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Approaching the molecular origins of collective dynamics in
oscillating cell populations
Pankaj Mehta1 and Thomas Gregor2
From flocking birds, to organ generation, to swarming bacterial

colonies, biological systems often exhibit collective behaviors.

Here, we review recent advances in our understanding of

collective dynamics in cell populations. We argue that

understanding population-level oscillations requires examining

the system under consideration at three different levels of

complexity: at the level of isolated cells, homogenous

populations, and spatially structured populations. We discuss

the experimental and theoretical challenges this poses and

highlight how new experimental techniques, when combined

with conceptual tools adapted from physics, may help us

overcome these challenges.
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Introduction
Collective behaviors are ubiquitous in biological systems.

At the molecular level, proteins often aggregate into self-

organized structures such as spindles [1]. At the cellular

level, unicellular organisms often form structured com-

munities composed of many individuals [2–4]. At the

level of organisms, birds and fish colonies exhibit

dramatic emergent behaviors such as flocking [5–7] and

schooling [8–10] (see Figure). Our understanding of

collective behaviors in biological systems, however, is

still in its infancy, highlighting the crucial need to study

systems where the link between macroscopic behavior

and the microscopic components that make up the system

can be probed directly through experiments. This review

focuses on one class of systems where such an approach is

possible: the collective dynamics in cellular populations.

In their natural environments, cells often undertake

complex collective behaviors in response to environmen-
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tal and population cues [11,12]. Thus, understanding how

cells behave in the wild requires characterizing not only

the behavior of isolated cells but also how environmental

signals combine with cell-to-cell communication (such as

quorum sensing [13] and autocrine signaling [14]) to give

rise to observed behaviors at the population level. Doing

so requires us to examine how the cooperative behaviors

of cell colonies differ from those of isolated cells and

conversely, how the properties of single cells generate

and explain the observed communal behavior.

The challenges inherent in this research program are

summarized by Phil Anderson’s famous declaration

‘‘More is Different’’ [15]—namely, systems composed

of many interacting components will exhibit new emer-

gent behaviors that cannot be understood simply by

looking at the behavior of the individual components

that make up the system. Whereas Anderson largely

had in mind physical systems, biological systems pose

additional challenges not encountered in physics. The

collective behavior of cellular populations often require

cells to integrate information from a wide variety of

sources in order to perform a desired task such as cellular

aggregation or cellular differentiation [16,17]. These chal-

lenges highlight the crucial need to simultaneously

observe the behavior of individual cells within a popu-

lation, the behavior of the population as a whole, and to

measure the relevant signaling and environment induced

interactions between cells.

Oscillations in communicating cell
populations
A particularly attractive system to study collective beha-

viors is provided by communicating cell populations that

display rhythmic activities in the form of intracellular

oscillations of signaling molecules or gene expression.

Collective cellular oscillations play an important role in a

wide variety of biological systems [18], ranging from

neural systems [19] to the social amoebae Dictyostelium
discoideum, where synchronized oscillations lead starved

cells to aggregate [20–24,25��], to glycolytic and non-

glycolytic oscillations in yeast populations [26–32], to

oscillations in the pancreatic islets that control insulin

secretion [33,34��]. Recently, even bacteria have been

synthetically engineered to exhibit collective oscillations

[35��]. Oscillations represent an especially tractable

example of collective behavior because the link between

macroscopic behavior and molecular interactions can be

readily experimentally tested. Oscillations are easy to

observe experimentally, can be unmasked even in noisy
www.sciencedirect.com
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data using analytical tools such as Fourier transforms, and

there exist a large body of theoretical work to help

interpret existing and guide new experiments. In

addition, such systems are amenable to theoretical

analysis using ideas from theory of dynamical systems

[36–38].

Understanding collective oscillations requires disentan-

gling behaviors at three different levels of complexity

(see Figure 1). At the cellular level, it is necessary to

characterize how cellular networks of genes and proteins

allow single cells to respond to external signals (such as

environmental cues and signaling molecules) as well as

how these signals control the production of secreted

molecules that are involved in cell-to-cell communi-

cation. The behavior of single cells must then be related

to the behavior of cellular populations by exploring how

system parameters, such as cell-density, change the col-

lective dynamics. Finally, one must understand the

spatial dynamics of these cellular oscillation processes.
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The main challenge faced when studying such systems is

to understand how behaviors at lower levels of complexity

shape and give rise to the behaviors seen at higher levels

of complexity [15].

Recently, this program has been carried out with some

success in two systems, one natural and the other syn-

thetic. Gregor et al. [25��] used a FRET-sensor to measure

internal levels of the signaling molecule cAMP [39,40].

They showed that isolated Dictoystelium amoeba behave

like an excitable system, with individual cells capable of

generating sustained oscillations in response to elevated

levels of external cAMP. They then related these single-

cell oscillations to the synchronized, cell-density-depend-

ent oscillations exhibited by homogeneous cell popu-

lations and mapped out a phase diagram indicating

under what conditions collective oscillations occur. The

external cAMP level was identified as the control

parameter that determines the oscillatory state of the

system. Finally, they observed small populations of
ractions
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Dictoystelium cells on agar where they showed that the first

cell that randomly pulses entrains the rest of the popu-

lation in rhythmic activity. The ensuing synchronized

oscillations gave rise to spatial, concentric waves, with

cells eventually aggregating at the wave origin, the spatial

center from which the first oscillation pulse was emitted.

What was notable about these series of experiments was

that Gregor et al. were able to show that the system

undergoes a collective transition from a non-oscillatory

state where all cells are quiescent to a state where all cells

oscillate synchronously. Furthermore, they showed that

the transition does not result from specialized pacemaker

cells, but is a direct consequence of the excitable nature

of individual cells.

Using tools from synthetic biology, Danino et al. [35��]
engineered a genetic circuit in E. coli capable of generating

synchronized oscillations in growing populations. One of

the unique features of the system is that a population of

cells, that in isolation is incapable of oscillating, exhibits

collective oscillations when coupled using a quorum-sen-

sing molecule. The genetic circuits utilized components of

the naturally occurring quorum-sensing machinery in other

bacterial species to induce a global coupling between cells

[41,42]. Using cleverly designed microfluidic chambers

(networks of micro-channels that house cells in fluid flow)

that allow bacteria to grow naturally while simultaneously

holding the cell-density fixed, Danino et al. were able to

control the density of cells, and consequently the external

concentration of signaling molecules, to induce synchro-

nized oscillations in cell colonies. The experiments were

then repeated in larger microfluidic chambers where

spatial inhomogeneities resulted in a multitude of fascinat-

ing phenomena such as traveling waves and front propa-

gation. What is groundbreaking about this work is that it

provides proof of principle that one can engineer the

properties of a system at the level of a single cell to control

behavior at the level of cellular populations.

Both systems discussed above exhibit a cell-density-de-

pendent transition to collective oscillations that has been

termed ‘dynamical quorum sensing’ [43��,44�]. This

phenomenon was first explicated in the context of gly-

colytic oscillations in yeast through a successful combi-

nation of theory and experiment [43��]. Dynamical

quorum sensing relies on the mutual synchronization of

cells through the exchange of chemicals (metabolites in

yeast, cAMP in Dictyostelium, quorum-sensing molecules

for the engineered circuits discussed above). Since the

cells themselves produce the chemicals, the external

concentration of the chemicals reflects the local cell-

density of the population. Collective oscillations emerge

when the external concentration, or equivalently cell-

density, exceeds some crucial threshold. Thus, in dyna-

mical quorum sensing, cell-density information is

encoded in the collective intracellular dynamical state

of the entire population. Finally, it is worth noting that
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the term ‘dynamical quorum sensing’ is used by various

authors to refer to qualitatively different types of density-

dependent transitions. This highlights the need for a

better theoretical understanding of the qualitatively

different ways that density-dependent transitions to syn-

chronized oscillations can occur.

Challenges in understanding collective
behaviors
Understanding and manipulating collective behaviors in

cellular systems poses a number of new experimental and

theoretical challenges. On the experimental side, the

advent of fluorescent markers has resulted in tremendous

progress [45–47]. These markers include derivatives of

various fluorescent proteins that can be genetically

encoded and directly tag signaling proteins [48–53], as

well as reporter constructs for smaller signaling molecules

such as ions (Ca2+) [54,55] and nucleotides (ATP, cAMP,

cGMP) [56,57]. These markers and sensors work very

well inside cells where they are synthesized. However,

understanding the signaling that underlies collective

behavior also requires measuring signaling molecule con-

centrations in the extracellular space. This is particularly

challenging when the individual cells are not packed

together but free floating in solution. Possible techniques

that may allow for the measurement of the extracellular,

spatio-temporal dynamics of signaling molecules include

engineering cells to artificially release sensors into the

environment, as well as tagging the outside of the cell

membranes with sensor molecules. For example in cor-

tical astrocytes extracellular ATP release has been

reported by both real-time imaging using biolumines-

cence [58] as well as using chemiluminescence with cell

surface-tagged beads [59]. Extreme care has to be taken

with these methods because genetically altering cells,

generally, can simply give rise to collective behaviors that

differ from those exhibited by wild-type cells. Alterna-

tively, the experimenter could supply sensors externally

by coating the walls of the experimental setup or by

continuous flow in solution. Both require the highly

controllable environments of miniature size provided

by microfluidics [60–63]. Microfluidics refers to fluid flow

in a network of micro-channels that houses cells and can

be integrated on disposable, low-cost Lab-on-a-Chip car-

tridges [64,65]. Cells can survive in these environments,

be easily tracked and still retain most of the natural

characteristics necessary to probe collective behaviors.

The ability to perform live-cell imaging while simul-

taneously measuring the spatio-temporal dynamics of

both intracellular and extracellular signaling molecules

is likely to greatly expand our understanding of collective

behaviors in cellular colonies over the next decade.

Mathematical and computational modeling will also

likely play an important role in expanding our under-

standing of cellular oscillations. Mathematical models

have helped shape our current understanding of Dictyos-
www.sciencedirect.com
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Table 1

Four roads to synchronized oscillations. 1. Specialized pacemaker cells such as in the heart [78]. 2. Phase locking and frequency locking

of individually oscillating cells [79–82]. 3. Oscillator death in oscillators coupled with time delays [83,84]. 4. Dynamic quorum sensing such

as in the social amoebae [20] and yeast [36]

Type of transition Below the transition Mechanism

Pacemaker Cells are excitable. Pacemakers do not fire. Firing of specialized pacemaker

cells trigger oscillations.

Kuramoto (phase locking) Individual cells oscillate at their natural frequencies. An increase in the coupling strength

results in phase and/or frequency locking.

Oscillator Death Isolated cells oscillate at a wide range of frequencies.

However, when cells are coupled, individual cells do

not oscillate.

A decrease in the strength of the

coupling between oscillators leads

to collective oscillations.

Dynamic Quorum Sensing Cells do not oscillate but can become oscillatory in

response to an external signal they themselves produce.

An increase in cell-density leads to

a larger concentration of the external

signaling mole-cules. When the

concentration increases beyond the

crucial concentration (i.e. bifurcation

point), the cells start collec-tively oscillating.
telium by pointing out important connections with the

theory of excitable systems—systems like neurons where

a small change in inputs/parameters can elicit large

responses such as a spike [66,67] or the stochastic release

of the second messenger molecule Calcium that can give

rise to sustained oscillations [68,69]. Mathematical

models have also highlighted the importance of feedback

loops and balancing time scales for oscillations [70] as well

as aiding the design of genetic circuits capable of oscil-

lations [35��,71,72].

Despite these considerable achievements, theory has not

kept pace with the rapid experimental advances of the past

decade. The need for new conceptual and theoretical

approaches to collective behavior in biological systems

becomes even more clear when we contrast our current

level of understanding of biological systems to their physics

counterparts [15,73]. The major theoretical challenge is to

understand how the microscopic details of a system shape

collective behaviors at larger scales. Though this theoreti-

cal program seems daunting, we can draw on inspiration

from the study of collective behavior in physics. A unifying

theme in the study of collective phenomenon in physics is

the idea of ‘universality’—the idea that many collective

properties depend only on a few ‘relevant’ microscopic

details of the system under consideration [74]. The role of

theory is to identify these relevant details and understand

how they give rise to the observed behaviors at macroscopic

scales. Recent work suggests that universality is also likely

to be relevant to biological systems. For example, recent

experiments demonstrate that despite its vast complexity,

the yeast cell-cycle network exhibits phase locking in

response to a periodic driving force, much like an idealized

oscillator [75].

Another important implication of universality is that, often,

there are only a few qualitatively different collective
www.sciencedirect.com
behaviors a system can exhibit. For example, tools from

dynamical systems such as bifurcation theory allow for a

classification of the qualitatively different behaviors that

can be exhibited by a neuron. Theoretical considerations

also suggest that there are probably only a few different

ways that cells can undergo a density-dependent, dynami-

cal quorum-sensing transition to synchronized collective

oscillations [36,38]. The accompanying table summarizes

four common routes to synchronized oscillations seen in

nature. A key challenge facing researchers studying cellular

rhythms is to relate the type of dynamical quorum-sensing

transition exhibited by a system to relevant microscopic

details such as cell coupling. For example, Ref. [34��]
utilized ideas from percolation theory to show that altering

the gap–junction couplings between cells can qualitatively

affect the emergence of collective calcium oscillations in

the pancreatic islet (Table 1).

A final theoretical challenge is that, in contrast with

physical systems, biological systems often use oscillations

to perform a desired task in response to environmental

and cellular signals. The classical example being the

aggregation of Dictyostelium cells in response to starvation

[24]. Thus, fully understanding biological rhythms

requires integrating conceptual tools from statistical phy-

sics and dynamical systems with tools for understanding

signal processing such as information theory [17,76].

Conclusion and outlook
Collective oscillations in cellular systems represent a rich

avenue of research for both biology and the physical

sciences. It is now clear that the behavior of cellular

populations arises from a complex interplay of com-

ponents at the molecular and cellular levels. Understand-

ing this behavior will require us to develop new

theoretical and experimental tools linking the properties

of single cells to those of cell populations. Ultimately, this
Current Opinion in Genetics & Development 2010, 20:574–580



578 Genetics of system biology
knowledge should allow us to control the behavior of

entire cell populations simply by manipulating the prop-

erties of isolated cells.
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