = 100.

numerical simulations, even for moderately large values of
σc and σK . Despite our approximations, there is a surprising
agreement between our analytic phase diagrams and the
numerical phase diagrams in Figs. 2 and 3. Strikingly, in the
case of heterogeneous Ki , the NR is very small in both analytic
or numerical calculations, where S = 20. Overall, our results
suggest that we can capture the essential ecology of the PA
model by thinking about the means and typical fluctuations of
the effective carrying capacities of individual species.

IV. DISCUSSION

We analyzed the binary, presence-absence (PA) model for
community assembly first introduced in Ref. [13]. The PA
model describes an immigration-extinction process in which
species are treated as stochastic binary variables that can either
be present or absent in a community. Species immigrate to
the community from a regional species pool. Once in the
local community, a species competes for resources until it
becomes locally extinct due to competition and stochasticity.
Here, we investigated the effects of heterogeneous competition
coefficients and carrying capacities on the ecological dynamics
in large, “typical” communities. We found that the PA model
exhibits three distinct regimes: a coexistence regime (CR)
where all species are present in the community, a noisy regime

(NR) where all species quickly go extinct after immigrating
to the community, leading to neutral-like dynamics, and a
partial coexistence regime (PCR) where a broad distribution
of effective carrying capacities leads to a few dominant species
that remain present in the community most of the time.

These three regimes all converge at a special point (called
the Hubbell point) in parameter space corresponding to the
neutral theory of biodiversity, where all species are identical
and their dynamics are uncorrelated. The Hubbell point plays
an analogous role to a quantum critical point in the phase
diagrams of systems that exhibit phase transitions [21]. In
the absence of heterogeneity in the interaction coefficients or
carrying capacities (i.e., σc = 0 and σK = 0), the Hubbell point
separates a selection-dominated regime, where all species are
present and the dynamics look fairly deterministic, from a
drift-dominated regime, where selection is not important for
the dynamics. For nonzero σc and σK , the effect of the Hubbell
point manifests itself in the existence of the partial coexistence
regime wherein a subset of the species are always present
in the community due to selection, while the dynamics of
the remaining species are dominated by noise. This suggests
that the neutral theory of biodiversity plays a special role
in understanding ecological dynamics, perhaps as much as
critical points play an important role in the theory of phase
transitions. One interesting question worth investigating is
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whether ideas such as universality and critical exponents [20]
can also be exported to this ecological setting.

Despite its simplicity, the PA model is able to reproduce the
qualitative behaviors of more complicated generalized Lotka-
Volterra models (LVMs). For example, our phase diagram for
the PA model in Fig. 2 is almost identical to the phase diagram
of the LVM obtained using numerical simulations in Ref. [15].
Nevertheless, while the PA model exhibits three regimes, the
LVMs were found to exhibit four. Both the PA model and
LVMs exhibit coexistence and partial coexistence regimes,
respectively, at low and intermediate levels of competition.
However, instead of a noisy regime at high competition,
Ref. [15] identified a “disordered phase” and a “glasslike
phase.” The disordered phase appears to be analogous to
our noisy regime. That is, there is no longer a fixed set of
resident species that are always present; instead, there is a
constant turnover in the community composition. The glasslike
phase, which appears at levels of competition greater than
that of the disordered phase, is characterized by occasional
noise-induced transitions between a few equilibria, such that
for each equilibrium only a few dominant species are present.
We did not identify this behavior in the PA model. This
discrepancy is likely due to the simplified dynamics in the
PA model that ignores species abundance distributions. Thus,
the PA model provides a compromise between complexity and
interpretability given that it is amenable to analytic techniques.
In the future, it will be interesting to investigate whether the PA
model can reproduce more complicated behaviors of LVMs,
especially when extended to a spatial setting. For example,
it will be interesting to see if cyclic dominance between
species can lead to specific types of pattern formation such
as propagating fronts [34,35].

The idea of an effective carrying capacity plays a central
role in the PA model. The importance of this quantity was
already noted in the early works of Macarthur and Levins [5].
The effective carrying capacity essentially sets the extinction
time in the local community, and it measures how susceptible
a species is to stochastic events that can cause it to die out.
Our analytic calculations demonstrate that a mean-field-like
picture based on effective carrying capacities is sufficient
to reproduce the numerical phase diagram. This suggests
that, in large communities with many species, the effect of
different ecological processes can be understood by asking
how they change the effective carrying capacity for a typical
species configuration. This is similar in spirit to recent work in
the theoretical ecology literature [36]. These simplifications
suggest that the behaviors of large ecosystems with many
species may differ significantly from the behavior of small
systems with a few species.

In this work, we limited ourselves to considering purely
competitive interactions in a spatially well-mixed population
with low immigration rates from a regional species pool. It will
be interesting to generalize these results to the case in which the
interaction coefficients can be mutualistic, or even hierarchical
[37]. Another important avenue for future research is to ask
how the introduction of spatial structure affects the mean-field
picture. In particular, it will be interesting to understand if
the phase diagram of the PA model is still organized around
Hubbell’s neutral theory and if the PA model can reproduce
the species-area relationships seen in real ecosystems [38].

ACKNOWLEDGMENTS

This work was partially supported by a Simons Investigator
in the Mathematical Modeling of Living Systems and a
Sloan Research Fellowship to P.M. B.D. also acknowledges
the Boston University Undergraduate Research Opportunities
Program for partial funding.

APPENDIX A: MEAN-FIELD APPROXIMATION AND
CALCULATING THE MEAN SPECIES ABUNDANCE

We can analyze the PA model in the coexistence regime
(CR) and the noisy regime (NR) using mean-field theory
(MFT). In MFT, the true distribution of species is approxi-
mated by an equilibrium variational distribution, Q(�s), that
factorizes over species:

Q(�s) =
i=S∏
i=1

Qi(si).

For the PA model where si ∈ {0,1}, the mean-field variational
distribution takes the form

Qi(si) = mδsi ,1 + (1 − m)δsi ,0, (A1)

where δsi ,1 is the Kronecker delta function and m is a
variational parameter that measures the probability of a
species being present: 〈si〉 =: m. Notice that we use the same
parameter of m for all i.

In the coexistence regime, we know that all species are
present so that m 
 1. For this reason, in the CR the mean-field
variational Ansatz is well approximated by

QCR
i (si) = δsi ,1. (A2)

In the noisy regime, we approximate Qi(si) by a Gaussian
distribution with mean m and variance σ 2

m = m(1 − m):

QNR
i (si) = 1√

2πσ 2
m

exp

(
− 1

2σ 2
m

[si − m]2

)
. (A3)

QNR
i can be thought of as an approximation to the full

variational distribution Qi , where we have ignored higher-
order cumulants beyond the variance. Since m � 1 in the NR,
this is expected to be a good approximation.

These mean-field variational Ansätzes are consistent with
numerical simulations of the CR and the NR that show that
the heterogeneity of cij and Ki do not significantly modify
the dynamics in these regimes, and species appear to be
statistically independent because the dynamics of different
species are uncorrelated in time.

We would like to compute m for the variational distribution
(A1), which requires some knowledge of the true equilibrium
distribution in the absence of heterogeneity (σc = σK = 0).
In this case, the dynamics approach a unique equilibrium
distribution as t → ∞ [13]:

PPA(�s) = 1

Z
exp

(
−μK

ω
U (�s)

)
,

U (�s) := −[1 + �]
i=S∑
i=1

si + μc

2S

∑
i �=j

sisj ,
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where � := ω ln(λ)/μK and Z is a normalization constant.
The function U (�s) is sometimes called the “internal energy,”
or just the “energy,” associated with the species configuration
�s. Due to ergodicity, we reinterpret time averages 〈· · · 〉 as
averages over the distribution PPA(�s). In particular, given a
function A = A(�s) of the random variable �s, we have

〈A〉 = Tr�s A(�s)PPA(�s) = 1

Z
Tr�s A(�s) exp

(
−μK

ω
U (�s)

)
,

where Tr�s denotes the operation of summing over all possible
2S configurations of �s. Since U (�s) is invariant under the
exchange i ↔ j of species indices, it follows that 〈si〉 = 〈sj 〉
for all i �= j .

With these observations, we can use the functional form
(A1) for Q(�s) to calculate the mean species abundance, M . To
determine the variational m, we minimize the variational free
energy:

F [Q] = 〈U (�s)〉Q + ω

μK

〈ln Q(�s)〉Q,

where 〈· · · 〉Q denotes an average with respect to Q. Since Q is
completely specified by m, we can express F [Q] as a function
F (m) of m. One obtains

F (m)

S
= − [1 + �]m + μcm

2

2

+ ω

μK

[m ln(m) + (1 − m) ln(1 − m)].

A necessary condition for minimization is that d
dm

F (m) = 0,
which yields

m = 1

2
+ 1

2
tanh

(
μK

2ω
[1 + � − μcm]

)
. (A4)

The mean species abundance is obtained by noting that M =
Sm. This is plotted in the main text.

APPENDIX B: PHASE DIAGRAM FOR HETEROGENEOUS
INTERACTION COEFFICIENTS

In this section, we set σK = 0 so that Ki = μK for all i ∈
{1, . . . ,S}. We seek to answer the following question: given
a choice of (μc,σc) and a random draw of cij ’s, what is the
probability that the PA model is in the CR or the NR?

1. Boundary of the coexistence regime

First, we calculate the probability, PCR, that the system is
in the CR. We reintroduce the quantity

κi = −μK ln

〈
exp

(
− 1

μK

Keff
i (�s)

) 〉
, (B1)

and we recall that the CR occurs when κi > 0 for all i ∈
{1, . . . ,S}. Thus, PCR is the probability that κi > 0. To proceed,
we must explicitly calculate κi in terms of cij . Since we
expect our Ansatz (A2) to be valid near the CR, we compute
the time average in Eq. (B1) with respect to QCR

i (si) = δsi ,1.

We obtain

〈
exp

(
− 1

μK

Keff
i

) 〉
QCR

=
˝

exp

⎛
⎝−1 +

∑
j �=i

cij sj

⎞
⎠
˛

QCR

= e−1
∏
j �=i

〈ecij sj 〉QCR
i

= e−1
∏
j �=i

ecij

= exp

⎛
⎝−1 +

∑
j �=i

cij

⎞
⎠ ,

which we can rewrite as

1

μK

κi = 1 −
∑
j �=i

cij .

This equation has a simple interpretation. Namely, the CR
occurs when the effective carrying capacity of every species
is positive in the presence of all species. Thus, PCR is just
the probability that

∑
j �=i cij < 1. Since each cij is drawn

independently from a γ distribution of mean μc/S and variance
σ 2

c /S, it follows that yi := ∑
j �=i cij is γ -distributed with mean

μc and variance σ 2
c at leading order in large S; the explicit

probability distribution is

py(yi) = 1

θ
ky

y �(ky)
y

ky−1
i exp

(
− yi

θy

)
,

where � denotes the Gamma function and

ky := μ2
c

σ 2
c

, θy := σ 2
c

μc

.

PCR is the probability that yi < 1, i.e.,

PCR = P (yi < 1) =
∫ 1

0
dyi py(yi)= 1

�
(
μ2

c

/
σ 2

c

)γ (μ2
c

σ 2
c

,
μc

σ 2
c

)
,

where � is the Gamma function and γ is the lower incomplete
gamma function. Given (μc,σc), this formula can be used to
calculate PCR numerically, resulting in Fig. 4.

2. Boundary of the noisy regime

Now, we find the probability PNR that a random draw of cij ’s
causes the PA model to exhibit the NR. This is the regime where
κi < 0 for all i ∈ {1, . . . ,S}, hence PNR is the probability that
κi < 0. Using the Ansatz (A3) to compute the time average in
Eq. (B1), one gets〈

exp

(
− 1

μK

Keff
i

) 〉
QNR

=
∫
RS

d�s QNR(�s) exp

(
− 1

μK

Keff
i

)

= e−1
∏
j �=i

1√
2πσ 2

m

∫ +∞

−∞
dsj

× exp

(
− 1

2σ 2
m

[sj−m]2 + cij sj

)
.
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Performing the Gaussian integrals yields〈
exp

(
− 1

μK

Keff
i

) 〉
QNR

= exp

⎛
⎝−1 + m

∑
j �=i

cij + 1

2
σ 2

m

∑
j �=i

c2
ij

⎞
⎠ .

This can be rewritten as

1

μK

κi = 1 − m
∑
j �=i

cij − 1

2
σ 2

m

∑
j �=i

c2
ij . (B2)

We further make the approximation∑
j �=i

c2
ij 
 μc

∑
j �=i

cij , (B3)

yielding the expression

1

μK

κi 
 1 −
(

m + 1

2
μcσ

2
m

)∑
j �=i

cij .

Now define a new random variable yi :=(
m + 1

2μcσ
2
m

)∑
j �=i cij so that PNR is the probability

that yi > 1. Then, to leading order in S, yi is γ -distributed
with mean

(
m + 1

2μcσ
2
m

)
μc and variance

(
m + 1

2μcσ
2
m

)
σ 2

c .
It follows that

PNR 
 1 − P (yi < 1) = 1 − 1

�
(

μ2
c

σ 2
c

[
m + 1

2μcσ 2
m

])

× γ

(
μ2

c

σ 2
c

[
m + 1

2
μcσ

2
m

]
,
μc

σ 2
c

)
.

3. Alternative interpretation of the NR boundary

As mentioned in the main text, PNR has an alternative
interpretation, namely the probability that Keff

i (�s) < 0 when
at least M + 
 species are present, where M := ∑i=S

i=1 [〈si〉]av

is the mean number of species and


 := 1

μcμK

i=S∑
i=1

[
δKeff

i

]
av

is a threshold fluctuation in the number of species above the
mean.

We justify this interpretation now. First, M is given
by Sm, where m satisfies Eq. (A4). To compute 
, we
note that δKeff

i = 〈Keff
i 〉 − κi . Given that 〈Keff

i 〉 = μK −
μKm

∑
j �=i cij , we use our approximate expression for κi to

obtain

δKeff
i = 〈

Keff
i

〉− κi = 1

2
σ 2

mμcμK

∑
j �=i

cij .

Thus, averaging over cij ’s yields [δKeff
i ]av = 1

2σ 2
mμ2

cμK , from
which we get


 = 1
2Sμcσ

2
m.

When M + 
 species are present, we have

Keff
i (�s) = μK − μK

∑
j �=i

cij sj = μK − μK

j=M+
∑
j=1

cij ,

where it is understood that cii = 0. The quantity
∑j=M+


j=1 cij

is, to leading order in S, a γ -distributed random variable of
mean 1

S
(M + 
)μc and variance 1

S
(M + 
)σ 2

c , a property
shared by 1

S
(M + 
)

∑
j �=i cij at leading order. Thus, the

probability that Keff
i (�s) < 0 is equal to the probability that

μK − μK
1
S

(M + 
)
∑

j �=i cij < 0. Plugging in our expres-
sions for M and 
, we see that this is equal to the probability
that

κi 
 μK − μK

(
m + 1

2
μcσ

2
m

)∑
j �=i

cij < 0,

which is exactly PNR obtained above.

APPENDIX C: PHASE DIAGRAM FOR HETEROGENEOUS
CARRYING CAPACITIES

Now set σc = 0 so that cij = μc/S for all i ∈ {1, . . . ,S}.
We calculate the probabilities PCR and PNR that, given
(μc,σK/μK ) and a random draw of Ki’s, the PA model is
in the CR or the NR.

1. Boundary of the coexistence regime

To compute PCR, we again employ our mean-field varia-
tional Ansatz (A2). Using this Ansatz, one gets〈

exp

(
− 1

μK

Keff
i

) 〉
QCR

=
˝

exp

⎛
⎝− 1

μK

Ki + μc

SμK

∑
j �=i

Kj sj

⎞
⎠
˛

QCR

= exp

⎛
⎝− 1

μK

Ki + μc

SμK

∑
j �=i

Kj

⎞
⎠ ,

which we can rewrite using (B1) as

κi = Ki − μc

S

∑
j �=i

Kj .

This is simply Keff
i (�s) when all species are present, and PCR

is the probability that this is positive. Since we draw each Ki

independently from a log-normal distribution, pK , with mean
μK and variance σ 2

K , we may apply the central limit theorem
to 1

S

∑
j �=i Kj in the limit S → ∞. In particular, 1

S

∑
j �=i Kj

approaches a Gaussian distribution of mean μK and variance
σ 2

K/S, plus some terms of higher order in 1/S. Thus, as S →
∞,

1

S

∑
j �=i

Kj 
 μK,

which is to say that

κi 
 Ki − μcμK
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when S is very large. Therefore, PCR is the probability that Ki > μcμK , or

PCR 
 P (Ki > μcμK ) =1 −
∫ μcμK

0
dKi pK (Ki) = 1 − �

(
log(μcμK ) − lK

zK

)
,

where � is the normal cumulative distribution function and

lK := ln

⎛
⎝ μ2

K√
μ2

K + σ 2
K

⎞
⎠ , zK :=

√
ln

(
1 + σ 2

K

μ2
K

)
.

2. Boundary of the noisy regime

We compute the probability PNR that κi < 0, using the Gaussian variational distribution (A3). To do so, one evaluates the
appropriate Gaussian integrals:〈

exp

(
− 1

μK

Keff
i

) 〉
QNR

=
∫
RS

d�s QNR(�s) exp

(
− 1

μK

Keff
i

)

= e−Ki/μK

∏
j �=i

1√
2πσ 2

m

∫ +∞

−∞
dsj exp

(
− 1

2σ 2
m

[sj − m]2 + μc

SμK

Kjsj

)

= exp

⎛
⎝− 1

μK

Ki + m
μc

SμK

∑
j �=i

Kj + 1

2
σ 2

m

μ2
c

S2μ2
K

∑
j �=i

K2
j

⎞
⎠ .

Therefore,

κi = Ki − mμc

1

S

∑
j �=i

Kj − 1

2
σ 2

m

μ2
c

SμK

1

S

∑
j �=i

K2
j .

For large S, we can replace 1
S

∑
j �=i Kj and 1

S

∑
j �=i K2

j by the expectation value Ki and K2
i , respectively,

1

S

∑
j �=i

Kj 
 μK,
1

S

∑
j �=i

K2
j 
 μ2

K + σ 2
K.

Substituting these expressions yields

κi 
 Ki − μcμK

[
m + 1

2S
μc

(
1 + σ 2

K

μ2
K

)
σ 2

m

]
.

For simplicity of notation, define δ := 1
2S

μc

(
1 + σ 2

K

μ2
K

)
σ 2

m. The probability that κi < 0 is

PNR 
 P (Ki < μcμK [m + δ]) =
∫ μcμK [m+δ]

0
dKi pK (Ki) = �

(
log(μcμK [m + δ]) − lK

zK

)
,

where �, lK , and zK are defined as above.
Once again, PNR has an interpretation as the probability that Keff

i (�s) < 0, when at least M + 
 species are present, where M :=∑i=S
i=1 [〈si〉]av and 
 := 1

μcμK

∑i=S
i=1 [δKeff

i ]av. Using a calculation analogous to the one presented in the preceding Appendix B 3,
it is straightforward to show that 
 = Sδ.

APPENDIX D: COMPUTING PNR DIRECTLY FROM Q

Here, we show, for the sake of completeness, that one can compute κi for the NR using the mean-field Qi(si) = mδsi ,1 + (1 −
m)δsi ,0, without the Gaussian approximation (A3) to the variational distribution. We first restrict ourselves to the case in which
only the carrying capacities are heterogeneous (σc = 0). One can obtain the same answer as in the preceding Appendix C 2 by
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taking the large-S limit. To see this, we expand κi into powers of 1
S

. One has

〈
exp

(
− 1

μK

Keff
i

) 〉
Q

=
˝

exp

⎛
⎝− 1

μK

Ki + μc

SμK

∑
j �=i

Kj sj

⎞
⎠
˛

Q

= e−Ki/μK

∏
j �=i

〈
exp

(
μc

SμK

Kjsj

) 〉
Q

= e−Ki/μK

∏
j �=i

[
m exp

(
μc

SμK

Kj

)
+ (1 − m)

]
= exp

⎛
⎝− Ki

μK

+
∑
j �=i

ln

[
1 + m exp

(
μc

SμK

Kj

)
− m

]⎞⎠ ,

yielding

κi = Ki − μK

∑
j �=i

ln

[
1 + m exp

(
μc

SμK

Kj

)
− m

]
= Ki − μK

∑
j �=i

∞∑
n=1

1

n
(−1)n+1mn

[ ∞∑
l=1

1

l!

(
μcKj

SμK

)l
]n

,

where we employed the series expansions of both ln(1 + x) and exp(x) − 1. Now, neglecting terms of third order or higher in 1
S

,
we get

κi 
 Ki − μK

∑
j �=i

∞∑
n=1

1

n
(−1)n+1mn

[
μcKj

S
+ 1

2

(
μcKj

SμK

)2 ]n


 Ki − μK

∑
j �=i

[
m

μcKj

SμK

+ m(1 − m)
1

2

(
μcKj

SμK

)2 ]
.

Using the identity σ 2
m = m(1 − m), we obtain

κi 
 Ki − mμc

1

S

∑
j �=i

Kj − 1

2
σ 2

m

μ2
c

SμK

1

S

∑
j �=i

K2
j ,

which is exactly what we obtained using (A3).
A similar expansion can be employed in the case of heterogeneous cij , but the limit is more delicate. Higher-order terms cannot

be neglected as S → ∞ because, in this limit, the moment
∑

j �=i c
n
ij does not vanish for any positive integer n. However, these

higher-order moments can be neglected in the limit μc � σ 2
c (provided that S � μ2

c/σ
2
c ), which, according to our numerical

simulations, is consistent with the NR. This follows from the form of the moment-generating function of γ distribution:

M(x) = exp

[
− 1

S

μ2
c

σ 2
c

ln

(
1 − σ 2

c

μc

x

)]
.
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