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a b s t r a c t

Many biological and physical systems exhibit population-density-dependent transitions to synchronized
oscillations in a process often termed ‘‘dynamical quorum sensing’’. Synchronization frequently arises
through chemical communication via signaling molecules distributed through an external medium. We
study a simple theoretical model for dynamical quorum sensing: a heterogenous population of limit-
cycle oscillators diffusively coupled through a common medium. We show that this model exhibits
a rich phase diagram with four qualitatively distinct physical mechanisms that can lead to a loss of
coherent population-level oscillations, including a novel mechanism arising from effective time-delays
introduced by the externalmedium.We derive a single pair of analytic equations that allowus to calculate
phase boundaries as a function of population density and show that the model reproduces many of
the qualitative features of recent experiments on Belousov–Zhabotinsky catalytic particles as well as
synthetically engineered bacteria.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Unicellular organisms often undertake complex collective be-
haviors in response to environmental and population cues. A
beautiful example of this phenomenon is the population-density-
dependent transition to synchronized oscillations observed in
communicating cell populations, recently termed dynamical quo-
rum sensing [1,2]. Density-dependent synchronization has been
observed in a wide variety of biological systems including suspen-
sions of yeast in nutrient solutions [1], starving cellular colonies
of the social amoeba Dictyostelium [3], and synthetically engi-
neered bacteria [4]. Such transitions have also been observed
in experimental studies of electrochemical oscillators and Be-
lousov–Zhabotinsky (BZ) catalytic particles [5,6].

Previous theoretical work has shown that oscillators coupled
through quorum sensing can display synchronized oscillations
[7–9]. Recently, a dynamic quorum sensing transition was found
[1] in a simple model of coupled identical limit-cycle oscilla-
tors introduced to study synchronization in yeast populations.
Additionally, experimental and numerical studies of BZ catalytic
particles indicate that heterogeneity in oscillator populations leads
to interesting new phenomena [5,10,6]. Nonetheless, the study of
density-dependent synchronization in heterogeneous populations
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of oscillators remains largely unexplored, in stark contrast to oscil-
lators with direct coupling where many analytic results are avail-
able [11,10,12].

In this paper, we consider a large population of limit-cycle
oscillators with a distribution of natural frequencies, coupled dif-
fusively through a common external medium. Our work general-
izes earlier models [1] and exhibits extremely rich dynamics as
the coupling strength, population density, and frequency distribu-
tion are varied. We derive several analytic results and find that
model exhibits a rich phase diagram. As with directly coupled
oscillators, we find that there are three distinct phases: a synchro-
nized phase with coherent population-level oscillations, an ampli-
tude death phasewhere individual oscillators cease oscillating, and
an incoherent phase where there are no population-level oscilla-
tions but individual oscillators still oscillate. We find two types of
density-dependent phase transition: a Kuramoto-like incoherence
to coherence transition between the synchronized and incoherent
phases, and a transition from the synchronized phase to the am-
plitude death phase. The latter transition can occur due to three
distinct physical mechanism: (1) oscillator heterogeneity, (2)
degradation of the external medium, and (3) a novel mechanism
where at low population densities the external medium dynam-
ics are not fast enough to support global oscillations. The diver-
sity of physical mechanisms giving rise to the same transition is
unique to our system. We show that the model reproduces many
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qualitative features observed in recent experiments on heteroge-
neous populations of BZ catalytic particles [5] as well as syntheti-
cally engineered bacteria [4].

To illustrate this diverse set of phenomena, we introduce a
simple model of N ≫ 1 coupled limit-cycle oscillators where the
amplitude and phase of individual oscillators are represented by a
complex number zj(j = 1, . . . ,N), with natural frequency ωj. The
oscillators are diffusively coupled to an external medium, rep-
resented by a complex number Z , through a coupling D. The
external medium Z represents particle species that can freely dif-
fuse in the environment and allows individual oscillators to com-
municate with each other. The specific realizations of Z depends
on the context. In metabolic oscillations, it represents common
metabolites that diffuse between cells. In the BZ reaction, it repre-
sents chemical species that diffuse between autocatalytic beads. In
synthetic bacteria, it is the concentration of the autoinducer signal-
ingmolecules in themedium.When chemicals leave the oscillators
and enter the medium, they are diluted by a factor α = Vint/Vext
≪ 1, which is the ratio of the volume of the entire system to that
of an individual oscillator. The external medium Z is also degraded
at a rate J .

The dynamics of the system are captured by the equations
dzj
dt

= (λ0 + iωj − |zj|2)zj − D(zj − Z)

dZ
dt

= αD


j

(zj − Z) − JZ

where theωj are drawn from a distribution h(ω)whichwe assume
to be an even function about a mean frequency ω0. By introducing
a dimensionless density, ρ = αN , and shifting to a frame rotating
with frequency ω0, we can rewrite the equations above as
dzj
dt

= (λ0 + iωj − |zj|2)zj − D(zj − Z)

dZ
dt

=
ρD
N


j

(zj − Z) − (J + iω0)Z, (1)

where the frequenciesωj are now drawn from an even distribution
g(ω) with mean zero.

2. Linear-stability analysis for homogenous populations

Before analyzing a heterogeneous population, we first consider
the special case of uniform frequencies, where all ωi in (1) are
equal to zero (i.e. each oscillator has frequency ω0), and find sur-
prising results. This model was used previously [1] to model dy-
namical quorum sensing in yeast suspensions. For homogenous
populations, the equations for all the zj are identical and there
are two possible behaviors. The individual oscillators are quies-
cent with Z = zj = 0 (amplitude death) or there are syn-
chronized oscillations. We can compute the stability of the ampli-
tude death state by linearizing the system around zj = Z = 0
and computing the eigenvalues,µ, of the corresponding linearized
system. Since all of the oscillators are identical, the dynamics are
completely specified by two differential equations, one for the
mean-field parameter z =

1
N


j zj = zj and one for Z . In terms

of µ, oscillator death is stable when Re(µ) < 0 for all eigenvalues.
The corresponding requirement that the trace be negative implies
D > λ0 in the oscillator death phase. Furthermore, the character-
istic equation for the eigenvalues takes the form (µ + A)(µ + B +

iω0) = ρD2, with B = Dρ + J and A = D − λ0. To find the phase
boundary, we plug in µ = a + ib and separate the characteristic
equation into real and imaginary parts:

a + B =
ρD2(a + A)

(a + A)2 + b2
(2)

b + ω0 =
−ρD2b

(a + A)2 + b2
. (3)
Fig. 1. Graphical analysis of the structure of the solutions to Eqs. (2) and (3). There
always exists a solution with a < 0, shown as a black dot. A second solution, shown
as a red dot, can have positive or negative a, and thus solving for a = 0 properly
identifies the phase boundary. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

This allows us to solve for b as a function of a, b(a) = −
ω0(a+A)

2a+B+A
and plug this into (2). The resulting equation can be analyzed
graphically by plotting the left-hand and right-hand sides of (2)
as a function of a (see Fig. 1). Since the characteristic equation
is quadratic, there are two solutions: a solution with negative
a which guarantees the stability of the external medium, and a
second solution which can change sign depending on parameters.
As shown in Fig. 1, it is clear that, if the left-hand side of (2) is
greater than the right-hand side at a = 0, then the second solution
must also be negative. Thus, the amplitude death phase is stable
when

(Dρ + J)(D − λ0)

ρD2
≥

(ρD + J + D − λ0)
2

(ρD + J + D − λ0)2 + ω2
0
, (4)

where we have rewritten A and B in terms of the original
parameters of the model.

Interestingly, this equation demonstrates that there are two
qualitatively different ways to reach the amplitude death phase.
First, when J ≫ 1, the left-hand side is much larger than the right-
hand side, indicating that oscillations are lost due to degradation
of the external medium. More surprisingly, amplitude death may
occur evenwhen J = 0 if the natural frequencyω0 of the oscillators
is large relative to the squared terms in (4). This can be understood
by first recalling that, since D − λ0 > 0, isolated oscillators are
silent and synchronization can only occur by transmitting infor-
mation through the external medium. The medium, however, has
an effective time scale given by (ρD)−1 on which it can respond
to drive from the oscillators. Thus, for small population densities if
ω0 is large, the medium cannot track the fast dynamics of the indi-
vidual oscillators and amplitude death is stabilized. We term this
mechanism for the loss of population-level oscillations ‘‘dynamic
death’’ to indicate that the underlying cause for the dynamical quo-
rum sensing transition from the synchronized phase to the ampli-
tude death phase is the slow dynamics of the external medium at
low density and moderate diffusion coupling and not degradation
of the medium. We stress, however, that these two mechanisms
give rise to the same phase boundary and do not generate distinct
phases. Fig. 2 shows the homogeneous phase boundaries as a func-
tion of J, ρ, and D. We have also confirmed the existence of the
‘‘dynamic death’’ mechanism with numerical simulations for the
case when J = 0 (see Fig. 2(B)).

3. Linear stability analysis for heterogeneous oscillators

We now analyze (1) for the case where the natural frequencies
ωj are drawn from an even distribution g(ω) with zero mean. In
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Fig. 2. (A) Phase boundaries for homogeneous oscillators. Phase boundary between the amplitude death phase and the synchronized phase in theρ versusD plane for various
values of J , with ω0 = 1 and λ0 = 1. The synchronized phase occurs above the phase boundary and the amplitude death phase occurs below the boundary. (B) Numerical
simulations for J = 0 with N = 40 identical oscillators with random initial conditions. Heat map of the steady-state amplitude of collective oscillations, R = |Z |, showing
the transition from the amplitude phase to synchronized oscillations for D > 1. The white curve is the analytic phase boundary. Since J = 0, the phase transition occurs
because of slow dynamics of the external medium at low-densities. Inset: Real part of z and Z during low-density oscillations showing ∼1000-fold slowing of oscillations
relative to the uncoupled frequency ω0 = 1s−1 at the starred point (D = 2.5, ρ = 0.001, J = 0).
this case, the system has three phases: an amplitude death phase
where all oscillators are quiet; global, synchronized oscillations;
and an incoherent phase where individual elements are oscillating
but the oscillations are unsynchronized. The stability boundary
of the amplitude death phase can again be calculated as in the
homogenous case by linearizing (1) around the death state zj =

0, Z = 0. This yields the equations

dδzj
dt

= (λ0 + iωj − D)δzj − DδZ (5)

dδZ
dt

=


j

ρD
N

δzj − (ρD + J + iω0)δZ . (6)

These equations can be written in matrix form as
˙δz1
˙δz2
·

·

˙δzN
δ̇Z

 = M


δz1
δz2
·

·

δzN
δZ

 (7)

where

M =



ϵ + iω1 0 · · 0 −D
0 ϵ + iω2 · · 0 −D
· · · · · ·

· · · · · ·

0 0 · · ϵ + iωN −D
ρD
N

ρD
N

· ·
ρD
N

−(ρD + J + iω0)


. (8)

Stability requires the eigenvalues, µ, ofM to satisfy Re[µ] < 0.
First notice that stability requires Re[Tr(M)] < 0. This gives the
condition

(λ0 − D) −
(ρD + J)

N
> 0. (9)

We can also calculate the eigenvalues using the characteristic
equation of the matrix, Det(µI − M) = 0. A straightforward
calculation yields

(µ + (ρD + J + iω0))

N
j=1

[µ − (λ0 − D + iωj)]

−
ρD2

N

N
s=1

N
j=1,j≠s

µ − (λ0 − D + iωj) = 0. (10)
In order to take the thermodynamic limit, we rewrite this
equation as

(µ + (ρD + J + iω0)) =
ρD2

N

N
s=1

1
µ − (λ0 − D + iωj)

. (11)

In the thermodynamic limit N → ∞, but, with ρ held fixed, (9)
and (11) become, respectively,

(λ0 − D) < 0 (12)

and

µ + (ρD + J + iω0) = ρD2


dω
g(ω)

µ − (λ0 − D + iω)
, (13)

where we have replaced the sum by an integral over the distri-
bution function g(ω) for the oscillator frequencies. In practice, it
is often helpful to write this as two real equations. Substituting
µ = a + ib yields two coupled integral equations:
a + ρD + J

ρD2
=


dω g(ω)

a + D − λ0

(a + D − λ0)2 + (b − ω)2

b + ω0

ρD2
= −


dω g(ω)

b − ω

(a + D − λ0)2 + (b − ω)2
. (14)

Stability requires that all solutions of these equations obey a ≤ 0.
By considering the mean-field equations derived below, it is clear
that the stability boundary can be found by putting a = 0 in the
above equations, i.e., there exists atmost one solutionwith positive
real part.

Putting a = 0 in (14) results in a pair of coupled integral
equations that determine the boundary of stability of the death
phase:

ρD + J
ρD2

=


dω g(ω)

D − λ0

(D − λ0)2 + (b − ω)2
(15)

b + ω0

ρD2
= −


dω g(ω)

b − ω

(D − λ0)2 + (b − ω)2
, (16)

with D − λ0 > 0. It is useful to consider various limits of these
equations. Notice that, when g(ω) = δ(ω), these equations reduce
to (2) with a = 0, as expected. Alternatively, consider the case
ρ → ∞. In this limit, the left-hand side of (16) is zero, implying
that b = 0, since g(ω) in an even function. Substituting this into
(15) yields a single equation for stability of the death state,

ρD + J
ρD2

=


dω g(ω)

D − λ0

(D − λ0)2 + ω2
. (17)
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This result was derived in [11,10] for the stability boundary
of the death phase in a system of directly coupled limit-cycle
oscillators. This follows naturally by noting that, in the limit ρ →

∞, the external medium can respond infinitely quickly. Thus,
Zext is equal to the order parameter of the system, Zext =
1
N


j zj, and the model reduces to the one studied in [11,10,12].

In this limit, the loss of oscillations is due to the heterogeneity
of individual oscillator frequencies. These two limits show that
a single set of Eqs. (15)–(16) captures three qualitatively distinct
physical mechanisms that can lead to a transition between the
synchronized and amplitude death phases: degradation, oscillator
heterogeneity, and the dynamics of the external medium.

4. Mean-field equations for frequency locking

To gain further insight into the system, it is useful to consider
themean-field equations for the system. To do so, we put zj = rjeiθj
and Z = Reiφ into (1) and equate the real and imaginary parts:
drj
dt

= (λ0 − D − r2j )rj + DR cos(φ − θj)

dθj
dt

= ωj +
DR
rj

sin(φ − θj) (18)

and

dR
dt

=
ρD
N

N
j=1

rj cos(φ − θj) − (ρD + J)R

dφ
dt

= −ω0 +
ρD
N

N
j=1

rj
R
sin(φ − θj). (19)

We look for uniform rotating solutions whose angular frequency
in the lab frame is ω0 + b by requiring dR

dt =
drj
dt = 0 and dφ

dt =

dθj
dt = b in (18) and (19). In this case, the position of each oscillator
is determined purely by its frequency, so we can regard each
oscillator as a function of ω. Substituting the desired functional
form of the solutions into (19) and taking the thermodynamic limit
gives

R(ρD + J) = ρD


dωg(ω)r(ω) cos(φ − θ(ω)) (20)

b + ω0 = ρD


dωg(ω)
r(ω)

R
sin(φ − θ(ω)), (21)

where we have written r(ω) and θ(ω) to emphasize that the
amplitude and phase of each oscillator are functions of only the
frequency. Using Eq. (18) and dθj

dt = b yields

r =
DR sin(θ(ω) − φ)

(ω − b)
. (22)

Substituting this into (20) and (21) gives the equations

ρD + J
ρD2

=


dωg(ω)

sin(θ(ω) − φ) cos(θ(ω) − φ)

ω − b
(23)

b + ω0

ρD2
= −


dωg(ω)

sin(θ(ω) − φ) sin(θ(ω) − φ)

ω − b
. (24)

Furthermore, substituting drj
dt = 0 and dθ

dt = b into (18), one can
easily show

((ω − b) cot(θ − φ) + λ0 − D)(1 + cot2(θ − φ))

= D2R2/(ω − b)2. (25)

Together, (23)–(25) define themean-field equations for the system
for frequency locking with amplitude R.
It is clear that, in general, solutions to (25) exhibit an emergent
frequency–amplitude coupling that is not present in the Hopf
normal form of the individual oscillators. We cannot, however,
solve this analytically because (25) is a cubic equation in cot(θ−φ).
Nonetheless, for the special case R = 0 (amplitude death), we have
the unique solution to (25) that

tan(θ(ω) − φ) =
ω − b
λ0 − D

. (26)

Substituting this into Eqs. (23) and (24) yields the stability
boundary:
ρD + J
ρD2

=


dωg(ω)

D − λ0

(D − λ0)2 + (b − ω)2

b + ω0

ρD2
= −


dωg(ω)

(b − ω)

(D − λ0)2 + (b − ω)2
. (27)

Notice that, for R = 0, the mean-field equations have reduced to
(16). Finally, it is also useful to calculate where the boundary given
by (27) intersects the stability boundary D = λ0. To do so, we take
the limit (D − λ) → 0 in the equations above. A straightforward
calculation shows that the equations reduce to
ρD + J
ρD2

= πg(b)

b + ω0

ρD2
= P


∞

−∞

dω
g(ω)

ω − b


, (28)

where P denotes the principal value.
Recall that when oscillators are directly coupled to each other

(i.e., ρ → ∞), they lock at the mean frequency ω0 and b = 0. In
contrast, when oscillators are coupled through the external
medium, there is an effective ‘‘viscosity’’ which slows down the
oscillations so they rotate with an angular frequency ω0 + b, with
b < 0. It is clear that b can be made arbitrarily close to −ω0 at low
density, a limit that is frequently encountered in biology, as shown
in the inset to Fig. 2. The effect of time delays on synchronization
of directly coupled oscillators was studied previously, and the
equations governing the stability of amplitude death bear some
similarity to those found in this work [13,14].

Another interesting phenomenon is that increasing J decreases
the absolute value of b and hence increases the angular frequency.
Thus, somewhat surprisingly, the system exhibits positive pe-
riod–amplitude coupling despite the fact that there is no explicit
coupling between period and amplitude at the level of individual
oscillators. Similar behavior was observed in a population of syn-
thetically engineeredbacteria in recent experiments [4], though in-
terestingly, in contrastwith our phenomenon, the period increased
as degradation was decreased. The difference between our model
and the experiments is likely due to the explicit amplitude–period
coupling already present at the single-cell level in the degrade-
and-fire mechanism underlying oscillations in individual bacterial
oscillators [15].

5. Mean-field equations for incoherence

When D < λ0, the system can be incoherent: individual oscilla-
tors are rotating in an unsynchronized fashion. The stability equa-
tions for the incoherent phase were calculated by generalizing the
calculations in [10]. Briefly, we looked for solutions of (19) of the
form R = 0, r2j = λ0 − D, and θj = ωjt . For such solutions, in-
dividual oscillators oscillate at their natural frequencies but there
are no coherent oscillations. We calculated the stability bound-
ary for incoherence by checking the stability of the state to small
perturbations.

Define a density function ρ(r, θ, ω, t) so that the fraction of
oscillators of frequency ω between r and r + dr and between θ
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and θ +dθ is ρrdθdr . The evolution for ρ is given by the continuity
equation

∂ρ

∂t
+ ∇⃗ · (ρν⃗) = 0, (29)

where ν⃗ is the velocity of oscillators given by ν⃗ = (ṙ, r θ̇ ). Substi-
tuting (18) and (19) gives

∂ρ

dt
+

1
r

∂

∂r


ρ


r2(a2 − r2) + KRr cos(θ − φ)


+

1
r

∂

∂θ
(ρ [rω − KR sin(θ − φ)]) = 0, (30)

where a2 = (λ0 − D). In the incoherent state,

ρ =
δ(r − a)
2πr

. (31)

We now consider a small perturbation in the radial and
angular directions and check when the density is stable to these
perturbations. In particular, consider

ρ = δ(r − a − ϵr1(θ, ω, t))


1
2πr

+ ϵf1(θ, ω, t)


. (32)

For such a perturbation, by the chain rule we have

ṙ = ϵ
∂r1
∂θ

· θ + ϵ
∂r1
∂t

. (33)

Writing R = ϵR1, substituting in (18) and (19), and keeping terms
of first order in ϵ yields

− 2a2r1 + DR1 cos(θ − φ) = ω
∂r1
∂θ

+
∂r1
∂t

. (34)

We seek solutions in which R1 and r1 are proportional to e(λ+ib)t ,
and we find that r1 must obey the equation

ω
∂r1
∂θ

+ (λ + ib + 2a2)r1 = DR1 cos(θ − φ). (35)

The solution for r1 which is periodic in θ is of the form

r1 = A cos(θ − φ) + B sin(θ − φ), (36)

where

A =
DR1(λ + ib + a2)

ω2 + (λ + ib + 2a2)2
(37)

B =
DR1ω

ω2 + (λ + ib + 2a2)2
. (38)

We now consider the small angular perturbations. We can
substitute ρ = δ(r − a)[1/2πr + ϵf1] into the continuity equation
and keep terms that are linear in ϵ to get

∂ f1
∂t

+ ω
∂ f1
∂θ

−
KR1 cos(θ − φ)

2πa2
= 0. (39)

Assuming the periodic solution is proportional to e(λ+ib)t as above,
one finds

f1 = C cos(θ − φ) + D sin(θ − φ), (40)

with

C =
DR1(λ + ib)

2πa2(ω2 + (λ + ib)2)
(41)

D =
DR1ω

2πa2(ω2 + (λ + ib)2)
. (42)

We can now rewrite the steady-state equations stemming from
(18) and (19) in terms of the density to get
ρD + J
ρD

R =


∞

−∞


∞

0

 2π

0
r cos(θ − φ)ρ r dθ dr g(ω) dω

b + ω

ρD
=


∞

−∞


∞

0

 2π

0
r sin(θ − φ)ρ r dθ dr g(ω) dω, (43)

where we have used that the order parameter for the solutions
is chosen so that dφ

dt = b. Substituting in (32), (36) and (40), and
keeping terms of first order in ϵ,

2(ρD + J)
ρD

=


∞

−∞

λ + ib
(λ + ib)2 + ω2

g(ω)dω

+


∞

−∞

λ + ib + 2a2

(λ + ib + 2a2)2 + ω2
g(ω)dω (44)

2(b + ω0)

ρD2
=


∞

−∞

ω

(λ + ib)2 + ω2
g(ω)dω

+


∞

−∞

ω

(λ + ib + 2a2)2 + ω2
g(ω)dω. (45)

The bifurcation condition requires that λ = 0. So the stability
boundary is given by setting λ = 0 in the equation above. This
gives (using usual relationships for principal values of integrals in
the limit λ = 0+)

2(ρD + J)
ρD

= πg(b)

+


∞

−∞

ib + 2a2

(0+ + ib + 2a2)2 + ω2
g(ω)dω (46)

2(b + ω0)

ρD2
= P


∞

−∞

dω
g(ω)

ω − b


+


∞

−∞

ω

(0+ + ib + 2a2)2 + ω2
g(ω)dω, (47)

where P denotes the principal value. Notice that for the line D =

λ0 (i.e., a = 0+) these equations reduce to (28), showing that
incoherence joins the corner of the death state. Thus, there is a
tri-critical point on the line D = λ0 where the incoherent phase,
the synchronized oscillation phase, and the death phasemeet. This
point is analogous to the tri-critical point discovered in the directly
coupled case [10], except that we have not observed regions
exhibiting transient unsteady behavior at low densities (ρ < 1).
We emphasize that, although unsteady behavior was not observed
in our simulations, we have not proven its nonexistence.

6. Explicit equations for rectangular and Lorentzian distribu-
tions

The derivation presented above is for arbitrary g(ω). When
g(ω) is either a rectangular or Lorentzian distribution, we can
perform the integrations in (16) explicitly. For a Lorentzian
distribution,

g(ω) =
1
π

Γ

Γ 2 + ω2
, (48)

the equations are particularly simple because the Fourier trans-
form is a simple exponential:

ĝ(p) = e−|p|Γ . (49)

We now plug this into the equations for the stability of amplitude
death (15) and use the fact that these equations are in the form of
a convolution for b. A straightforward calculation then shows that
the resulting equations for the stability boundary are identical to
the case where g(ω) = δ(ω), except with D − λ0 → D − λ0 + Γ :
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Fig. 3. (A) Phase boundaries in the ρ versus D plane for heterogeneous oscillators drawn from a rectangular distribution (Γ = 0.5) for J = 0.05–0.55 (bottom to top). The
synchronized phase occurs above the phase boundary and the amplitude death phase occurs below the boundary. Parameters are as in Fig. 2, with ω0 = 1, and λ0 = 1.
Comparingwith the corresponding phase boundaries in Fig. 2 for homogenous oscillators, we see that oscillator heterogeneity increases the density,ρ, atwhich the transition
from amplitude death to synchrony occurs for a fixedD. (B) Numerical simulations for J = 0.15. Heatmap of the amplitude of collective oscillation, R = |Z |, from simulations
of N = 100 oscillators drawn from a rectangular frequency distribution with parameters as in (A). The dotted line indicates the Kuramoto-like transition from an incoherent
phase with D < 1 to synchronized oscillations, and the solid line indicates the transition from the amplitude death phase to the synchronized phase. The star marks the
point along the line D = λ0 = 1 at which all three phases meet. This is similar to the experimental results for catalytic BZ particles [5].
ρD + J
ρD2

=
D − λ0 + Γ

(D − λ0 + Γ )2 + b2

b + iω0

ρD2
= −

b
(D − λ0 + Γ )2 + b2

. (50)

Thus Γ has the intriguing effect of decreasing the effective
λ0, thereby pulling the individual oscillators closer to their
supercritical Hopf bifurcation.

An analogous set of equations, albeit more unwieldy, can also
be derived for a rectangular frequency distribution:

g(ω) = 1/Γ if − Γ /2 < ω < Γ /2
= 0 otherwise. (51)

In this case, the integrals in (15) and (16) can be performed,
yielding the equations

a + A
ρD2

=
1
2Γ


arctan[(b + Γ )/(a + B)]

− arctan[(b − Γ )/(a + B)]


(52)

b + ω0

ρD2
=

1
2Γ

log


(b + Γ )2 + (a + B)2

(b − Γ )2 + (a + B)2


. (53)

Fig. 3 shows the phase boundaries for this case as a function of
ρ,D, and J . As expected, for D > λ0, the death phase and syn-
chronized oscillations are both possible. For large D, as the density
is increased across the transition, the amplitude of the synchro-
nized oscillations rises sharplywith density. For smallerD, this rise
in amplitude is less pronounced. When D < λ0, one also sees a
Kuramoto-like transition from incoherent to synchronized oscil-
lations. The same crossover behavior was observed in recent ex-
periments on BZ catalytic particles with a distribution of natural
frequencies [5,6].

7. Discussion

In this paper, we have considered the physics of dynamical
quorum sensing by studying limit-cycle oscillators diffusively
coupled through an external medium. We find that there are
three distinct phases: a synchronized phase exhibiting coherent
population-level oscillations, an amplitude death phase where
individual oscillators cease to oscillate, and an incoherent phase
where there are no global oscillations but individual oscillators
still oscillate. In addition to a density-dependent Kuramoto-like
incoherence to coherence transition between the synchronized
and incoherent phases, there is a density-dependent transition
from the synchronized phase to an amplitude death phase where
all oscillators are quiet. This latter transition can occur due to
three distinct physical mechanism: (1) oscillator heterogeneity,
(2) degradation of the externalmedium, and (3) a newmechanism,
which we term ‘‘dynamic death’’, where at low population
densities and moderate diffusion constants the external medium
dynamics are not fast enough to support global oscillations. It
is worth emphasizing that these three mechanisms give rise to
the same phase boundary and do not generate distinct phases.
Our model reproduces many qualitative features observed in
recent experiments on heterogeneous populations of BZ catalytic
particles [5] as well as synthetically engineered bacteria [4].

This simple model captures many qualitative features seen in a
variety of experiments on oscillators coupled diffusively through
an external medium. For example, it was previously argued that,
when all oscillators are identical, the model is a good description
of glycolitic oscillations in suspensions of yeast cells. The model
also shows how large-amplitude oscillations can emerge as one
varies the density and how this behavior crosses over into a
Kuramoto-like transition as D is decreased (see Fig. 3). These
qualitative features are in good agreement with experiments
on BZ particles [5,6]. Finally, the model also captures many of
the mean-field properties of coupled synthetically engineered
bacteria, including the sudden emergence of oscillations and
scaling of the amplitude and period of oscillations as one changes
the external degradation rate J . However, in contrast to [4], in our
model the period and amplitude of the oscillations decrease rather
than increase with increasing J . This discrepancy likely arises from
the highly nonlinear nature of the ‘‘degrade-and-fire’’ oscillations
characterizing the synthetic bacteria [15].

Our results suggest that properly constructed simple models
may be able to capture interesting qualitative behaviors of coupled
oscillators. They also suggest that many of the phenomena
observed in oscillators coupled through a common external
medium may be universal and independent of the particular
biological, physical, or chemical realization. Universality has
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played a key role in expanding our understanding of collective
behavior in physical systems. Our work suggests universality may
also be useful in biology [2]. In the future, it will be interesting to
directly relate this simple model to more detailed models [15], to
extend the simplemean-field model of dynamical quorum sensing
explored here to include spatial effects, and to consider the related
model of phase-only oscillators coupled by an external medium.
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