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Quadratic programming (QP) is a common and important constrained optimization problem. Here, we derive
a surprising duality between constrained optimization with inequality constraints, of which QP is a special case,
and consumer resource models describing ecological dynamics. Combining this duality with a recent “cavity
solution,” we analyze high-dimensional, random QP where the optimization function and constraints are drawn
randomly. Our theory shows remarkable agreement with numerics and points to a deep connection between
optimization, dynamical systems, and ecology.
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I. INTRODUCTION

Optimization is an important problem for numerous dis-
ciplines, including physics, computer science, information
theory, machine learning, and operations research [1–4].
Many optimization problems are amenable to analysis using
techniques from the statistical physics of disordered systems
[5–7]. Over the last few years, similar methods have been
used to study community assembly and ecological dynamics
suggesting a deep connection between ecological models of
community assembly and optimization [8–16].Yet the exact
relationship between these two fields remains unclear.

Here we show that constrained optimization problems with
inequality constraints are naturally dual to an ecological dy-
namical system describing a generalized consumer resource
model [17–19]. As an illustration of this duality, we focus on
a particular important and commonly encountered constrained
optimization problem: quadratic programming (QP) [1]. In
QP the goal is to minimize a quadratic objective function
subject to inequality constraints. We show that QP is dual
to one of the most famous models of ecological dynamics,
MacArthur’s Consumer Resource Model (MCRM), a sys-
tem of ordinary differential equations describing how species
compete for a pool of common resources [17–19]. We also
show that the Lagrangian dual of QP has a natural description
in terms of generalized Lotka-Volterra equations that can
be derived from the MCRM in the limit of fast resource
dynamics.

We then consider random quadratic programming (RQP)
problems where the optimization function and inequality con-
straints are drawn from a random distribution. We exploit
a recent “cavity solution” to the MCRM by one of us to
construct a mean-field theory for the statistical properties of
RQP [12]. Our theory is exact in infinite dimensions and
shows remarkable agreement with numerical simulations even
for moderately sized finite systems. This duality also allows
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us to use ideas from ecology to understand the behavior of
RQP and interpret community assembly in the MCRM as an
optimization problem.

II. OPTIMIZATION AS ECOLOGICAL DYNAMICS

We begin by deriving the duality between constrained opti-
mization and ecological dynamics. Consider an optimization
problem of the form

minimize
R

f (R)

subject to gi(R) � 0, i = 1, . . . , S,

Rα � 0, α = 1, . . . , M,

(1)

where the variables being optimized R = (R1, R2, . . . , RM )
are constrained to be non-negative. We can introduce a “gen-
eralized” Lagrange multiplier λi for each of the S inequality
constraints in our optimization problem. In terms of the λi,
we can write a set of conditions collectively known as the
Karush-Kuhn-Tucker (KKT) conditions that must be satisfied
at any local optimum Rmin of our problem [1–3]. We note that
for this reason, in the optimization literature the λi are often
called KKT multipliers rather than Lagrange multipliers. The
KKT conditions are

Stationarity: ∇R f (Rmin) + ∑
j λ j∇Rg j (Rmin) = 0,

Primal feasibility: gi(Rmin) � 0,
Dual feasibility: λi � 0,
Complementary slackness: λigi(Rmin) = 0,

where the last three conditions must hold for all i = 1, . . . , M.
The KKT conditions have a straightforward and intuitive
explanation. At the optimum Rmin, either gi(Rmin) = 0 and the
constraint is active λi � 0, or gi(Rmin) � 0 and the constraint
is inactive λi = 0. In our problem, the KKT conditions must
be supplemented with the additional requirement of positivity
Rα � 0.

One can easily show that the four KKT conditions and pos-
itivity are also satisfied by the steady states of the following
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FIG. 1. Constrained optimization with inequality constraints is dual to an ecological dynamical system described by a generalized

consumer resource model (MCRM). The variables to be optimized (hexagons) and Lagrange multipliers (ovals) are mapped to resources
and species, respectively. Species must consume resources to grow. (Bottom left) A quadratic programming (QP) problem with two inequality
constraints where the unconstrained optimum differs from the constrained optimum. (Bottom right) Dynamics for MacArthur’s Consumer
Resource Model that is dual to this QP problem. The steady-state resource or species abundances correspond to the value of variables or
Lagrange multipliers at the QP optimum. For this reason, species corresponding to inactive constraints go extinct.

set of differential equations restricted to the space λi, Rα � 0:

dλi

dt
= λigi(R),

dRα

dt
=

⎡
⎣−∂Rα

f (R) −
∑

j

λ j∂Rα
g j (R)

⎤
⎦Rα. (2)

The first of these equations just describes exponential
growth of a “species” i with a resource-dependent “growth
rate” gi(R). Species with gi(Rmin) � 0 correspond to con-
straints that are inactive and go extinct in the ecosystem
(i.e., λi min = 0), whereas species with gi(Rmin) = 0 survive at
steady state and correspond to active constraints with λi min �=
0 (see Fig. 1 for a simple two-dimensional example). The
second equation in (2) performs a “generalized gradient de-
scent” on the optimization function f (R) + ∑

j λ jg j (R) (note
the extra factor of Rα in our dynamics compared to the usual
gradient descent equations). In the context of ecology, these
equations describe the dynamics of a set of resources {Rα}
produced at a rate −∂Rα

f (R)Rα and consumed by individuals
of species j at a rate λ j∂αg j (R)Rα .

This suggests a simple dictionary for constructing systems
dual to optimization problems with inequality constraints (see
Fig. 1). The variables are resources whose dynamics are
governed by the gradient of the function being optimized.
Each inequality is associated with a species through its cor-
responding Lagrange (KKT) multiplier. Species that survive
in the ecosystem correspond to active constraints, whereas
species that go extinct correspond to inactive constraints. The
steady-state values of the resource and species abundances

correspond to the local optimum Rmin and Lagrange multipli-
ers at the optimum {λ j min}, respectively. Finally, the f (Rmin)
are closely related to Lyapunov functions known to exist
in the literature for specific choices of resource dynamics
[15,18,19].

III. ECOLOGICAL DUALS OF QUADRATIC
PROGRAMMING (QP)

For the rest of the paper, we focus on QP where the
optimization function is quadratic, f (R) = 1

2 RT QR + bT R,
with Q a positive semidefinite matrix, and linear inequality
constraints. The positivity of Q guarantees that the problem
is convex. By going to the eigenbasis of Q, we can always
rewrite the QP problem as minimizing a square distance:

minimize
R

1

2
||R − K||2

subject to
∑

α

ciαRα � mi, i = 1, . . . , S,

Rα � 0, α = 1, . . . , M.

(3)

Using (2), we can construct the dual ecological model:

dλi

dt
= λi

(∑
α

ciαRα − mi

)
,

dRα

dt
= Rα (Kα − Rα ) −

∑
j

λ jc jαRα. (4)

The is the famous MacArthur Consumer Resource Model
(MCRM) which was first introduced by MacArthur and
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Levins in their seminal papers [17,18] and has played an
extremely important role in theoretical ecology [20,21].

In optimization problems, one often works with the
Lagrangian dual of an optimization problem. We show in
Appendix A that the dual to (3) is just

maximize
λi

∑
i

λi

⎡
⎣κi − 1

2

∑
j

αi jλ j

⎤
⎦,

subject to λi � 0,

(5)

with κi = ∑
α Kα (ciα − mi ), αi j = ∑

α ciαc jα , and the sum
restricted to α for which Rα min �= 0. It is once again straight-
forward to check that the local minima of this problem are in
one-to-one correspondence with steady states of the general-
ized Lotka-Volterra equations (GLVs) of the form

dλi

dt
= λi

⎛
⎝κi −

∑
j

αi jλ j

⎞
⎠. (6)

As with the primal problem, the species in the GLV have a nat-
ural interpretation as Lagrange multipliers enforcing inequal-
ity constraints. This GLV can also be directly obtained from
the MCRM in (4) in the limit where the resource dynamics
are extremely fast by setting dRα

dt = 0 in the second equation
and plugging in the steady-state resource abundances into
the first equation [18,19] (see Appendix B). This shows the
Lagrangian dual of QP maps to a dynamical system described
by a GLV, which itself can be derived from the MCRM, which
is the dynamical dual to the primal optimization problem!

IV. RANDOM QUADRATIC PROGRAMMING (RQP)

Recently the MCRM was analyzed in the high-dimensional
limit where the number of resources and species in the re-
gional species pool is large (S, M � 1). In this limit, the
resource dynamics were extremely complex, with many re-
sources deviating significantly from their unperturbed values
and a large fraction of species in the regional pool going
extinct [12]. In terms of the corresponding optimization prob-
lem, this suggests that f (Rmin) will generically be far from
zero and many of constraints will be inactive.

To better understand this, we analyzed random quadratic
programming (RQP) problems in high dimension. In RQP, the
parameters in (3) are drawn from random distributions [see
Fig. 2(a)]. We focus on the case where the Kα and mi are
independent random normal variables drawn from Gaussians
with means K and m and variances σ 2

K and σ 2
m, respectively.

The elements of the constraint matrix ciα are also drawn from
Gaussians with mean μc/M and variance σ 2

c /M [23]. This
scaling with M is necessary to ensure that the sum that appears
in the inequality constraints in (3) has a good thermodynamic
limit when M, S → ∞ with M/S = γ held fixed.

We are especially interested in understanding the statistical
properties of solutions to the RQP [see Fig. 2(a)]. Among
the quantities we examine are the expectation value of the
optimized function at the minima 〈 f (Rmin)〉/M, the fraction
of active constraints, S∗/S, the fraction of variables that are
nonzero at the optimum, M∗/M, as well the first two moments
of Rαmin and λ j min (see Appendix C and D for details).

minimize
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FIG. 2. Random quadratic programming (RQP). (a) In RQP, the
parameters of the quadratic optimization function and inequality
constraints are drawn from a random distribution. Effect of varying
the ratio of constraints to variables S/M on (b) the value of the op-
timization function f (Rmin )/M, (c) the fraction of nonzero variables
M∗
M , and (d) the fraction of active constraints S∗

S . Cavity solutions
are solid lines, and shaded region shows ±1 standard deviation from
50 independent optimizations of RQP using the CVXOPT package
in PYTHON 3 with M = 100, μc = 1, K = 1, σK = 1, m = 1, σm =
0.1. Code is available in [22].

It is possible to a derive mean-field theory (MFT) for the
statistical properties of the optimal solution in the RQP—or
correspondingly the steady states of the MCRM—using the
cavity method. The basic idea behind the cavity method is to
derive self-consistency equations that relate the optimization
problem (ecosystem) with M + 1 variables (resources) and
S + 1 inequality constraints (species) to a problem where
a constraint (species) and variable (resource) have been re-
moved: (M + 1, S + 1) → (M, S) [12]. The need to remove
both a constraint and variable is important for keeping all
order one terms in the thermodynamic limit [24,25]. In what
follows, we focus on the replica-symmetric solution.

The cavity equation exploits the observations the constraint∑M
α=1 ciαRα is a sum of many random variables, ciα . When

M � 1, due to the law of large numbers we can model such a
sum by a random variable drawn from a Gaussian whose mean
and variance involve the statistical quantities described above.
Less obvious from the perspective of QP is that we need to
introduce a second mean-field quantity Keff

α (see Appendix D
and Ref. [12]). After introducing the Lagrange multipliers that
enforce the inequality constraints, the optimization function to
be minimized takes the form

1

2
||R − K||2 +

∑
j

λ j (c jαRα − mj )

= 1

2

∑
α

{
Rα

[
Rα − Keff

α (λ)
] + Kα[Kα − Rα]

}
,

where we have defined the mean-field variable

Keff
α (λ) = Kα −

S∑
j=1

λ jc jα.

Since Keff
α (λ) is also a sum of many terms containing ciα ,

it can also be approximated as a random variable drawn
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from a Gaussian whose mean and variance are calculated
self-consistently.

The full derivation of the replica symmetric mean-field
equations is identical to that in Ref. [12] and is given in the
Appendix D. The resulting self-consistent mean-field cavity
equations can be solved numerically in Mathematica. Figure 2
shows the results of our mean-field equations and compar-
isons to numerics where we directly optimize the RQP prob-
lem over many independent realizations using the CVXOPT
package in PYTHON [26]. Notice the remarkable agreement
between our MFT and results from direct optimization even
for moderate system sizes with M = 100. In Appendix C we
show that the cavity solution can also accurately describe the
dual MCRM.

Figure 2 also shows that the statistical properties of the
QP solutions change as we vary the number of constraints S
and the variance of the constraint matrix ciα . When S 	 M,
the expectation value of the optimization function f (Rmin)/M
approaches zero, the minimum for the unconstrained problem.
In this limit, the few constraints that are present are also active.
As S/M is increased, the fraction of active constraints quickly
drops, and f (Rmin)/M quickly increases, after which both
quantities reach a plateau where they vary very slowly with
S. The value of the the plateau depends on σc. Increasing the
variance of the constraints results in more active constraints
and a larger value of f (Rmin) at the optimum.

These results for RQP can be naturally understood using
ideas from ecology. Intuitively a smaller σc means more
“redundant” constraints. In ecology, this is the principle of
limiting similarity: species with large niche overlaps (similar
ciα) competitively exclude each other [17–21]. In the language
of optimization, this ecological intuition suggests that when
constraints are similar enough, only the most stringent of
these will be active due to an effective competitive exclusion
between constraints. Thus, in RQP competitive exclusion
becomes a statement about the geometry of how random
planes in high dimension repel each other at the corners of
simplices. In all cases, increasing S increases the total number
of active constraints (species) even though the fraction of
active constraints decreases. For this reason, the optimization
problem is more constrained for larger S and f (Rmin)/M is
larger. Finally the plateau in statistical quantities at large S can
be understood as arising from what in ecology has been called
“species packing”: there is a capacity to the number of distinct
species that any ecosystem can typically support [17,18].

V. DISCUSSION

In this paper, we have derived a surprising duality between
constrained optimization problems and ecologically inspired
dynamical systems. We showed that QP (in any dimension)
maps to one of the most famous models of ecological dynam-
ics, MacArthur’s Consumer Resource Model (MCRM), a sys-
tem of ordinary differential equations describing how species
compete for a pool of common resources. By combining this
mapping with a recent “cavity solution” to the MCRM, we
constructed a mean-field theory for the statistical properties
of RQP that showed remarkable agreement with numerical
simulations. Intuitions from ecology suggest that the geome-
try of constrained optimization can be described using a com-

petitive exclusion between constraints, which in our case cor-
respond to random high-dimensional hyperplanes. This work
suggests that the deep connection between geometry, ecol-
ogy, and high-dimensional random ecosystems is a generic
property of a large class of generalized consumer resource
models [27]. Our work also gives a natural explanation of
the existence of Lyapunov functions in these models. Many
of these ideas can also be generalized to settings that result in
asymmetric interactions between species [28].

We have focused on convex QP, where the quadratic form
in the objective function is positive semidefinite. When ap-
plied to indefinite QP, our mapping no longer produces a
physically feasible ecosystem. In this more general scenario,
the KKT conditions themselves are necessary but not suffi-
cient for global optimality (see, for example, Ref. [1]). Sev-
eral algorithms were proposed recently to tackle nonconvex
QP in the optimization community [29,30]. This problem is
known to be NP-complete [31], prompting recent interest in
approaches based on quantum annealing or adiabatic quantum
computation [32,33].

Our results on the duality between a generic consumer re-
source model and quadratic programming extend recent works
on more specialized, fine-tuned consumer resource models
studied in Refs. [15,34]. The specialized consumer resource
models studied in these works exhibited a strict phase transi-
tion between a regime where all resources were pinned to the
same value and M species survived (what the authors called a
shielded phase) and a phase where S∗ < M species survived in
the ecosystem (what the authors called a vulnerable phase). In
Ref. [34] it was pointed out that this transition is reminiscent
of constraint satisfaction problems and in particular random
linear programming [35]. The models studied in our paper do
not exhibit this phase transition because far less stringent as-
sumptions are made on resource dynamics. Nonetheless, our
work shows that even in generic models resource models the
fraction of active constraints saturates, a behavior reminiscent
of the shielded phase studied in Refs. [15,34]. Furthermore, by
explicitly constructing a general duality between a very large
set of consumer resource models and constrained optimization
problems, our work makes clear how we can relate the idea of
active constraints in optimization theory to ideas in ecological
dynamics.

Our work also suggests a simple way of speeding up
simulations for steady states of consumer resource models. By
mapping the ecological dynamics onto convex optimization,
we can make use of powerful numerical and computational
techniques to calculate steady-state properties of consumer
resource models.
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APPENDIX A: DERIVATION OF LAGRANGIAN DUAL
FOR QP

In this section we derive the Lagrangian dual to our primal
quadratic programming (QP) problem

minimize
R

1

2
||R − K||2

subject to
∑

α

ciαRα � mi, i = 1, . . . , S,

Rα � 0, α = 1, . . . , M.

(A1)

We start by introducing Lagrange (KKT) multipliers λi dual
to each of the S constraints and Lagrange (KKT) multipliers
μα that enforce positivity. Then the function to be optimized
is

maximize
λ j

minimize
Rα

1

2

∑
α

(
R2

α − 2KαRα + K2
α

)
+
∑
j,α

λ j (c jαRα − mi ) − μαRα

subject to λ j � 0 j = 1, . . . , S.

(A2)

We take the derivative with respect to Rα and note that

Rα∗ = max

⎡
⎣0, Kα −

∑
j

c jαλ j

⎤
⎦, (A3)

where we have used the KKT condition μαRα∗ = 0
Plugging this back into (A2), we find that the function to

be maximized with respect to the λi is

∑
i

λi

⎡
⎣κi − 1

2

∑
j

αi jλ j

⎤
⎦ (A4)

with

κi =
∑

α,Rα∗ �=0

Kαciα − mi (A5)

and

αi j =
∑

α,Rα∗ �=0

ciαc jα. (A6)

APPENDIX B: DERIVATION OF LOTKA VOLTERRA
EQUATIONS FROM MCRM

We start from the MCRM dynamical equations

dλi

dt
= λi

(∑
α

ciαRα − mi

)
,

dRα

dt
= Rα

⎡
⎣(Kα − Rα ) −

∑
j

λ jc jα

⎤
⎦Rα. (B1)

Notice that setting the second equation to zero we get

Rα∗ = max

⎡
⎣0, Kα −

∑
j

c jαλ j

⎤
⎦. (B2)

Plugging this into the first equation in (B1) gives

dλi

dt
= λi

⎛
⎝κi −

∑
j

αi jλ j

⎞
⎠ (B3)

with αi j and κi defined as in Appendix A.

APPENDIX C: ADDITIONAL FIGURE COMPARING RQP,
MCRM, AND MFT

In this section, we supplement Fig. 2 with Fig. 3 showing
a comparison of the cavity solution, optimization of RQP, and
steady-state values of the MCRM dual to the RQP. For each
choice of parameters, the RQP were solved using the CVXOPT

package in PYTHON 3. The dual MCRM was constructed as
outlined in main text and then integrated to steady state using
standard ODE solvers in PYTHON.

APPENDIX D: DERIVATION OF CAVITY SOLUTION

1. Model setup

In this section, we derive the cavity solution to the MCRM
[Eq. (4)]

dλi

dt
= λi

(∑
α

ciαRα − mi

)
,

dRα

dt
= Rα (Kα − Rα ) −

∑
j

λ jc jαRα. (D1)

Note that here we follow closely the derivation in Ref. [12].
The only difference is that here we consider the consumer
preference ciα as random variables drawn from a Gaussian
distribution with mean μc/M and variance σ 2

c /M, as opposed
to the choices μc/S and σ 2

c /S used in that work. With these
definitions, we can decompose the consumer preference into
ciα = μc/M + σcdiα , where the fluctuating part diα obeys

〈diα〉 = 0, (D2)

〈diβd jβ〉 = δi jδαβ

M
. (D3)

We also assume that both the carrying capacity Kα and the
minimum maintenance cost mi are independent Gaussian ran-
dom variables with mean and covariance given by

〈Kα〉 = K, (D4)

Cov(Kα, Kβ ) = δαβσ 2
K , (D5)

〈mi〉 = m, (D6)

Cov(mi, mj ) = δi jσ
2
m. (D7)

Let 〈R〉 = (1/M )
∑

α Rα and 〈λ〉 = (1/S)
∑

i λi be the av-
erage resource and average species abundance, respectively.
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FIG. 3. Comparison of cavity solution (solid line), RQP (long dash line), and dual MCRMs (short dash line). The simulations represent
averages from 50 independent realizations and parameters as in Fig. 2.

With all these defined, we can rewrite Eq. (D1) as

dλi

dt
= λi

{
[μc〈R〉 − m] + σc

∑
α

diαRα − δmi

}
, (D8)

dRα

dt
= Rα

⎧⎨
⎩[

K − μcγ
−1〈λ〉] − Rα − σc

∑
j

d jαλ j + δKα

⎫⎬
⎭,

(D9)

where δKα = Kα − K, δmi = mi − m and γ = M/S. We can
interpret the bracketed terms in these equations as population
mean growth rate and effective resource capacity, respec-
tively:

g ≡ μc〈R〉 − m, (D10)

Keff ≡ K − μcγ
−1〈λ〉. (D11)

As noted in the main text, the basic idea of cavity method
is to relate an ecosystem with M + 1 resources (variables) and
S + 1 species (inequality constraints) to that with M resources
and S species. Following Eqs. (D8) and (D9), one can write
the ecological model for the (M + 1, S + 1) system where
resource R0 and species λ0 are introduced to the (M, S) system
as

dλi

dt
= λi

{
g + σc

∑
α

diαRα + σcdi0R0 − δmi

}
, (D12)

dRα

dt
= Rα

⎧⎨
⎩Keff − Rα − σc

∑
j

d jαλ j − σcd0αλ0 + δKα

⎫⎬
⎭,

(D13)

where all sums from now on are understood to be over the
indices α, j > 0 from the (M, S) system. The equations for
the newly introduced species (i = 0) and resource (α = 0) are
given by

dλ0

dt
= λ0

{
g + σc

∑
α

d0αRα + σcd00R0 − δm0

}
, (D14)

dR0

dt
= R0

⎧⎨
⎩Keff − R0 − σc

∑
j

d j0λ j − σcd00λ0 + δK0

⎫⎬
⎭.

(D15)

2. Deriving the self-consistency equations with cavity method

Following the same procedure in Ref. [12], we introduce
the following susceptibilities:

χ
(λ)
iβ = ∂λi

∂Kβ

, (D16)

χ
(R)
αβ = ∂Rα

∂Kβ

, (D17)

ν
(λ)
i j = ∂λi

∂mj
, (D18)

ν
(R)
α j = ∂Rα

∂mj
, (D19)

where we denote X as the steady-state value of X . Recall that
the goal is to derive a set of self-consistency equations that
relates the ecological system (optimization problem) char-
acterized by M + 1 resources (variables) and S + 1 species
(constraints) to that with the new species and new resources
removed: (S + 1, M + 1) → (S, M ). To simplify notation, de-
note X \0 be the steady-state value of quantity X in the absence
of the new resource and new species. Since the introduction
of a new species and resource represents only a small (order
1/M) perturbation to the original ecological system, we can
express the steady-state species and resource abundances in
the (S + 1, M + 1) system with a first-order Taylor expansion
around the (S, M ) values. We note that the new terms σcdi0R0

in Eq. (D12) and σcd0αλ0 in Eq. (D13) can be treated as
perturbations to mi, and Kα , respectively, yielding

λi = λi\0 − σc

∑
β

χ
(λ)
iβ d0βλ0 − σc

∑
j

ν
(λ)
i j d j0R0, (D20)

Rα = Rα\0 − σc

∑
β

χ
(R)
αβ d0βλ0 − σc

∑
j

ν
(R)
α j d j0R0. (D21)

The next step is to plug Eqs. (D20) and (D21) into Eqs. (D14)
and (D15) and solve for the steady-state value of λ0 and R0.

For the new species, setting Eq. (D14) to zero and plugging
in Eq. (D21) gives

0 = λ0

⎡
⎣g + σc

∑
α

d0αRα\0 − σ 2
c

∑
αβ

χ
(R)
αβ d0αd0βλ0

− σ 2
c

∑
α j

ν
(R)
α j d0αd j0R0 − δm0 + σcd00R0

⎤
⎦. (D22)
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We now note that each of the sums in this equation is the sum
over a large number of uncorrelated random variables and can
therefore be well approximated by Gaussian random variables
for large enough M and S. It is a straightforward exercise to
show that the mean and variance of the third sum as well as
the variance of the second sum are all order 1/M or higher
and can be ignored in comparison to the order one terms. The
mean of the second sum is∑

αβ

〈
χ

(R)
αβ

〉〈d0αd0β〉 = 1

M

∑
α

〈
χ (R)

αα

〉 = χ, (D23)

where we have used the statistics of diα as defined in Eqs. (D2)
and (D3) and have defined χ ≡ 〈χ (R)

αα 〉.
Using these observations about the second and third sums,

we obtain

0 = λ0

[
g − σ 2

c χλ0 + σc

∑
α

d0αRα\0 − δm0

]
+ O(M−1/2).

(D24)

Since the mi come from a Gaussian distribution, we can model
the combination of the remaining sum with δmi by a single
Gaussian random variable with zero mean and variance σ 2

g
given by

σ 2
g ≡ Var

(
σc

∑
α

d0αRα\0 − δm0

)
(D25)

= Var

(
σc

∑
α

d0αRα\0

)
+ Var(δm0) (D26)

= σ 2
c

1

M

∑
α

R
2
α\0 + σ 2

m (D27)

= σ 2
c qR + σ 2

m, (D28)

where

qR = 1

M

∑
α

R
2
α\0. (D29)

Denoting zλ as a random variable with zero mean and unit
variance, we can express Eq. (D24) in terms of the quantities
just defined:

0 = λ0
(
g − σ 2

c χλ0 + σgzλ

)
. (D30)

Inverting this equation one gets

λ0 = max[0, g + σgzλ]

σ 2
c χ

, (D31)

which is a truncated Gaussian.
We can follow the same procedure to solve for the steady

state of the resource. Setting Eq. (D15) to zero and plugging
in Eq. (D20) gives

0 = R0

⎛
⎝Keff − R0 − σc

∑
j

d j0λ j\0 + σ 2
c

∑
jβ

χ
(λ)
iβ d j0d0βλ0

+ σ 2
c

∑
jk

ν
(λ)
jk d j0dk0R0 + δK0 − σcd00λ0

⎞
⎠. (D32)

Keeping only the leading order terms one arrives at

0 ≈ R0

⎛
⎝Keff − R0 + δK0 − σc

∑
j

d j0λ j\0 + σ 2
c γ −1νR0

⎞
⎠,

(D33)

where ν ≡ 〈ν (λ)
j j 〉 is the average susceptibility. As before,

δK0 − σc
∑

j d j0λ j\0 is a Gaussian random variable with zero
mean and variance σ 2

Keff given by

σ 2
Keff ≡ Var

⎛
⎝δK0 − σc

∑
j

d j0λ j\0

⎞
⎠ (D34)

= Var(δK0) + Var

⎛
⎝σc

∑
j

d j0λ j\0

⎞
⎠ (D35)

= σ 2
K + σ 2

c

1

M

∑
j

λ
2
j\0 (D36)

= σ 2
K + σ 2

c γ −1qλ, (D37)

where

qλ = 1

S

∑
j

λ
2
j\0. (D38)

Denoting zR as a random variable with zero mean and unit
variance, we can express Eq. (D33) in terms of the quantities
just defined:

0 = R0
(
Keff − R0 + σKeff zR + σ 2

c γ −1νR0
)
. (D39)

Finally, inverting this equation gives the steady-state distribu-
tion of the resource

R0 = max(0, Keff + σKeff zR)

1 − γ −1σ 2
c ν

. (D40)

Next let us examine the self-consistency equations for the
fraction of nonzero species and resources, φλ and φR, re-
spectively. Note that the goal is to find the values of
{φλ, φR, 〈λ〉, 〈R〉, qR, qλ, χ, ν} with given sets of parameters
{K, σK , m, σm, μc, S, M}. By variable counting, we will need
eight equations to solve for these eight unknowns but so far we
have only two, Eq. (D31) and Eq. (D40). To find the remaining
six equations, let us define some quantities [cf. Eqs. (D10) and
(D11)]:

g ≡ g

σg
= μc〈R〉 − m

σg
, (D41)

Keff ≡ Keff

σKeff

= K − μcγ
−1〈λ〉

σKeff

, (D42)

as well as the function

w j () =
∫ ∞

−

dz√
2π

e− z2

2 (z + ) j, (D43)

which will simplify our notation later. First, let us derive the
self-consistency equation for the susceptibilities. This is done
by taking the derivative of Eq. (D40) with respect to K and of
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Eq. (D31) with respect to m while noting the definition of φλ

and φR:

ν = − φλ

σ 2
c χ

, (D44)

χ = φR

1 − γ −1σ 2
c ν

. (D45)

Since Eq. (D31) and Eq. (D40) imply that the species and re-
source distributions are truncated Gaussians, it will be useful
to note the following: Let y = max(0, a

b + c
bz), with z being a

Gaussian random variable with zero mean and unit variance.
Then its jth moment is given by

〈y j〉 =
(

b

c

) j ∫ ∞

− b
a

dz√
2π

e− z2

2

(
z + b

a

) j

. (D46)

With this we can easily write the self-consistency equations
for the fraction of nonzero species and resources as well as the
moments of their abundances [cf. Eq. (D31) and Eq. (D40)]:

φλ = w0(g), (D47)

φR = w0(Keff ), (D48)

〈λ〉 = σg

σ 2
c χ

w1(g), (D49)

〈R〉 = σKeff

1 − γ −1σ 2
c ν

w1(Keff ), (D50)

qλ = 〈λ2〉 =
(

σg

σ 2
c χ

)2

w2(g), (D51)

qr = 〈R2〉 =
(

σKeff

1 − γ −1σ 2
c ν

)2

w2(Keff ). (D52)

Note that we only write the first and the second moments since
these six equations, along with Eqs. (D31) and (D40), com-
plete the equations required to solve for the eight variables.

3. Cavity solution to the optimization function

Here we derive the cavity solution to the optimization
function f (R) defined as

〈 f (R)〉 = 1

2
〈||R − K||2〉 (D53)

= 1

2

∑
α

〈
R2

α

〉 − 2〈KαRα〉 + 〈
K2

α

〉
. (D54)

The first term is given by Eq. (D52), while the last term is
just K2 + σ 2

K . What remains to be solved is 〈KαRα〉. From
Eq. (D40), one can write

Rα (Kα ) = max
(
0, Kα − μcγ

−1〈λ〉 + zλ

√
σ 2

c γ −1qλ

)
1 − γ −1σ 2

c ν
.

(D55)

Now let variable k be drawn from the same distribution as Kα ,
namely, Gaussian with mean K and variance σ 2

K , one gets

R(k) = max
(
0, k − μcγ

−1〈λ〉 + zλ

√
σ 2

c γ −1qλ

)
1 − γ −1σ 2

c ν
. (D56)

Therefore, we compute

〈kR(k)〉zλ,k = 1√
2π

〈∫
dk kR(k)e

− (k−K )2

2σ2
K

〉
zλ

(D57)

= 1

1 − γ −1σ 2
c ν

1√
2πσK

〈∫ ∞

−∞
dkk max

[
0, k − μcγ

−1〈λ〉 +
√

σ 2
c γ −1qλzλ

]
e
− (k−K )2

2σ2
K

〉
zλ

(D58)

= 1

1 − γ −1σ 2
c ν

∫ ∞

−∞

∫ ∞

−∞

dkdzλ

2π
√

σK
k max

[
0, k − μcγ

−1〈λ〉 +
√

σ 2
c γ −1qλzλ

]
e
− (k−K )2

2σ2
K e− z2

λ
2 . (D59)

To simplify the calculation, let us introduce another Gaussian variable zK with zero mean and unit variance. The integral part
can now be written as

∫ ∞

−∞

∫ ∞

−∞

dzK dzλ

2π
e− z2

K +z2
λ

2 (K + σK zK ) max
[
0,K+σK zK −μcγ

−1〈λ〉 +
√

σ 2
c γ −1qλzλ

]
(D60)

=
∫ ∞

−∞

∫ ∞

−∞

dzK dzλ

2π
e− z2

K +z2
λ

2 K max
[
0,K−μcγ

−1〈λ〉 + σK zK +
√

σ 2
c γ −1qλzλ

]

+
∫ ∞

−∞

∫ ∞

−∞
e− z2

K +z2
λ

2
dzK dzλ

2π
σK zK max

[
0,K−μcγ

−1〈λ〉 + σK zK +
√

σ 2
c γ −1qλzλ

]
. (D61)

Using zR

√
σ 2

K + σ 2
c γ −1qλ = σK zK + √

σ 2
c γ −1qλzλ, the first term of Eq. (D61) can be written as

∫ ∞

−∞

dzR√
2π

e− z2
R
2 K max

[
0,K−μcγ

−1〈λ〉 + zR

√
σ 2

K + σ 2
c γ −1qλ

] =
√

σ 2
K + σ 2

c γ −1qλKw1(), (D62)
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where

 = K − μcγ
−1〈λ〉√

σ 2
K + σ 2

c γ −1qλ

. (D63)

Using integration by parts in the zK integral, we find that the second term of Eq. (D61) is∫ ∞

−∞

∫ ∞

−∞
e− z2

K +z2
λ

2
dzK dzλ

2π
σK zK max

[
0, K + σK zK − μcγ

−1〈λ〉 +
√

σ 2
c γ −1qλzλ

]

= σ 2
K

∫ ∞

−∞

∫ ∞

−∞
e− z2

K +z2
λ

2
dzK dzλ

2π
�
(
K + σK zK − μcγ

−1〈λ〉 +
√

σ 2
c γ −1qλzλ

)
, (D64)

where �(x) equals 0 for x < 0 and equals 1 for x � 0. It arises from taking the derivative of
max[0, K + σK zK − μcγ

−1〈λ〉 + √
σ 2

c γ −1qλzλ] with respect to zK in the integration by parts. As in the first integral, we
can now change variables to zR, and use the � function to set the lower limit of integration:

σ 2
K

∫ ∞

−∞

∫ ∞

−∞
e− z2

K +z2
λ

2
dzK dzλ

2π
�
(
K + σK zK − μcγ

−1〈λ〉 +
√

σ 2
c γ −1qλzλ

) = σ 2
K

∫ ∞

−

e− z2
R
2

dzR√
2π

(D65)

= σ 2
Kw0(), (D66)

where  is the same quantity defined in Eq. (D63).
Putting Eqs. (D62) and (D66) back into Eq. (D59), we finally find

〈kR(k)〉zλ,k = 1

1 − γ −1σ 2
c ν

[
σ 2

Kw0() +
√

σ 2
K + σ 2

c γ −1qλKw1()
]
. (D67)
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