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Appendix A: Cavity calculation

The objective of the cavity calculation is to find the steady-state behavior of the aMCRM. In particular,
we will find the distribution of the steady-state abundances of the species and resources. The cavity method
takes advantage of the system’s self-averaging behavior. A system is said to have self-averaging behavior if
the distribution of properties of constituents are independent of the exact realization of quenched disorder.
This means that constituents’ properties can be treated as random variates drawn from a distribution that
is common to all systems with the same distribution of quenched disorder. A consequence of this is that an
average of some observable taken over constituents given a fixed realization of quenched disorder is equal
to the average of the observable for one constituent taken over all realizations of quenched disorder. The
emergence of this self-averaging behavior is a consequence of the central limit theorem and quenched disorder,
as we will see. In Fig. A1, we compare the distribution of steady-state resource and species abundance for
a single realization of quenched disorder to the distribution of abundances predicted by the cavity method.

Figure A1: Comparison of the empirical cumulative distribution functions (eCDFs) of the steady-state
abundances of species (S = 512) and resources (M = 512) for a single realization of quenched disorder and
the distribution predicted by the cavity calculation; simulations are performed in the stable phase. See

appendix G for simulation parameters.

1. Setup

We begin by introducing the constituent averages,

⟨R⟩ ≡ 1

M

M∑
α=1

Rα, ⟨N⟩ ≡ 1

S

S∑
i=1

N i, (A1)

where we have introduced the notation X to denote the steady-state value of a quantity X. With these
quantities defined, we can write the steady-state aMCRM as,

0 =
dNi

dt
= N i

[
g +

σc√
M

M∑
α=1

diαRα − σmδmi

]
, (A2)

0 =
dRα

dt
= Rα

[
κ−Rα −

σe√
M

S∑
i=1

Ni

(
ρdiα +

√
1− ρ2xiα

)
+ σKδKα

]
, (A3)
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where

g ≡ µc ⟨R⟩ −m, κ ≡ K − µeγ
−1 ⟨N⟩ , γ ≡ M

S
. (A4)

2. Cavity solution

The cavity method begins by introducing a new species i = 0 and a new resource α = 0. We will later treat
the new terms introduced by these variables as small perturbations. With the new species and resource, we
can write the steady-state aMCRM for the existing species i = 1, . . . , S and resources α = 1, . . . ,M as,

0 =
dNi

dt
= N i

[
µc ⟨R⟩ −

(
m− σc√

M
di0R0

)
+

σc√
M

M∑
α=1

diαRα − σmδmi

]
, (A5)

0 =
dRα

dt
= Rα

[(
K − σe√

M
N0

(
ρd0α +

√
1− ρ2x0α

))
− µeγ

−1 ⟨N⟩ −Rα

− σe√
M

S∑
i=1

N i

(
ρdiα +

√
1− ρ2xiα

)
+ σKδKα

]
. (A6)

For the new species and resource, the steady-state aMCRM says,

0 =
dN0

dt
= N0

[
g +

σc√
M

M∑
α=1

d0αRα +M−1/2σcd00R0 − σmδm0

]
, (A7)

0 =
dR0

dt
= R0

[
κ−R0 −

σe√
M

S∑
i=1

N j

(
ρdi0 +

√
1− ρ2xi0

)
− σe√

M
N0

(
ρd00 +

√
1− ρ2x00

)
+ σKδKα

]
. (A8)

Next, we will analyze the perturbed system relative to the unperturbed system. A quantity with \0 represents
the value before adding the new variables to the system. Looking to Eqs. A5 and A6, we see that the presence
of the new species and resource effectively perturbs the model parameters as,

mi → mi −
σc√
M

di0R0, Kα → Kα −
σe√
M

N0

(
ρd0α +

√
1− ρ2x0α

)
. (A9)

In the thermodynamic limit where M and S are large, we model the perturbation using linear response:

N i = N i\0 −
σe√
M

M∑
β=1

χ
(N)
iβ

(
ρd0β +

√
1− ρ2x0β

)
N0 −

σc√
M

S∑
j=1

ν
(N)
ij dj0R0, (A10)

Rα = Rα\0 −
σe√
M

M∑
β=1

χ
(R)
αβ

(
ρd0β +

√
1− ρ2x0β

)
N0 −

σc√
M

S∑
j=1

ν
(R)
αj dj0R0, (A11)
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where we have defined the susceptibility matrices:

χ
(N)
iβ ≡ ∂N i

∂Kβ
, χ

(R)
αβ ≡

∂Rα

∂Kβ
, (A12)

ν
(N)
ij ≡ ∂N i

∂mj
, ν

(R)
αj ≡

∂Rα

∂mj
. (A13)

a. Self-consistency equations for species populations

With the perturbation introduced and susceptibilities defined, we will exploit the linear response approxi-
mation to derive the self-consistency equations for the species populations. Substituting Eqs. A10, A11 into
the aMCRM equation for the additional species [Eq. (A7)], we obtain,

0 = N0

g + σc√
M

M∑
α=1

d0αRα\0 −
σcσe

M

M∑
α,β=1

χ
(R)
αβ d0α

(
ρd0β +

√
1− ρ2x0β

)
N0

−σ2
c

M

M∑
α=1

S∑
j=1

ν
(R)
αj d0αdj0N0 +

σc√
M

d00R0 − σmδm0

 . (A14)

Taking the mean of the third term with respect to the new matrix elements d0α and x0α, we obtain〈
σcσe

M

M∑
α,β=1

χ
(R)
αβ d0α

(
ρd0β +

√
1− ρ2x0β

)
N0

〉

= N0
σcσe

M

M∑
α,β=1

χ
(R)
αβ

(
ρ ⟨d0αd0β⟩+ ⟨d0α⟩ ⟨x0β⟩

√
1− ρ2

)

= N0
σcσe

M

M∑
α,β=1

χ
(R)
αβ

(
ρδαβ + 0× 0

√
1− ρ2

)
= N0σcσeρχ, (A15)

where we have used that d0α and x0β are independent and have defined,

χ ≡ 1

M

M∑
α=1

χ(R)
αα , (A16)

to be the trace of the Rα ← Kβ susceptibility matrix divided by the number of resources. The variance of
this term is O(M−1), which can be verified by expanding its second moment. The mean of the fourth term
is zero because d0α and dj0 are uncorrelated when α = 1, . . . ,M, j = 1, . . . , S and its variance is O(M−1).

Discarding terms of order O(M−1/2) and higher, we obtain,

0 = N0

(
g − σcσeρχN0 +

σc√
M

M∑
α=1

d0αRα\0 − σmδm0

)
+O(M−1/2). (A17)
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The last two terms above are a sum of many independent random variables, so, by the central limit theorem,
we can model these terms as a sum of normal random variables. The mean of these terms is,〈

σc√
M

M∑
α=1

d0αRα\0 − σmδm0

〉
=

σc√
M

M∑
α=1

⟨d0α⟩Rα\0 − σm ⟨δm0⟩

=
σc√
M

M∑
α=1

0×Rα\0 − σm × 0 = 0. (A18)

The variance of these terms is,

σ2
g ≡ Var

[
σc√
M

M∑
α=1

d0αRα\0 − σmδm0

]
=

σ2
c

M

M∑
α=1

R
2

α\0 Var [d0α] + σ2
m Var [δm0]

=
σ2
c

M

M∑
α=1

R
2

α\0 + σ2
m = σ2

cqR + σ2
m, (A19)

where we have defined qR ≡ M−1
∑M

α=1 R
2

α\0. Due to the self-averaging nature of the system and that the

size of the perturbation is of order O(M−1/2), we have qR ≈ ⟨R
2

0⟩. Let ZN ∼ N (0, 1) be a unit normal
random variable. The large-M limit approximate steady-state condition for the perturbing species becomes,

0 = N0

(
g − σcσeρχN0 + σgZN

)
. (A20)

Solving for N0 and discarding invadable solutions, we obtain,

N0 = max

{
0,

g + σgZN

σcσeρχ

}
. (A21)

Additionally, observe that if χ→ 0, the cavity solution diverges; this will be discussed in further detail in SI
section A5.

b. Self-consistency equations for resource abundances

Now, we repeat this process to find a self-consistency equation for the resources. We substitute the linear
response approximation for species into the aMCRM steady-state equation for the additional resource:

0 = R0

[
κ−R0 −

σe√
M

S∑
i=1

N i\0

(
ρdi0 +

√
1− ρ2xi0

)
(A22)

+
σ2
e

M

S∑
i=1

M∑
β=1

χ
(N)
iβ

(
ρdi0 +

√
1− ρ2xi0

)(
ρd0β +

√
1− ρ2x0β

)
N0

+
σeσc

M

S∑
i,j=1

ν
(N)
ij

(
ρdi0 +

√
1− ρ2xi0

)
dj0R0 −

σe√
M

N0

(
ρd00 +

√
1− ρ2x00

)
+ σKδKα

]
.

Observe that the fourth term (involving χ
(N)
iβ ) has zero mean and variance of order O(M−1); this can be

seen by recalling that di0, d0β , xi0, x0β are all independent for i, β ≥ 1. Similarly, we see that the variance

of the fifth term (involving ν
(N)
ij ) is of order O(M−1). We will ignore fluctuations of order O(M−1/2). The
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mean of the fifth term is,

σeσc

M

S∑
i,j=1

ν
(N)
ij

(
ρdi0 +

√
1− ρ2xi0

)
dj0R0 = R0

σeσc

M

S∑
i,j=1

ν
(N)
ij

(
ρ ⟨di0dj0⟩+

√
1− ρ2 ⟨xi0⟩ ⟨dj0⟩

)

= R0σeσc
S

M

1

S

S∑
i,j=1

ν
(N)
ij

(
ρδij +

√
1− ρ2 × 0× 0

)
= ρσeσcγ

−1νR0, (A23)

where we have defined,

ν ≡ 1

S

S∑
i=1

ν
(N)
ii , (A24)

which is the trace of the N i ← mj susceptibility matrix divided by S. Discarding terms of order O(M−1/2),
we obtain,

0 = R0

(
κ−R0 −

σe√
M

S∑
i=1

N i\0

(
ρdi0 +

√
1− ρ2xi0

)
+ ρσeσcγ

−1νR0 + σKδK0

)
+O(M−1/2). (A25)

Now, observe the third and last terms are a sum of many independent random variables, meaning we can
apply the central limit theorem and model the sum of these terms as a normal random variable. The mean
of these terms is,〈

σKδK0 −
σe√
M

S∑
i=1

N i\0

(
ρdi0 +

√
1− ρ2xi0

)〉
= σK ⟨δK0⟩ −

σe√
M

S∑
i=1

N i\0

(
ρ ⟨di0⟩+

√
1− ρ2 ⟨xi0⟩

)
= σK × 0− σe√

M

S∑
i=1

N i\0

(
ρ× 0 +

√
1− ρ2 × 0

)
= 0. (A26)

The variance is,

σ2
κ ≡ Var

[
σKδK0 −

σe√
M

S∑
i=1

N i\0

(
ρdi0 +

√
1− ρ2xi0

)]
(A27)

= σ2
K Var [δK0] +

σ2
e

M

S∑
i=1

Var
[
N i\0

(
ρdi0 +

√
1− ρ2xi0

)]
= σ2

K +
σ2
e

M

S∑
i=1

N
2

i\0
(
ρ2 Var [di0] + (1− ρ2)Var [xi0]

)
= σ2

K + σ2
e

S

M

1

S

S∑
i=1

N
2

i\0 = σ2
K + γ−1σ2

eqN ,

where qN ≡ 1
S

∑S
i=1 N

2
i\0 which is approximately equal to ⟨N2

0⟩. The approximate steady-state condition

for the added resource then becomes,

0 = R0

(
κ−R0 + σκZR + ρσeσcγ

−1νR0

)
, (A28)

where ZR ∼ N (0, 1) is a standard normal random variable. Solving for R0 and discarding invadable solutions
gives,

R0 = max

{
0,

κ+ σκZR

1− ρσeσcγ−1ν

}
. (A29)
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3. ReLU function-transformed normal distributions

In these computations, we regularly work with normal distributions that are transformed by the ‘ReLU’
function: ReLU(x) = max{0, x} = xΘ(x). If Z is a standard normal random variable, the PDF of ReLU(σZ+
µ) is,

pReLU(σZ+µ)(z) = δ(z)Φ(−µ/σ) + 1√
2πσ

e−(z−µ)2/2σ2

Θ(z), (A30)

where,

Φ(x) =
1√
2π

∫ x

−∞
dz e−z2/2 =

1

2

(
1 + erf(x/

√
2)
)
, (A31)

is the standard normal CDF. The jth (j ≥ 1) moment is then,

Wj(µ, σ) = ⟨ReLU(σZ + µ)j⟩ = 0 +
1√
2πσ

∫ ∞

0

dz zje−(z−µ)2/2σ2

(A32)

= σj

∫ ∞

−µ/σ

dz√
2π

e−z2/2(z + µ/σ)j ,

=
2−3/2

√
π

(
√
2σ)j

[
j
µ

σ
Γ

(
j

2

)
1F1

(
1− j

2
;
3

2
;− µ2

2σ2

)
+
√
2Γ

(
j + 1

2

)
1F1

(
− j

2
;
1

2
;− µ2

2σ2

)]
,

where 1F1 is the confluent hypergeometric function of the first kind, and Γ is the gamma function. Observe
that Wj(µ/α, σ/α) = α−jWj(µ, σ). Additionally,

W0(x, 1) = 1, (A33)

W1(x, 1) =
1√
2π

e−x2/2 + xΦ(x), (A34)

W2(x, 1) =
1√
2π

xe−x2/2 + (1 + x2)Φ(x). (A35)

It follows from integration by parts,

W2(x, 1) = Φ(x) + xW1(x, 1). (A36)

Additionally, for a random variable Θ(σZ + µ), the PDF is,

pΘ(σZ+µ)(z) =
1

2

[
1 + erf

(
µ

σ
√
2

)]
δ(z − 1) +

1

2
erfc

(
µ

σ
√
2

)
δ(z), (A37)

so the jth moment (j ≥ 1) is,

⟨Θ(σZ + µ)j⟩ = 0 +
1

2

[
1 + erf

(
µ

σ
√
2

)]
1j =

1

2

[
1 + erf

(
µ

σ
√
2

)]
= Φ(µ/σ). (A38)

4. Final self-consistency equations

Some essential quantities of interest are the expected fraction of surviving species ϕN and fraction of
non-depleted resources ϕR. These quantities are computed using the moments calculated in section A3 and
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Eqs. A20, A28:

ϕN =
〈
Θ(N0)

〉
= Φ(∆g) , (A39)

ϕR =
〈
Θ(R0)

〉
= Φ(∆κ) , (A40)

where ∆g = g/σg and ∆κ = κ/σκ and Θ is the Heaviside step function with the convention Θ(0) = 0. Next,

we can differentiate our expressions for N0 and R0 to find,

∂N0

∂m
=

∂

∂m

g + σgZN

σcσeρχ
Θ
(
N0

)
= − 1

σcσeρχ
Θ(N0) +

[
N0δ(N0)-term

]
=⇒

〈
∂N0

∂m

〉
= ν = − ϕN

σcσeρχ
(A41)

∂R0

∂K
=

∂

∂K

κ+ σκZR

1− ρσeσcγ−1ν
Θ(R0) =

1

1− ρσeσcγ−1ν
Θ(R0) +

[
R0δ(R0)-term

]
=⇒

〈
∂R0

∂K

〉
= χ =

ϕR

1− ρσeσcγ−1ν
(A42)

We can solve these two equations for χ, ν to obtain the relations,

ν =
γ−1ϕN/ϕR

ρσcσeγ−1(γ−1ϕN/ϕR − 1)
, χ = ϕR − γ−1ϕN . (A43)

Next, we use Eqs. A20 and A28 and invoke our assumption that the system self-averages to find,

⟨N⟩ = ⟨N0⟩ =
σg

σcσeρχ
W1(∆g, 1) =

σg

σcσeρχ

(
e−∆2

g/2

√
2π

+∆gΦ(∆g)

)
, (A44)

⟨R⟩ = ⟨R0⟩ =
σκ

1− ρσeσcγ−1ν
W1(∆κ, 1) =

σκ

1− ρσeσcγ−1ν

(
e−∆2

κ/2

√
2π

+∆κΦ(∆κ)

)
, (A45)

qN = ⟨N2

0⟩ =
(

σg

σcσeρχ

)2

W2(∆g, 1) =

(
σg

σcσeρχ

)2
(
∆ge

−∆2
g/2

√
2π

+ (1 +∆2
g)Φ(∆g)

)
, (A46)

qR = ⟨R2

0⟩ =
(

σκ

1− ρσeσcγ−1ν

)2

W2(∆κ, 1) =

(
σκ

1− ρσeσcγ−1ν

)2
(
∆κe

−∆2
κ/2

√
2π

+ (1 +∆2
κ)Φ(∆κ)

)
.

(A47)

The equations A39, A40, A41, A42, A44, A45, A46, A47 constitute the cavity self-consistency equations
for the aMCRM model. They are eight independent nonlinear equations to solve for eight variables:
ϕN , ϕR, χ, ν, ⟨N⟩ , ⟨R⟩ , qN , qR. These equations are solved numerically using nonlinear least squares as dis-
cussed in SI section D3.

5. Infeasibility of the cavity solution

Next, we will investigate when there may exist a solution to the cavity self-consistency equations. Observe
that Eq. (A41) implies that as χ→ 0, ν diverges; Eqs. A21, A29 indicate that N0 and R0 become singular.
This is when, numerically, there fails to exist a solution to the cavity self-consistency equations. From
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Figure A2: Comparison of cavity results to numerical simulations for various ρ and fixed σc = σe = 3.5,
corresponding to the gray dashed line in Fig. 3. (a) Average populations of species, ⟨N⟩, and abundances

of resources, ⟨R⟩. (b) Standard deviations of species populations,
√
⟨N2⟩ − ⟨N⟩2, and resource

abundances,
√
⟨R2⟩ − ⟨R⟩2. (c) Fractions of surviving species, ϕN , and non-depleted resources, ϕR. Points

are means of numerical simulations, lines are cavity results. Error bars are standard deviations of
numerical simulations; some error bars are smaller than the points. A dashed line is shown at ρ⋆ = 0.72,
the critical value of ρ at which the system transitions between the stable and dynamic phases. For each

value of ρ, 64 simulations are performed with M,S = 512 resources and species.

Eq. (A42), we see that χ→ 0 when,

ϕCSI
R − γ−1ϕCSI

N = 0⇐⇒ ϕCSI
R

ϕCSI
N

M

S
= 1 (A48)

⇓

cavity solution infeasibility boundary: # of non-depleted resources = # of surviving species. (A49)
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Figure A3: Cavity susceptibilities for the same parameters as in Fig. A2. The susceptibilities χ, ν as
defined in lines A16, A24 are shown on the left and right, respectively.

The cavity solution no longer has a solution when the ecosystem approaches the bound set by the principle
of competitive exclusion. According to this calculation, ν diverging here means that if a species becomes
marginally more fit when all niches are packed, it will disrupt the ecosystem. This relation defines a ninth
equation for eight variables, so it determines a co-dimension-one boundary in the space of parameters. This
boundary can be calculated numerically using nonlinear least squares as discussed in SI section D3. When
solving the cavity self-consistency equations numerically, we will see that there is a region of parameter space
beyond this boundary where the least squares objectives are large compared to machine error (see Fig. D11
in SI section D3).

This boundary corresponds to the transition to the “unbounded growth” phase in the Lotka–Volterra
literature (see Ref. [1]) because ⟨N⟩ → ∞ as χ → 0 as can be seen in Eq. (A44). There is no unbounded
growth in this model due to the negative feedback structure of consumer-resource models. In the cavity
solution, this can be seen through ⟨R⟩ → 0 as ν → −∞ in Eq. (A45). That is, species abundances are
predicted to diverge while abundances of all resources become zero. Additionally, as χ → 0, qR → 0, so
σg = σm and g = −m, meaning ϕCSI

N = 1−Φ(m/σm); therefore ϕN and ϕR approach nonzero values at this
boundary.

6. Comparison of cavity and simulation results

For higher reciprocity levels ρ when the system is in the stable phase, the analytic solution produced from
the cavity method matches the simulation results remarkably well. In Fig. A2, we compare the cavity results
to numerical simulations for various 0 ≤ ρ ≤ 1 and fixed σc = σe = 3.5, corresponding to the gray dashed line
in Fig. 3(a). For all predicted quantities, the chi-squared statistic is near the number of degrees of freedom,
indicating that the cavity solution is a good fit to the simulation results. The cavity susceptibilities χ, ν for
this slice are shown in Fig. A3. In this figure, we see that the infeasibility boundary occurs when χ→ 0 and
ν → −∞.

In Fig. A4, we compare the cavity results to numerical simulations for the various values ρ and σc = σe ≡ σ
shown on the grid in Fig. 3(a). Again, the analytic solutions produced from the cavity method match the
simulation results remarkably well in the stable phase. Cavity susceptibilities χ, ν for this grid are shown in
Fig. A5.
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Figure A4: Heatmap comparison of cavity predictions and simulation results. Results from 32 simulations
for various values of σ and ρ are displayed in the left column of each pane and the cavity predictions are

displayed in the right column. The instability boundary is shown as a solid black line while the infeasibility
boundary is shown as a dashed black line. For the cavity prediction plots, the parameter regions for which

no cavity solution exists have a diamond pattern overlaid (c.f., Fig. D11 and SI section D3). The
parameters used are those used in Fig. 3(a).

7. Cavity susceptibilities

The cavity susceptibilities,

χ ≡ 1

M

M∑
α=1

∂Rα

∂Kα
, ν ≡ 1

S

S∑
i=1

∂Ni

∂mi
, (A50)

have physical significance: χ and ν are the average linear-order response of a resource’s abundance to a
small change in its carrying capacity and a species’ population to a small change in its natural mortality
rate, respectively. These susceptibilities could be measured numerically by introducing small, nonzero-mean
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Figure A5: Heatmap of cavity susceptibilities χ, ν as defined in lines A16, A24 for various values of σ and
ρ, as in Fig. A4.

perturbations to Kα and measuring
∑M

α=1 ∆Rα/
∑M

α=1 ∆Kα when the system is self-averaging.
At steady state, the full susceptibility matrices can be computed using just the knowledge of which species

and resources. Consider that the surviving species and resources satisfy the following matrix equation:[
0 c∗

(e∗)T 1

] [
N∗

R∗

]
=

[
m∗

K∗

]
, (A51)

where X∗ represents a matrix or vector with rows and/or columns corresponding to species and resource
which are not surviving removed. This block-matrix equation can be solved to find,[

N∗

R∗

]
=

[
−
(
c∗(e∗)T

)−1 (
c∗(e∗)T

)−1
c∗

(e∗)T
(
c∗(e∗)T

)−1
1− (e∗)T(c∗(e∗)T)−1c∗

] [
m∗

K∗

]
. (A52)

Given that perturbations are sufficiently small so that no species or resources go extinct and no new species
or resources can invade, the susceptibility matrices are,

[ν
(N)
ij ] = −

(
c∗(e∗)T

)−1
, [χ

(N)
iβ ] =

(
c∗(e∗)T

)−1
c∗,

[ν
(R)
αj ] = (e∗)T

(
c∗(e∗)T

)−1
, [χ

(R)
αβ ] = 1− (e∗)T(c∗(e∗)T)−1c∗.

(A53)

Therefore,

ν = − 1

S
tr
(
c∗(e∗)T

)−1
, χ =

1

M
tr
[
1− (e∗)

T
(c∗(e∗)T)−1c∗

]
. (A54)

This means that when a steady state exists, the cavity susceptibilities can be computed exactly with knowl-

edge of which species and resources are surviving. Notice that (e∗)
T
(c∗(e∗)T)−1c∗ is an oblique projector

because it is idempotent. The trace of this matrix is the dimension of the range of the projector. Therefore,
the infeasibility boundary in the cavity solution occurs (or equivalently, the niches are fully packed) when
the projector is full-rank.

Appendix B: Stability phase transition in the thermodynamic limit

In nonlinear dynamics, a common approach to assess the appearance of instability is to begin with an
assumption of stability and see what breaks down when the system is perturbed. In the case of the aMCRM,
when there is stability, the results from the cavity solution will be valid, so we will use these results to

13



determine the critical threshold for instability.

We consider perturbing all surviving species and resources, N
+

i , R
+

α , by small amounts, εη
(N)
i , εη

(R)
α ,

respectively, where η
(N)
i and η

(R)
α are independent random variables all with mean zero and variance one [1].

By considering perturbations on surviving species and resources and using cavity results (c.f., Eqs. A29, A21),
we are assuming that we are working with an uninvadable steady state. From Eqs. A17, A25, for surviving
species and non-depleted resources,

N
+

0 =
1

σcσeρχ

g + σc√
M

∑
α:Rα>0

d0αR
+

α\0 − σmδm0

, (B1)

R
+

0 =
1

1− ρσeσcγ−1ν

κ− σe√
M

∑
i:Ni>0

N
+

i\0

(
ρdi0 +

√
1− ρ2xi0

)
+ σKδK0

. (B2)

Applying the perturbation gives,

N
+

0 =
1

σcσeρχ

g + σc√
M

∑
α:Rα>0

d0α

(
R

+

α\0 + εη(R)
α

)
− σmδm0

, (B3)

R
+

0 =
1

1− ρσeσcγ−1ν

κ− σe√
M

∑
i:Ni>0

(
N

+

i\0 + εη
(N)
i

)(
ρdi0 +

√
1− ρ2xi0

)
+ σKδK0

. (B4)

Differentiating with respect to ε yields,

dN
+

0

dε
=

1

σeρχ
√
M

∑
α:Rα>0

d0α

(
dR

+

α\0

dε
+ η(R)

α

)
, (B5)

dR
+

0

dε
= − σe/

√
M

1− ρσeσcγ−1ν

∑
i:Ni>0

(
dN

+

i\0

dε
+ η

(N)
i

)(
ρdi0 +

√
1− ρ2xi0

)
. (B6)

Because R
+

α\0, d0α, η
(R)
α are all independent, ⟨dR+

0 /dε⟩ = 0; similarly, ⟨dN+

0 /dε⟩ = 0. The first moment of
the response to the perturbation does not give useful information about the stability; therefore, we turn to
the second moment. First, we square the above quantities:[

dN
+

0

dε

]2
=

1/M

(σeρχ)2

∑
α,β:Rα>0,Rβ>0

d0αd0β

(
dR

+

α\0

dε
+ η(R)

α

)(
dR

+

β\0

dε
+ η

(R)
β

)
, (B7)

[
dR

+

0

dε

]2
=

σ2
e/M

(1− ρσeσcγ−1ν)2

∑
i,j:Ni>0,Nj>0

(
dN

+

i\0

dε
+ η

(N)
i

)(
dN

+

j\0

dε
+ η

(N)
j

)
(B8)

×
(
ρdi0 +

√
1− ρ2xi0

)(
ρdj0 +

√
1− ρ2xj0

)
.

Averaging over all sources of randomness and using
〈[

dN0

dε

]2〉
= S−1

∑S
i=1

[
dNi\0
dε

]2
and

〈[
dR0

dε

]2〉
=
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M−1
∑M

α=1

[
dRα\0

dε

]2
, which follows from the assumption that the system self averages, we obtain:

〈[
dN

+

0

dε

]2〉
=

1/M

(σeρχ)2

∑
α,β:Rα>0,Rβ>0

⟨d0αd0β⟩

(
dR

+

α\0

dε

dR
+

β\0

dε
+

dR
+

α\0

dε

〈
η
(R)
β

〉
(B9)

+
〈
η(R)
α

〉 dR
+

β\0

dε
+
〈
η(R)
α η

(R)
β

〉)

=
1/M

(σeρχ)2

∑
α,β:Rα,Rβ>0

δαβ

(
dRα\
dε

dRβ\0

dε
+ δαβ

)
(B10)

=
ϕR

(σeρχ)2

〈[dR+

0

dε

]2〉
+ 1

 , (B11)

〈[
dR

+

0

dε

]2〉
=

σ2
e/M

(1− ρσeσcγ−1ν)2

∑
i,j:Ni>0,Nj>0

(
dN

+

i\0

dε

dN
+

j\0

dε
+

dN
+

i\0

dε

〈
η
(N)
j

〉
(B12)

+
〈
η
(N)
i

〉 dN
+

j\0

dε
+
〈
η
(N)
i η

(N)
j

〉)
×
(
ρ2 ⟨di0dj0⟩+ ρ

√
1− ρ2 (⟨di0⟩ ⟨xj0⟩+ ⟨xi0⟩ ⟨dj0⟩) + (1− ρ2)xi0xj0

)
=

σ2
e(S/M)/S

(1− ρσeσcγ−1ν)2

∑
i,j:Ni>0,Nj>0

(
dN

+

i\0

dε

dN
+

j\0

dε
+ δij

)(
ρ2δij + (1− ρ2)δij

)
(B13)

=
σ2
eγ

−1ϕN

(1− ρσeσcγ−1ν)2

〈[dN+

0

dε

]2〉
+ 1

 . (B14)

Solving this system of equations yields:

〈[
dN

+

0

dε

]2〉
=

ϕR

(
(1− νρσcσeγ

−1)2σ−2
e + γ−1ϕN

)
[ρχ (1− νρσcσeγ−1)]

2 − γ−1ϕNϕR

, (B15)

〈[
dR

+

0

dε

]2〉
=

γ−1ϕN

(
ϕR + (ρσeχ)

2
)

[ρχ (1− νρσcσeγ−1)]
2 − γ−1ϕNϕR

. (B16)

These susceptibilities are the variance of the response of a surviving species or resource when the system is
subject to a random perturbation. The divergence of these variances represent the breakdown of the mean-
field approximation. Further, when these susceptibilities diverge, the uninvadable fixed point predicted
by the mean-field approximation becomes dynamically unstable. Therefore, when these susceptibilities
are divergent, whenever invasion is attempted, the system will exhibit dynamical fluctuations. We call
the boundary in parameter space at which these susceptibilities diverge the instability boundary. These

susceptibilities diverge when 0 =
[
ρχ
(
1− νρσcσeγ

−1
)]2 − γ−1ϕNϕR. This condition along with the cavity

self-consistency equations (Eqs. A39, A40, A41, A42, A44, A45, A46, A47) determines a co-dimension-one
boundary in the space of model parameters. By using the relations in line A43, we obtain the following

15



Figure B6: Heatmaps of the variances of the response of a surviving species and resources to a random
perturbation (Eqs. B15, B16) as a function of the parameters σ and ρ with other parameters matching

those in Fig. 3(a). The instability boundary is shown as a gray solid line, and the infeasibility boundary is
shown as a gray dashed line.

Figure B7: Log-log plot of the absolute value of the variances of the susceptibilities ⟨
(
dN+

0 /dε
)2⟩,

⟨
(
dR+

0 /dε
)2⟩ plotted as a function of the distance from the instability boundary, |ρ− ρ⋆|. The data is

exactly that which is used in Fig. 3(b). A fit ∝ 1/|ρ− ρ⋆| is shown for each susceptibility with dashed lines.

relation for the boundary at which the system becomes unstable:

ϕ⋆
R

(
(ρ⋆)2ϕ⋆

R − γ−1ϕ⋆
N

)
= 0 =⇒ (ρ⋆)

2
= γ−1ϕ

⋆
N

ϕ⋆
R

(B17)

⇓

instability boundary occurs when: (ρ⋆)
2
=

(# of surviving species)⋆

(# of non-depleted resources)⋆
, (B18)
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where X⋆ denotes the value of a quantity X at the instability boundary. We are able to determine the
critical level of asymmetry, ρ⋆, at which the ecosystem becomes unstable by solving a nonlinear least squares

problem (see SI section D3). The variances of the susceptibilities ⟨
(
dN+

0 /dε
)2⟩, ⟨(dR+

0 /dε
)2⟩ are shown for

various values of σ = σc = σe and ρ in Fig. B6 with the instability and infeasibility boundaries overlaid.
These variances of susceptibilities additionally have an asymptotic power law dependence on the distance
from the instability boundary, |ρ− ρ⋆|, as shown in Fig. B7.

The transition to the dynamic phase coincides in method to the transition to the “multiple attractors”
phase discussed in the random generalized Lotka–Volterra model literature. This was first described in
Ref. [1].

Appendix C: Chaotic nature of dynamics

In the dynamic phase of the aMCRM, when an ecosystem is sufficiently large, the dynamics are chaotic.
In this section, we provide numerical evidence that the dynamics of the aMCRM are chaotic in the classical
sense (i.e., sensitive dependence on initial conditions) and in the sense of unpredictability (i.e., no clear
patterns in the dynamics). As shown in Fig. 4(b) in the main text, the trajectories of the abundances of the
surviving species and resources diverge from one another, indicating that the dynamics are chaotic in the
classical sense. Evidence of chaos and unpredictability in the dynamic phase is present in other numerical
experiments, as well.
In Fig. C8, we show that the dynamics of the aMCRM in the dynamic phase are unpredictable in the

sense that a trajectory does not display any clear patterns in the projection onto the first three principal
components of the correlation matrix of the time series of the abundances of the surviving species and
resources. Such a projection is necessary to visualize the dynamics of the system, as they are very high-
dimensional.

1. Analysis of the Lyapunov exponents

In Fig. 4(a), we show the maximal Lyapunov exponent for simulations classified by whether they reach a
steady state for various values of ρ. To determine the Lyapunov spectrum, we use the lyapunovspectrum
function in the ChaosTools.jl Julia package which employs the ‘H2’ method of Geist, originally stated in
Benettin et al. [2–5]. This algorithm is described in detail in SI section A of Ref. [3], and its applications
are described in Chapter 3.2. Conceptually, in order to compute the kth largest Lyapunov exponent, the
algorithm evolves n ≥ k deviation vectors in the tangent space of the system and computes how the shape
of the n-dimensional parallelepiped spanned by the deviation vectors evolve; the eigenvalues of the matrix
describing the evolution of the parallelepiped are asymptotically related to the Lyapunov exponents. The
Jacobian of the system when the dynamical variable is considered as (N1, . . . , NS , R1, . . . , RM ) is:

J(N1, . . . , NS , R1, . . . , RM ) =

[
∂Ṅi

∂Nj

∂Ṅi

∂Rβ

∂Ṙα

∂Nj

∂Ṙα

∂Rβ

]
=

[
δij(
∑S

i=1 ciαRα −mi) Niciβ
−ejαRα δαβ(Kα − 2Rα −

∑S
i=1 ciαNi)

]
.

(C1)

The Lyapunov spectrum is computed with M = S = 512 species and resources, and the initial deviation
vectors are chosen to be 8 unit vectors in the direction of randomly chosen species and resources. The
parameters passed to the lyapunovspectrum function are the number of steps, N = 1000, the time step,
∆t = 5, and the time to wait before starting to record the Lyapunov spectrum, Ttr = 1000. The initial
conditions are Ni(0) = 1/S and Rα(0) = 1/M .
As seen in Fig. 4(a), the maximal Lyapunov exponent for a simulation that does not reach a steady state

is positive while the maximal Lyapunov exponent for a simulation that does reach a steady state is negative.
A simulation is categorized as reaching a steady state if the mean absolute value of all derivatives of the
abundances at the end of the simulation is less than 10−6. These results indicates that the dynamics are
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Figure C8: Projection of M + S = 256 + 256 = 512-dimensional dynamics onto the 3 highest-ranked
eigenvectors of the correlation matrix (first 3 principal components) of the time series of the abundances.
The lack of clustering of the trajectories in the projection indicates that the dynamics are chaotic and
unpredictable. The parameters correspond to the gray star in Fig. 3(a). Before plotting, the simulation

was run for 104 time units to eliminate any potential transients.

chaotic in the classical sense for the simulations which have persistent fluctuations. The impact of system
size on the probability of reaching a steady state is discussed in SI section E.

2. Analysis of the generalized alignment index (GALI)

An alternative method to determine whether a system is chaotic is to use the generalized alignment
index (GALI) [2, 3, 6]. The GALI is a measure of how vectors in the tangent space of a trajectory align
with each other. Let ŵ1(0), . . . , ŵk(0) ∈ RM+S be linearly-independent unit deviation vectors that evolve
according to,

d

dt
ŵi(t) = J(x(t))ŵi(t), (C2)

where x(t) = (N1(t), . . . , NS(t), R1(t), . . . , RM (t)) and J(x(t)) is the Jacobian matrix of the system in state
x(t). These deviation vectors are normalized to have unit length at regular (small) time intervals. The
order-k GALI is defined as,

GALIk(t) = ∥ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵk(t)∥ = |det(ŵ1(t), ŵ2(t), . . . , ŵk(t))|, (C3)

which is the volume of the k-dimensional parallelepiped spanned by the time-evolved deviation vectors. If
the system is chaotic, the GALI will decay exponentially with time, indicating that the deviation vectors
are becoming more aligned with each other due to the exponential divergence of nearby trajectories. If the
system is not chaotic and reaches a steady state, the GALI will asymptotically approach a nonzero value,

18



Figure C9: Generalized alignment indices (GALIs) for simulations in the dynamic and stable phases with
M = S = 512 species and resources. The simulations all have the same sampled parameters; only ρ and

order of the GALI are varied. For the simulations in the dynamic phase (solid lines), the GALI
asymptotically decays exponentially with time, indicating chaos, while for the simulations in the stable
phase (dashed lines), the GALI asymptotically approaches a nonzero value, indicating the dynamics

achieve a steady state. Simulation parameters for the GALI in the stable and dynamic phases correspond
to the gray dot and star in Fig. 3(a), respectively.

indicating that the deviation vectors form a nonzero volume in the tangent space because no single direction
dominates the dynamics. Alternatively, if the system is asymptotically periodic or quasi-periodic and does
not reach a steady state, the GALI will decay as a power law with time.

In Fig. C9, we show the GALI for simulations in the dynamic and stable phases for k = 2, . . . , 7 with
M = S = 512 species and resources. We use the gali function from the ChaosTools.jl Julia package [2].
The simulations all have the same sampled parameters; only ρ and the order of the GALI are varied. For
the simulations in the dynamic phase (solid lines), the GALI asymptotically decays exponentially with time,
indicating chaos, while for the simulations in the stable phase (dashed lines), the GALI asymptotically
approaches a nonzero value, indicating the dynamics achieve a steady state. The initial deviation vectors
are chosen to be k unit vectors in the direction of randomly chosen species and resources. The arguments
passed to the gali function are the run time, T = 2e4, the time step, ∆t = 5., the threshold at which to
stop the simulation, threshold = 1e-22, and the order of the GALI, k.

3. Analysis of effective dimension of dynamics

Chaotic systems can often be characterized by their effective dimension, which is the number of degrees
of freedom that are relevant to the dynamics. One measure of the effective dimension is the Kaplan–Yorke
(KY) dimension [7–9], which is the number of Lyapunov exponents that are positive. The KY dimension is
the linearly interpolated point at which the cumulative sum of the Lyapunov exponents crosses zero:

DKY = k +

∑k
i=1 λi

|λk+1|
, k = max

j

(
j∑

i=1

λi > 0

)
(C4)
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We estimate the KY dimension of the aMCRM using the Lyapunov spectrum measured using the meth-
ods described in SI section C 1 and the kaplanyorke dim function from the FractalDimensions.jl Julia
package [9].
We find that the KY dimension of the aMCRM in the dynamic phase for the parameters corresponding to

the gray star in Fig. 3(a) is DKY = 15±7, which is an average over 64 simulations. The number of surviving
species and resources in these simulations at the end of the simulation is S⋆+M⋆ = 74±17. The ratio of the
KY dimension to the number of surviving species and resources is DKY/(S

⋆+M⋆) = 0.21±0.09. The number
of species and resources that are transitioning between high- and low-abundance states is Mt+St = 38±19,
and the ratio of the KY dimension to the number of species and resources that are transitioning between
high- and low-abundance states is DKY/(Mt + St) = 2.6 ± 1.2 ≈ O(1). From this, we hypothesize that
the effective dimension of the dynamics is approximately this number of species and resources ‘jumping’
between high- and low-abundance states. The intuition behind this phenomenon is that the hypothesis
that dynamics of the aMCRM in the dynamic phase are dominated by the species and resources that are
transitioning between high- and low-abundance states [10]. We hope to explore this connection further in
future work.
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Appendix D: Simulation and numerical methods

1. Numerical integration

Numerical integration of the differential equations is performed using the Tsit5 solver from the
DifferentialEquations.jl package [11] in the Julia programming language [12]. Tsit5 is the Tsitouras
5/4 Runge–Kutta method, a 5th order Runge–Kutta method with an embedded 4th order method for error
estimation and step size control [13]. The solver is configured to use a relative tolerance of 10−14 and an
absolute tolerance of 10−14. The aMCRM differential equations are also effectively integrated using the
VCABM solver which an adaptive order adaptive time Adam–Moulton method [11, 14]. When using VCABM,
the solver is configured to use a relative tolerance of 10−11 and an absolute tolerance of 10−11. The VCABM is
often faster than Tsit5 for the aMCRM differential equations, but is less stable for some parameter values,
particularly in the dynamic phase with low ρ and high σ. Therefore, in nearly all cases, especially those
where the parameter space is explored, Tsit5 is used.

2. Surviving/depletion cutoffs, numerical instability, and small immigration

Simulating ecological dynamics often involves including very small immigration rates, λN , λR for species
and resources, respectively, to numerically regularize dynamics and ensure an uninvadable steady state is
approached in simulations. Furthermore, the inclusion of small immigration ensures that chaotic fluctuations
in the dynamics do not drive species or resources to extinction, killing chaos due to finite size effects. The
equations used for numerical simulations are,

dNi

dt
= Ni

(
M∑
α=1

ciαRα −mi

)
+ λN , (D1)

dRα

dt
= Rα (Kα −Rα)−

S∑
i=1

NieiαRα + λR. (D2)

In all our simulations, we take λN , λR = 10−10. Including this small level of immigration regularizes the
dynamics in that the simulated steady-state abundances of species and resources now have a clear gap
between the abundances of those that are surviving and those that are extinct, as shown in Fig. D10. This
gap is used to define a cutoff to identify fractions of surviving species and resources. Including this small
level of immigration additionally stabilizes the numerical integrator, leading to fewer simulations that report
errors due to numerical instability. The effects of immigration on dynamics in the random Generalized
Lotka–Volterra model is discussed in detail in [10]; we expect that many of the intuitions presented there
apply to the aMCRM as well.

3. Numerically solving the cavity self-consistency equations and calculating phase boundaries

In order to solve the self-consistency equations for the cavity method, we the use nonlinear least squares
method. We define the objective function to be the sum of the squares of the differences between the left
and right-hand sides of the self-consistency equations (A39, A40, A44, A45, A46, A47, A42, A41):

L(ϕR, ϕN , ⟨N⟩, ⟨R⟩, qN , qR, χ, ν) = (LHS − RHS of Eq. (A39))2 + · · ·+ (LHS − RHS of Eq. (A41))2.
(D3)

When the self-consistency equations are solved, the objective function is zero. The objective is minimized
using adaptive differential evolution solver, implemented as
BBO adaptive de rand 1 bin radiuslimited in the Julia package BlackBoxOptim.jl [15].
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Figure D10: Log histogram of the species and resource abundances at steady state for a system with
M,S = 256 and ρ = 0.9. There is a clear gap in abundance between species/resources that are surviving

and those that are extinct. The immigration rate used is λ = 10−10.

Figure D11: Least-squares objectives for solving the cavity self-consistency equations. The solid curve is
the instability boundary, and the dashed curve is the infeasibility boundary. The region in which the

objective function is very small is the region in which the cavity self-consistency equations are solved; the
region in which the objective function is large represents invalid solutions which are not included in plots.

The parameters used are those used in Fig. 3(a).

There are choices of parameters µc, µe, σc, σe,K, σK ,m, σm, ρ for which the objective function does not
reach zero. In Fig. D11, we plot the objective function values for various choices of ρ and σ = σe = σc;
the other parameters for this figure are those used in Fig. 3. We can see that the objective function values
are very small for ρ near one and suddenly jumps to a much larger value for ρ near zero. The cause of this
increase in the objective function is the term (LHS − RHS of Eq. (A41)) in the objective function. Observe
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that as χ → 0, −ν → ∞, which leads to the objective function value blowing up. In order to find the
boundary at which the objective function blows up, we simply add a term to the objective function that is
zero when χ = 0 and allow one model parameter (here, ρ) to vary:

LCSI(ϕR, ϕN , ⟨N⟩, ⟨R⟩, qN , qR, χ, ν, ρ
CSI) =L(ϕR, ϕN , ⟨N⟩, ⟨R⟩, qN , qR, χ, ν, ρ

CSI) (D4)

+ (χ− 0)2.

Similarly, to find the instability boundary, we add a term to the objective function corresponding to the
instability condition (Eq. (B18)):

L⋆(ϕR, ϕN , ⟨N⟩, ⟨R⟩, qN , qR, χ, ν, ρ
⋆) =L(ϕR, ϕN , ⟨N⟩, ⟨R⟩, qN , qR, χ, ν, ρ

⋆) (D5)

+ (LHS − RHS of Eq. (B18))2.

Minimizing these objective functions while allowing one additional model parameter to vary gives the infea-
sibility and instability boundaries shown in all figures in this paper.
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Appendix E: Finite size scaling analysis

In order to understand whether the aMCRM achieves a steady state in the thermodynamic limit, we
must understand how finite system size and a finite simulation time impact simulation results. To assess
the existence and dynamical nature of a steady state in a simulation, we numerically calculate a time to
steady state (TtSS). After running a simulation, we iterate through the time series and find the time at
which the mean absolute value of the derivatives last dips below a threshold, 10−10. The tolerance of the
solver (Tsit5 [11, 13]) is 10−14, so this threshold is well above the numerical error of the simulation. Because
we simulate to a finite time Tmax = 216 + 104 = 75536, it is not possible to distinguish between a system
that will reach a steady state at some time beyond Tmax and a system that will never reach a steady state.
Furthermore, when performing these simulations, especially with large system sizes, errors occasionally occur
in the solver, and the simulation is aborted; while we do not present finite-size scaling results in regions where
the simulations are frequently aborted, a robust analysis should account for this. Here, we develop a custom
maximum likelihood estimation (MLE) technique to fit the distributions TtSS’s at different system sizes,
taking into account these two situations. We then examine the scaling of the resulting fit parameters to
determine their behavior in the thermodynamic limit.

1. Modeling simulation outcomes

To construct a MLE model, we first must model the statistical process which determines each possible
outcome of a simulation. We observe that simulation outcomes fall into three categories:

(i) The simulation reaches steady state within the maximum simulation time Tmax.

(ii) The simulation does not reach steady state within Tmax.

(iii) The solver encounters an error and the simulation aborts.

First, we represent the probability of a simulation encountering an error as perr. Next, we consider whether
a simulation could possibly reach a steady state if given enough simulation time. We represent the probability
of a simulation reach steady state in the infinite time limit as ϕSS. Finally, we define the probability density
function pSS(t) of TtSS’s for those simulations that can reach steady state when given enough time.

Using these definitions, we can now construct the probabilities for each of the cases defined above.
Let T be a random variable representing the observed outcome of a simulation with possible values
T ∈ [0, Tmax] ∪ {noSS, error}, where T takes a finite value in the interval [0, Tmax] for case (i), or the special
values noSS or error in cases (ii) and (iii), respectively.

To model case (i), we note that it results in an outcome represented by a continuous numerical value, while
cases (ii) and (iii) represent categorical outcomes. For ease of derivation, we also convert T to a categorical
outcome in the prior case by artificially breaking our simulation interval into small discrete time steps of
size ∆t. Later, we will take the limit ∆t → 0, removing the dependency of our model on this step size.
The probability of a simulation completing successfully and reaching a steady state in the time interval
t < T < t+∆t with T < Tmax is approximately

P(t < T ≤ t+∆t | T < Tmax) ≈ (1− perr)ϕSS∆t pSS(t). (E1)

For case (ii), simulations do not encounter an error, but do not reach steady state within Tmax. We
must consider two separate possibilities: a simulation may never reach steady state, even if Tmax → ∞,
or would reach steady-state after further simulation, T > Tmax. In the first case, the probability is simply
(1−perr)(1−ϕSS). If a simulation would eventually have reached steady-state if we had continued simulating,
we must use our probability density function pSS(t). However, we do not know exactly when the simulation
would have finished, so we must sum across all discrete time intervals greater than Tmax. The total probability
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for case (ii) is then

P(noSS) ≈ (1− perr)(1− ϕSS) + (1− perr)ϕSS

∞∑
n=0

∆t pSS(Tmax + n∆t)

≈ (1− perr)(1− ϕSSFSS(Tmax)),

(E2)

where we have taken the limit ∆t → 0 and simplified, defining FSS(T ) =
∫ T

0
dtpSS(t) as the cumulative

distribution function of pSS(t).

Finally, for case (iii), the probability is simply

P(error) = perr. (E3)

2. Likelihood function

We now use the outcome probabilities in the previous section to construct a likelihood function to fit the
data. We are given N (independent) simulations resulting in observed TtSSs {T1, · · · , TN} which may take
on values Ti ∈ [0, Tmax] ∪ {noSS, error}. Our fit parameters θ include perr, ϕSS, along with the parameters
that define the probability density function pSS(t). Defining the likelihood of the data given the parameters
θ as P({Ti}Ni=1|θ), the MLE estimate of the parameters is found by minimizing the negative log-likelihood,

θ⋆ = argmax
θ

P({Ti}Ni=1|θ) = − argmin
θ

1

N
log P({Ti}Ni=1|θ). (E4)

Using our outcome probabilities, the negative log-likelihood is then

L({Ti}Ni=1; θ) =−
1

N
log P({Ti}Ni=1|θ) = −

1

N
log

N∏
i=1

P(Ti|θ) = −
1

N

N∑
i=1

log P(Ti|θ)

=− 1

N

N∑
i=1:Ti<Tmax

log [(1− perr)ϕSS∆t pSS(Ti)]

− 1

N

N∑
i=1:Ti=noSS

log [(1− perr)(1− ϕSSFSS(Tmax))]−
1

N

N∑
i=1:Ti=noSS

log perr.

(E5)

Next, we define ferr as the fraction of simulations that encounter errors, and the fSS as the fraction of simu-
lations that did not encounter errors and reached a steady state within time Tmax. Using these definitions,
we get

L({Ti}Ni=1; θ) =−
1

N

N∑
i=1:Ti<Tmax

log pSS(Ti)− fSS log [(1− perr)ϕSS∆t]

− (1− ferr − fSS) log [(1− perr)(1− ϕSSFSS(Tmax))]− ferr log perr

=− 1

N

N∑
i=1:Ti<Tmax

log pSS(Ti)− (1− ferr − fSS) log (1− ϕSSFSS(Tmax))

− fSS log ϕSS − (1− ferr) log(1− perr)− ferr log perr − fSS log∆t.

(E6)
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We note that the last term is a constant, so we may choose to ignore it and take the limit ∆t → 0 as
mentioned previously, giving us the final form for the likelihood,

L({Ti}Ni=1; θ) =−
1

N

N∑
i=1:Ti<Tmax

log pSS(Ti)− (1− ferr − fSS) log (1− ϕSSFSS(Tmax))

− fSS log ϕSS − (1− ferr) log(1− perr)− ferr log perr

(E7)

3. Fitting the model

To find the maximum likelihood estimates of the parameters, we minimize Eq. (E7) using the BFGS
algorithm implemented in the Julia package Optimization.jl [16]. We found empirically that the Fréchet
distribution is a good choice for pSS(t). The Fréchet distribution has the following forms for the cumulative
distribution function and probability density function:

FSS(t) =

{
e−(t/τ)−α

, t > 0,

0, t ≤ 0,
pSS(t) =

{
α
τ

(
t
τ

)−α−1
e−(t/τ)−α

, t > 0,

0, t ≤ 0,
(E8)

where τ is the timescale parameter and α is the shape parameter. The errors in the fitted parameters
ϕSS, perr, τ, α are computed by bootstrapping the data. That is, we randomly sample N data points from the
simulation data set with replacement and fit the model to the sampled data repeatedly, providing us with
an empirical distribution for each fit parameter.

4. Scaling of parameters with system size and discussion

The simulated data for different system sizes in the stable and dynamic phases can be visualized by
analyzing the empirical cumulative distribution functions (CDFs) of the observed times to steady state
called TSS above. In Fig. E12, we show the CDFs for the stable and dynamic phases for 4 ≤ M,S ≤ 1024
along with the CDFs for the fitted distributions. A clear difference is apparent between the stable and
dynamic phases, and the fitted distributions match the simulated data well. A scaling collapse of the CDF
based on the fitted distributions is shown in Fig. E13.
The fit parameters for the stable and dynamic phases are shown in Fig. E14. In the stable phase, the

estimated probability of reaching steady state, ϕSS remains approximately equal to 1 for all system sizes,
and the estimated timescale τ asymptotically increases with system size as a power law. In the dynamic
phase, ϕSS decreases with system size towards 0, and τ asymptotically increases with system size also as a
power law, but with a larger exponent. In both phases, α approaches 1 asymptotically from above.

We provide fits of ϕSS as a function of system size M using curves of the form ϕSS(M) = ϕmax −∆(1 −
exp(−(M/ξ)κ)). For the dynamic phase ϕmax = 1.0, ∆ = 1.0, ξ = 278.5, and κ = 1.5; for the stable phase,
ϕmax = 1.0,∆ = 0.0, κ remains approximately equal to the value at which it is initialized in the optimization
algorithm, and ξ approaches the maximum value set in the optimization algorithm.

We also provide fits of the timescale τ as a function of system size M using power laws of the form
τ(M) = bMa. Curves are fit for data M,S ≥ 29.5. In the stable phase, a = 0.4 and b = 580; in the dynamic
phase, a = 0.9 and b = 70.
This finite size scaling is run in the range 512 ≤M,S ≤ 1024 but is not shown in Fig. E14 because solver

errors are occasionally present. More significantly, as very few simulations reach steady state in the dynamic
phase when the system size is sufficiently large, the MLE procedure cannot clearly distinguish between cases
where τ is very large or ϕSS is very small; this ambiguity can be seen more clearly in Fig. E12. With the
prior knowledge of the finite size scaling as shown in Fig. E14 where the MLE procedure succeeds and there
are no solver errors, we conclude that at these larger system sizes, it is both the case that τ grows large
(in polynomial order of system size) and ϕSS approaches either zero or one. That fact both the timescale τ
diverges and ϕSS approaches either zero at large system size leads us to conclude that in the thermodynamic
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Figure E12: Empirical cumulative distribution functions of T , the time to steady state, for simulations of
different system sizes in the stable phase (left) and the dynamic phase (right). The maximum likelihood
estimate distributions as described in SI section E for the time to steady state for the various system sizes

are shown with dashed lines. The maximum value shown on the horizontal axis is the maximum time
simulated, Tmax = 216 + 104 = 75536.

Figure E13: Scaling collapse of TtSS CDFs. CDFs of observed TtSSs are scaled by the MLE-fitted value
of ϕSS where the horizontal axis is scaled by the MLE-fitted values of τ , α. Note that the curves collapse
onto each other in both phases for system sizes that are moderately large M,S ⪆ 24.5. This indicates that
we have successfully identified the asymptotic scaling of the form of the TtSS distribution with system size.

limit, all systems in the stable phase eventually reach steady state for long enough times, while in the
dynamic phase, no systems reach steady state.
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Figure E14: Impact of finite size effects on the dynamics of the aMCRM. Rows correspond to different
parameters describing dynamics: the estimated probability a simulation of a given system size will reach
steady state (top) and the timescale of the time to steady state of simulations of a given system size that
do reach steady state (bottom). Columns correspond to simulation data from different phases: the stable
phase (left) and the dynamic phase (right); the parameters corresponding these simulations are marked in
the phase diagram in Fig. 3 with a circle and star, respectively. The probability of reaching steady state in

the stable phase remains at 1 for all system sizes, while the probability of reaching steady state in the
unstable phase decreases to zero with increasing system size, indicating that stable dynamics are not

observed within the dynamic phase in the thermodynamic limit. The timescale of the time to steady state
increases with system size in both the stable and dynamic phases.
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Appendix F: Additional simulations

Figure F15: Heatmap of the fraction of simulations at steady state when the sampling distributions are
uniform. Parameters are the same as in Fig. 3(a). Because the calculations are performed in the

thermodynamic limit, the phase boundary is agnostic to the choice of sampling distribution. Further
details about sampling distribution and parameters are in appendix G.
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Figure F16: Example simulations of the aMCRM with (left column) µe = µc, σe = σc; (center column)
µe = µc, σe = σc/2; and (right column) µe = 10−2µc, σe = 10−2σc. The sampled random matrices and
parameters are the same in each of the cases, as is the coloring of the species and resources. The chosen

values of µc, σc, and ρ correspond to the gray star in Fig. 3(a).

Appendix G: Parameters in figures

Figure 1 (schematic) details

Species drawings are traces of images generated using Adobe Firefly Generative AI. Prompts: “simple 2D
flat unshaded vector graphics of microbes,” “simple 2D flat digital art sketches of bacteria and microbes in
icon-style with no shading.”

Figure 2 (example dynamics) simulation parameters

Both simulations have random variables diα, xiα,Kα,mi drawn from standard normal distributions. The
parameters are,

K = 1, σK = 0.1, m = 1, σm = 0.1, µc = 200, σc = 3.5, µe = 200, σe = 3.5, λN = λR = 10−10,
(G1)

with M = S = 256 resources and species. For dynamics in the stable phase, ρ = 0.9, and for the dynamics
in the unstable phase, ρ = 0.5. Between the two simulations, the model parameters (δKα, δmi, diα, xiα)
are sampled once and only the level of nonreciprocity (ρ) is changed. For these choices of parameters,
ρ⋆ = 0.72. The initial conditions are Ni(0) = 1/S and Rα(0) = 1/M . Numerical integration is performed
using a ‘fourth-order, five-stage explicit Runge-Kutta method with embedded error estimator of Tsitouras’
implemented as Tsit5 in the Julia DifferentialEquations.jl package [11, 13]
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Figure 3 (phase diagram) simulation parameters

Each point in the heatmap represents an average over 32 simulations where the parameters were indepen-
dently sampled from normal distributions: diα, xiα,Kα,mi ∼ N (0, 1). The distribution parameters are,

K = 1, σK = 0.1, m = 1, σm = 0.1, µc = 200, µe = 200, λN = λR = 10−10, (G2)

with M = S = 256 resources and species. The parameters σc and σe are taken to be the same: σ ≡ σc = σe.
The dashed gray line represents a slice through the parameter space with the above parameters fixed and
σ = 3.5 where ρ varies from 0 to 1. The gray star represents the parameters σ = 3.5 and ρ = 0.5; the gray
circle represents the parameters σ = 3.5 and ρ = 0.9. The values of parameters µc, µe, σc, σe are chosen
so that when M = S = 256, ⟨ciα⟩, ⟨eiα⟩ = O(1) and Var [ciα] ,Var [eiα] = O(1)2; this abates some issues
involving solver errors and instabilities. The initial conditions are Ni(0) = 1/S and Rα(0) = 1/M . Numerical
integration is performed using a ‘fourth-order, five-stage explicit Runge-Kutta method with embedded error
estimator of Tsitouras’ implemented as Tsit5 in the Julia DifferentialEquations.jl package [11, 13].
The simulations are run until 5× 104 time units, and a simulation is considered to have reached steady state
if the average absolute value of all derivatives is less than 10−7 within the last 0.05× 104 time units.
The instability phase boundary (solid black) is found by solving the cavity self-consistency equations (see SI
section A and Eq. (B18) simultaneously using nonlinear least squares, as described in SI section D3).

Figure 4 (Lyapunov dot plot and diverging trajectories) simulations details

(a) Details on the calculation and analysis of Lyapunov exponents are discussed in appendix C 1. Param-
eters correspond to a slice of the phase diagram shown in Fig. 3(a) along the dashed gray line.
(b) Simulation parameters correspond to the gray star (σ = 3.5, ρ = 0.5) in Fig. 3(a). The initial con-

ditions for the trajectory plotted in (solid) red is the state given after evolving the system for 5× 103 time
units from initial conditions, Ni(0) = 1/S, Rα(0) = 1/M . The initial conditions for the trajectory plotted
in (dotted) blue are generated by selecting 8 species with abundance greater than 10−3 at random and
perturbing their abundances by a random amount drawn from a uniform distribution U([−10−4, 10−4]); the
highlighted species is not one of these 8 species. The Lyapunov exponent is computed using the ‘H2’ method
of Geist [2–5] for the trajectory plotted in red; see SI section C 1 for details.

Figure A1 (cavity distribution comparison) simulation parameters

K = 1, σK = 0.1, m = 1, σm = 0.1, µc = 8, σc = 1, µe = 8, σe = 1, ρ = 0.9 (G3)

ϕN = 0.318, ϕR = 0.729, ν = −0.858, χ = 0.412, ⟨N⟩ = 0.105, ⟨R⟩ = 0.114, ⟨N2⟩ = 0.0575, ⟨R2⟩ = 0.0258.
(G4)

The uninvadable steady state is found using an iterative constrained optimization method described in [17].
Cavity parameters are found by solving the self-consistency equations using non-linear least squares as
described in appendix D3.

Figure F15 (phase diagram with uniform sampling) simulation parameters

All parameters are identical to those in Fig. 3(a) except that the random matrices and vectors are sampled
as:

diα, xiα, δKα, δmi ∼ Uniform([−
√
3,
√
3]). (G5)
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This choice of distributions ensures that diα, xiα, δKα, δmi are still standard random variables and appro-
priate thermodynamic scaling are used to obtain cavity results that are identical to those in Fig. 3(a).
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