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Nonreciprocal interactions between microscopic constituents can profoundly shape the large-scale
properties of complex systems. Here, we investigate the effects of nonreciprocity in the context of
theoretical ecology by analyzing a generalization of MacArthur’s consumer-resource model with
asymmetric interactions between species and resources. Using a mixture of analytic cavity calculations
and numerical simulations, we show that such ecosystems generically undergo a phase transition to chaotic
dynamics as the amount of nonreciprocity is increased. We analytically construct the phase diagram for this
model and show that the emergence of chaos is controlled by a single quantity: the ratio of surviving
species to surviving resources. We also numerically calculate the Lyapunov exponents in the chaotic phase
and carefully analyze finite-size effects. Our findings show how nonreciprocal interactions can give rise to
complex and unpredictable dynamical behaviors even in the simplest ecological consumer-resource
models.
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Many complex systems operate out of equilibrium where
components generically interact nonreciprocally. Signi-
ficant current research aims to untangle the implications
of nonreciprocal interactions for self-organization and
pattern formation. While much progress has been made
towards understanding nonreciprocity in systems com-
posed of a few types of species or fields, the consequences
of nonreciprocity in more complex systems composed of
many interacting components are less clear and present
interesting questions in studies of ecosystems, pattern
formation, active matter, mechanical networks, and neural
networks [1–5].
Large, diverse ecosystems with many types of species

and resources provide a natural setting for exploring this
open problem. Over the last decade, researchers have
adapted methods from the statistical physics of disordered
systems (e.g., replicas, the cavity method, random matrix
theory) to analyze such ecosystems [6–15]. Much of this
work has focused on systems with reciprocal interactions in
which dynamics are often implicitly governed by an
optimization function and reach a fixed point [16–19].
One notable exception are recent studies of the random

generalized Lotka-Volterra (GLV) model in which species
interact non-reciprocally [20–25]. These systems can
exhibit novel behaviors such as dynamic fluctuations and
chaos, including unpredictable “boom-and-bust” dynamics
where low-abundance species suddenly bloom to high
abundance [26]. These observations suggest that nonrecip-
rocal interactions can qualitatively change ecological
dynamics in species-only models. However, the generali-
zation of these observations to more complex ecosystems

with multiple trophic layers or environmentally mediated
interactions remains unexplored.
Here, we introduce a generalization of the classic

MacArthur consumer resource model (MCRM) that
includes nonreciprocal interactions between species and
resources. Consumer-resource models, first introduced by
MacArthur and Levins [19,27,28], have played a founda-
tional role in modern theoretical ecology and undergird
many powerful theoretical frameworks for understanding
ecological competition, including contemporary niche
theory and Tilman’s R* principle [29,30].
Theoretical setup.—We consider an ecosystem with

i ¼ 1;…; S species which may consume α ¼ 1;…;M dis-
tinct self-replenishing resources with dynamics governed by
the equations,

dNi

dt
¼ Ni

�XM
α¼1

ciαRα −mi

�
; ð1Þ

dRα

dt
¼ RαðKα − RαÞ −

XS
i¼1

NieiαRα; ð2Þ

where Ni is the population size of species i, Rα is the
abundance of resource α, ciα is the relative consumption
preference of species i for resource α, eiα describes the impact
of species i on resource α, mi is the natural mortality rate of
species i, and Kα is the carrying capacity of resource α in
the absence of consumption. We call this model the asym-
metric MacArthur consumer resource model (aMCRM)
with a schematic provided in Fig. 1. When eiα ¼ ciα the
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species-resource interactions become reciprocal, or symmet-
ric, and the aMCRM reduces to the classical MacArthur
consumer resource model (MCRM).
To develop intuition for the role of nonreciprocity in

the aMCRM, we consider the limit where the resource
dynamics are fast and the resource abundances become
entrained to species dynamics. In this case, we take the
right-hand side of Eq. (2) to be zero and solve to find
Rα ¼ maxf0; Kα −

P
iNieiαg. Substituting this result into

the equation for species dynamics yields an effective
Generalized Lotka-Volterra (GLV) equation,

dNi

dt
¼ Ni

�
κi −

XS
j¼1

AijNj

�
;

κi ¼
XM
α¼1

ciαKα −mi;

Aij ¼
XM
α¼1

ciαejαΘðRαÞ; ð3Þ

where κi is the effective carrying capacity for species i and
Aij is the effective species-species interaction matrix,
encoding how species j impacts species i (Θ is the
Heaviside function). Although typically not quantitatively
accurate, this approximation provides useful qualitative
insight into the nature of the nonreciprocal interactions.
In MacArthur’s original consumer-resource model,

impacts and benefits are identical, eiα ¼ ciα. In this case,
Aij is symmetric, all interactions are reciprocal, the eco-
system has a unique fixed point, and the resulting steady
state can be derived using an optimization principle [16].
Such behavior is expected because choosing ciα ¼ eiα
implicitly assumes that each species consumes resources
proportional to the marginal utility conferred to that species
(in the context of game theory and microeconomics, this is
a “rational strategy”). When the resource-species inter-
actions are nonreciprocal, eiα ≠ ciα, Aij is no longer
symmetric, the resulting dynamics can no longer be
described using an optimization principle, and there

is no guarantee that the dynamics will reach a stable fixed
point.
Numerical integration of the aMCRM is performed with

a small immigration rate to numerically regularize simu-
lations and ensure that when a steady state is reached, it is
uninvadable (see Supplemental Material [31], Sec. D2 for
details).
Thermodynamic limit.—To investigate the aMCRM, we

work in the thermodynamic limit where the numbers of
species S and resources M become very large while their
ratio M=S is held fixed. We assume that parameters are
drawn randomly from a fixed distribution analogous to
quenched disorder. To ensure a proper thermodynamic
limit, parameters are drawn as follows:

Kα¼KþσKδKα; mi¼mþσmδmi;

ciα¼
μc
M

þ σcffiffiffiffiffi
M

p diα;

eiα¼
μe
M

þ σeffiffiffiffiffi
M

p
�
ρdiαþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2

q
xiα

�
; ð4Þ

where δKα; δmi; diα; xiα are independent standard random
variables (i.e., zero mean and unit variance) and jρj ≤ 1 is
the interaction reciprocity parameter. For simplicity, we
take μc ¼ μe ≡ μ and σc ¼ σe ≡ σ in all figures and
simulations. The central limit theorem ensures that, in
the thermodynamic limit, our results are agnostic to the
exact form of the underlying distributions and depend only
on first and second moments. Therefore, we sample all
parameters from normal distributions unless otherwise
specified.
With this parametrization, ρ controls the level of reci-

procity of species-resource interactions through the corre-
lation of consumption benefits and impacts:

corrðciα; ejβÞ ¼ ρδijδαβ: ð5Þ

When ρ ¼ 1, the aMCRM reduces to the fully symmetric
MCRM; when ρ ¼ 0, the aMCRM models completely
nonreciprocal species-resource interactions. By tuning ρ,
we can systematically explore the effects of nonreciprocity.
Cavity method.—Just as in the original MCRM, we can

analytically calculate the thermodynamic-limit behavior
using the cavity method [13,14,36,37]. Unlike replicas,
the cavity method does not require the existence of an
energy function and therefore can be extended to the
aMCRM. We assume dynamics are self-averaging and
described by a replica-symmetric ansatz. Using this ansatz,
we derive self-consistent mean-field equations for the
fraction of surviving species, the fraction of nondepleted
resources, the first and second moments of the steady-state
species and resource abundances, and the average linear-
order responses of a resource’s abundance to a small
change in its own carrying capacity and of a species’
population to a small change in its own natural mortality

FIG. 1. Schematic of the asymmetric MacArthur consumer
resource model. Species i benefits with relative weight ciα from
consuming resource α and impacts the abundance of the resource
with relative weight eiα.
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rate (see Supplemental Material [31], Sec. A for detailed
derivations). As seen in Figs. A2 and A4, numerical
simulations and analytical predictions agree remarkably
well for moderate nonreciprocity.
Transition to dynamic phase.—Without reciprocal inter-

actions, the aMCRM has no guarantee of reaching a steady
state. We find that when the interaction reciprocity ρ is less
than a critical ρ⋆, the aMCRM exhibits a phase transition
from a unique self-averaging steady state to a chaotic
dynamic phase. Figure 2 shows numerical simulations of
typical resource and species dynamics observed in each
phase (see Supplemental Material [31], Sec. D for simu-
lation details [38–43]).
Using the cavity method, we can analytically compute the

phase boundary between the stable and dynamic phases [36].
We perturb the nonzero steady-state species and resource

abundances, Ni → Ni þ εηðNÞ
i and Rα → Rα þ εηðRÞα , where

ε is a small parameter and ηðNÞ
i ; ηðRÞα are independent standard

random variables, and calculate the susceptibilities dNi=dε,
dRα=dε. Because of the disordered nature of the perturbation,
the expectations of the firstmoments of the susceptibilities are
zero, but the second moments, hðdNi=dεÞ2i, hðdRα=dεÞ2i,
are nonzero (see Supplemental Material [31], Sec. B for
details).
The phase transition to the dynamic phase is signaled

by the divergence of the these susceptibilities’ second
moments (see Fig. 3). Surprisingly, we find that ρ⋆,
the critical value marking the phase transition to
chaos, depends on model parameters only through the

species-packing fraction, the ratio of surviving species
to nondepleted resources, via the expression (see
Supplemental Material [31], Sec. B):

ρ⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

number of surviving species
number of non-depleted resources

s
: ð6Þ

When ρ < ρ⋆ the ecosystem undergoes a phase transition
to chaos. As the number of surviving species and non-
depleted resources are fixed by model parameters, the
above equation defines a co-dimension-one phase boun-
dary in the parameter space. Beyond this boundary in the
dynamic phase, the second moments of the susceptibilities
become negative, indicating that the replica-symmetric
ansatz no longer holds, and its results are unstable to
any perturbation.
Figure 3(a) shows a phase diagram overlain on a heat

map of the fraction of simulations that reach steady state
within a chosen finite runtime. We highlight the locations

FIG. 2. Example dynamics of the aMCRM in a community of
S ¼ M ¼ 256 species and resources. Left: dynamics in the stable
phase; species-resource interactions are nearly reciprocal. Right:
dynamics in the dynamic phase; species-resource interactions are
less reciprocal. The parameter values for the stable-phase and
dynamic-phase simulations are, respectively, marked with a circle
and star in Fig. 3(a).

FIG. 3. Phase diagram of the aMCRM and diverging suscep-
tibility. (a) Heat map of the fraction of simulations which reached
steady state in finite simulation time for various values of ρ, the
level of reciprocity of species-resource interactions, and σ, the
magnitude of fluctuations in species-resource interactions. Over-
lain is the cavity method-calculated phase boundary. (b) Variances
of susceptibilities of mean-field species and resources as a
function of ρ, with σ fixed at the value indicated by the dashed
line in (a).
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of the simulations in the stable and dynamic phases in
Fig. 2 with a circle and a star, respectively. In Fig. 3(b), we
plot the second moments of the susceptibilities as a
function of ρ with fixed σ along the slice of phase space
indicated by the dashed line in Fig. 3(a). The susceptibil-
ities’ variances diverge at the phase transition and become
invalidly negative in the dynamic phase. As the phase
transition is approached, the fraction of simulations that
reach steady state in a finite simulation time sharply
decreases. An alternative phase diagram with parameters
drawn from uniform distributions is shown in Fig. F15 of
the Supplemental Material [31].
Finally, we note that for certain choices of parameters,

the replica-symmetric self-consistent equations do not have
a solution. This transition to infeasibility has an interesting
interpretation but is not physically realized because it
occurs within the dynamic phase where the replica-
symmetric solution is unstable (see Supplemental
Material [31], Sec. A5). When ρ ¼ 1, the instability
transition and transition to cavity infeasibility coincide,
and neither transition is ever achieved because in the
MCRM, the competitive exclusion principle applies, keep-
ing the right-hand side of Eq. (6) less than or equal to one.
When ρ ¼ 0, the system is beyond the instability transition,
and the cavity infeasibility transition is achieved, meaning
no replica-symmetric solution exists. Mathematically, for
ρ ¼ 0, the only solution to the mean-field equations is the
trivial solution where all species are extinct.
Chaos.—In order to better understand the transition to

chaos, we numerically computed the maximal Lyapunov
exponent λ1 of the aMCRM in the dynamic and stable
phases using the “H2” method of Geist [44–47]. The
maximal Lyapunov exponent characterizes how quickly
trajectories from nearby initial conditions diverge (positive
exponent) or converge (negative exponent). As seen in
Fig. 4(a), typically, in the dynamic phase, λ1 > 0, while in
the stable phase, λ1 < 0. For the parameters used in Fig. 2,
jλ1j ≈ 5 × 10−3, indicating that the divergence or conver-
gence of nearby trajectories occurs on a timescale of λ−11 ≈
2 × 102 time units. We further confirmed the existence of
chaos by analyzing the generalized alignment index
(GALI) which measures how a volume element formed
by tangent vectors to a trajectory changes over time [46–48]
(see Fig. C9 in [31]). Additionally, we estimated and
analyzed the Kaplan-Yorke dimension and found that it
is less than the number of surviving species and resources
[49]. Further details are given in Supplemental Material
[31], Sec. C.
A direct signature of chaotic dynamics is high sensitivity

to initial conditions as observed in Fig. 4(b). The red and
blue lines show the simulated trajectory of a single species
(top) and resource (bottom) started from initial conditions
with slight differences. Initially, the trajectories are almost
identical before diverging from each other significantly
after a few Lyapunov times.

Finite-size effects.—Like most phase transitions, the
transition between the stable and dynamic phases is a
thermodynamic-limit phenomenon. In small ecosystems,
the aMCRM may approach steady state even when in the
dynamic phase due to finite-size effects. As a result, it is not
clear in Fig. 3 what the true probability of steady state is in
the thermodynamic limit. In Supplemental Material [31],
Sec. E, we quantify these effects by performing a numerical
analysis to extrapolate the steady-state probabilities to
infinite system size for each of the two points highlighted
in Fig. 3. For both sets of parameters, we measure the
distribution of steady-state times for many simulations for a
variety of system sizes. Using a custom method based on
maximum-likelihood estimation, we then perform a finite-
size scaling collapse on these distributions, allowing us to
approximately determine the steady-state probabilities as a

FIG. 4. Chaos in the dynamic phase of the aMCRM. (a) Dot
and box-and-whisker plot of λ1s, maximal Lyapunov exponents,
for simulations at various values of ρ, colored by the mean of
absolute values of derivatives of all species and resources at the
end of the simulation which is an indicator of whether the
simulation has reached steady state. (b) Two trajectories (red and
blue) with slightly different initial conditions in the dynamic
phase of the aMCRM. A species and a resource are highlighted to
emphasize the chaotic dynamics; all other species and resources
are shown at low opacity for clarity. The units of time are given by
the inverse of the maximal Lyapunov exponent, λ−11 ¼ 190.
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function of system size. Our scaling collapses provide
strong evidence that the probability of reaching steady state
in the thermodynamic limit approaches exactly zero in the
dynamic phase and one in the stable phase.
Discussion.—In this Letter, we analyzed the effects of

nonreciprocal species-resource interactions on the stability
of ecosystems. We introduced the asymmetric MacArthur
Consumer Resource Model (aMCRM), a generalization of
the MacArthur Consumer Resource Model (MCRM).
Using the cavity method, we identified a phase transition
between a stable phase in which a unique, uninvadable,
self-averaging steady state exists and a dynamic phase with
chaotic fluctuations. Remarkably, the phase boundary
depends on model parameters only through the species-
packing ratio—the ratio of surviving species to non-
depleted resources.
Tilman analyzed stability in a two-species, two-resource

system where the yields of the species on resources differs
from their growth and determined “the equilibrium point
will be stable if each species consumes proportionately
more of the resource that more limits its own growth” [29].
The divergence between ciα and eiα in the aMCRM is
analogous to the divergence between the yield and growth
rate in Tilman’s analysis. Our results suggest that this
principle generalizes to ecosystems with many species and
resources; however, our analysis takes a statistical approach
and uses a different model of dynamics.
We found that the chaotic regime is generic and occurs

robustly and shares features with GLV models with
asymmetric interactions where chaos can also be found
[9,20]. In consumer-resource models, chaotic dynamics
generically occurs when the systems are well below the
competitive exclusion bound, while the dynamics in GLV
systems can violate the competitive exclusion principle.
Unlike previous work on dynamical fluctuations in con-
sumer-resource models [50–54], the aMCRM does not
require the introduction of explicit species-species inter-
actions to exhibit chaotic dynamics, chaos occurs below the
competitive exclusion bound, the resource carrying
capacities are static, the dynamics are continuous and
not discrete, and the onset of chaos requires no fine-tuning
and is analyzed in high dimensions. Additionally, our
analysis works explicitly with the consumer-resource
model and not the effective GLV model.
Collectively, these works suggest that non-reciprocal

interactions can lead to complex, chaotic dynamics in
systems with many types of species/fields. In particular,
like GLV models, we also find that species and resources
often jump rapidly between low and high abundances. In
the future, it will be interesting to see if the methods
developed in Ref. [26] in the context of GLV systems
generalize to explain boom-and-bust dynamics in con-
sumer-resource models and derive relevant correlation
functions and dynamical susceptibilities. Preliminary
results suggest that other consumer resource models with

non-reciprocal species-resource interactions, such as that
with externally supplied resources [55], also exhibit chaotic
dynamics; we hope to explore this in future work. Finally,
further investigations may seek to understand these phe-
nomena in the context of ecological processes such as
immigration, alternative resource dynamics [16,55], the
addition of network and metabolic structure into inter-
actions [32,33,56], the inclusion of additional trophic
structure [57], and spatial and temporal structure [58].
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