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Geometry of ecological coexistence and niche differentiation
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A fundamental problem in ecology is to understand how competition shapes biodiversity and species coexis-
tence. Historically, one important approach for addressing this question has been to analyze consumer resource
models using geometric arguments. This has led to broadly applicable principles such as Tilman’s R∗ and species
coexistence cones. Here, we extend these arguments by constructing a geometric framework for understanding
species coexistence based on convex polytopes in the space of consumer preferences. We show how the geometry
of consumer preferences can be used to predict species which may coexist and enumerate ecologically stable
steady states and transitions between them. Collectively, these results provide a framework for understanding the
role of species traits within niche theory.
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I. INTRODUCTION

One of the most striking features of natural ecosystems
is the immense diversity of flora and fauna they support.
Understanding the origin of this diversity is a fundamental
question in ecology. A single ecosystem can contain thou-
sands of species, all living in close proximity and interacting
with each other and the abiotic environment. For this reason,
theoretical models have played a major role in guiding em-
pirical research, helping to interpret experiments, and shaping
ecological intuitions [1–3].

One major theoretical framework for understanding bio-
diversity is niche theory [1]. Niche theory emphasizes the
central role played by competition in shaping ecological
properties. Within the niche paradigm, species must occupy
distinct niches to coexist in an ecosystem [4,5]. This idea is
most succinctly summarized in Tilman’s R* principle which
states that every surviving species must be best at utilizing a
different resource [2]. Within the niche theory, the biodiver-
sity of an ecosystem is determined by the number of distinct
niches that species can occupy [6,7].

Consumer resource models (CRMs) have played a central
role in the development of niche theory (Fig. 1) [6,8,9]. CRMs
consists of two kinds of variables: resources and consumers.
Each consumer is defined by a set of “consumer preferences”
indicating which resources it can utilize. Species-species in-
teractions arise through competition for the common pool
of resources. An appealing feature of CRMs is that they
explicitly model both species and resources, allowing us to
understand environmental conditions in which species can
coexist and when they competitively exclude each other.

Recently, there has been a renewed interest in consumer
resource models from both the ecology and statistical physics
communities. A number of works have analyzed these mod-
els using methods from statistical physics to understand the
behavior of complex ecosystems with many species and
resources [10–12]. Other works have generalized these mod-
els to study microbial ecology by incorporating metabolic

considerations [13–18], including the role of metabolic trade-
offs [19–21]. CRMs are also being increasingly used as a test
ground for furthering our understanding of ecoevolutionary
dynamics [22–26] and community selection [26–28].

Historically, many of the central intuitions of niche theory
have been developed using geometric arguments for ana-
lyzing CRMs [29,30]. For example, Tilman’s R* principle
encodes the conditions for species coexistence as geometric
intuitions about when zero net-growth isoclines (ZNGIs) of
different species—defined as the set of resource abundances
for which a species has zero growth rate—intersect in resource
abundance space (i.e., the vector space of possible resource
abundances) [2]. Geometric reasoning is also fundamental to
the development of contemporary niche theory [1]. Within
contemporary niche theory, whether two species can coexist
is determined by the geometry of “coexistence cones” in re-
source abundance space (Fig. 2).

Traditional geometric arguments for determining species
coexistence primarily work in resource abundance space. In
this work, we derive an alternative geometric representation of
species coexistence and niche differentiation in CRMs using
a convex polytope in the space of “species consumption pref-
erences.” This geometric analysis extends previous work by
foregrounding the central role played by niche differentiation
in coexistence. It also allows us to enumerate all possible
ecologically stable steady states, as well as all transitions be-
tween steady states due to changes in resource supply. For this
reason, it represents an interesting new way of understanding
the origin of biodiversity within the context of niche theory.

II. METHODS AND RESULTS

A. Model

To illustrate our ideas, we initially focus on MacArthur’s
consumer resource model (MCRM) [6,8,9]. In Sec. II F, we
show how this analysis can be extended to variants of the con-
sumer resource model (CRM), including those analyzed by
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FIG. 1. MacArthur consumer resource model. (a) A species i
consumes resource α with preference set by consumer preferences
ciα . (b) Population dynamics for a system with two resources and four
species described by Eq. (1) (see the Appendix A 1 for parameters).

Tilman [31], CRMs with alternative resource dynamics [11],
and CRMs with nonlinear growth rates.

The MCRM consists of S species (also called consumers)
with abundances Ni (i = 1, . . . , S) that can consume M re-
sources with abundances Rα (α = 1, . . . , M). Species grow
by consuming resources and die at a per-capita rate mi. Al-
ternatively, mi can be interpreted as the minimum amount
of energy that must be extracted from resources in order for
species i to survive. Resources also have different “qualities”
wα reflecting how much they contribute to growth. The pref-
erence of species i for a resource α is encoded in the matrix
of consumption preferences ciα . In the absence of consumers,
each resource is described by logistic growth with carrying
capacity Kα . In the presence of consumers, resources are de-
pleted at a rate proportional to their consumption.

The dynamics of the MCRM are described by the follow-
ing coupled ordinary differential equations:

dRα

dt
= Rα (Kα − Rα ) −

S∑
i=1

ciαNiRα,

dNi

dt
= Ni

(
M∑

α=1

wαciαRα − mi

)
. (1)

In general, at steady state, some resources and species will
go extinct. Denote the number of species and resources that
survive at steady state by S� and M�, respectively.

Generically, the principle of competitive exclusion implies
that at most S� � M� species can survive in an ecosystem at
steady state [5] (but also see Refs. [11,20,32] for discussion
of exceptions and how they might arise). An example of the
resulting dynamics is shown in Fig. 1 for a system with S = 5
and M = 2. Notice that the steady-state abundances of the two
resources is below their carrying capacities due to depletion,
and the number of surviving species S� = 2 is bounded by the
number of surviving resources, in this case M� = 2.

In general, which species survive depends on the resource
supply point encoded in the “resource supply vector,” K. As
shown in Fig. 2, by varying the resource supply point, the
steady state of the MCRM has qualitatively different behav-
iors: a single species i = 5 competitively excludes all species,
two species i = 1, 5 coexist, species i = 1 competitively ex-
clude all species, the two species i = 1, 4 coexist, and finally
species i = 4 competitively excludes all other species. Notice
that species 2 and 3 always go extinct and species 4 and 5
can never coexist for any choice of the carrying capacities
K. Thus, even a simple model with two resource and five
species exhibits an extremely rich set of possible steady-state
behaviors.

B. Geometry in resource abundance space

Contemporary niche theory provides a simple geometric
picture for understanding possible steady-state behaviors in
CRMs [1]. Consider, once again the simple ecosystem shown
in Fig. 1. A key quantity of interest are the zero net growth
isoclines (ZNGIs). A ZNGI for a given species corresponds
the set of resource abundances for which a species has exactly
zero growth rate. Setting dNi

dt = 0 in Eq. (1), we see that the

FIG. 2. Zero net growth isoclines (ZNGIs) and coexistence cones for ecosystems with S = 5 species and M = 2 resources. (a) ZNGIs for
each species are plotted in the space of resource abundances. The highlighted region corresponds to the polytope defining the infeasible region
where the growth rate is negative for all species. (Inset) ZNGI for one species where different growth-rate regions are labeled. (b) Trajectories
of solutions in resource phase space (black lines), coexistence cones (green cones), and species abundances Ni as a function of time for five
different choices of carrying capacity indicated by KA, . . . , KE . Dynamics in Fig. 1 correspond to trajectory with carrying capacity KD. See
interactive demonstrations in Appendix A 4.
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ZNGI for a species i is defined by the equation,

gi(R�) =
M∑

α=1

wαciαR�
α − mi = 0, (2)

where we have defined the per-capita growth rate gi(R�) of
species i and introduced the notation where X � denotes the
steady-state value of a quantity X . For an ecosystem with
S species, we have S different ZNGIs corresponding to the
indices i = 1, . . . , S. For each ZNGI, gi(R�) = 0 defines a
codimension one hyperplane in the space of the resource
abundances [Fig. 2(a)]. As shown in the inset, this hyper-
plane divides the resource space into two regions: a region
containing the origin where species i has negative per-capita
growth rate and a region where species i has positive per-
capita growth rate.

Equation (1) tells us that at steady state, the per-capita
growth rate for a species i must either be zero if species i
survives (i.e., gi(R�) = 0) or negative if species i goes extinct
(i.e., gi(R�) < 0). For this reason and because the CRM in
Eq. (1) is guaranteed to reach a steady state for all choices
of the carrying capacities K [33,34], the steady-state resource
abundances R� must lie on the boundary of the convex poly-
tope formed by the intersection of the ZNGIs associated
with the surviving species, restricted to the positive quadrant
[Fig. 2(a)]. The position of R� on this boundary depends on
the supplied resource vector K. We emphasize that different
choices of K correspond to different ecosystems with distinct
distributions of supplied resources (i.e., resource carrying ca-
pacities in the absence of consumers).

If we further require that the steady state be ecologically
uninvadable (i.e., cannot be invaded by any species), then R�

must lie inside the boundary of the polytope formed by the
ZNGIs; we refer to this region as the infeasible region. In
Fig. 2(a), this corresponds to the shaded region. The number
and identity of species that coexist is directly related to the
number of ZNGIs that intersect at R� since we must have
gi(R�) = 0 for all species i that survive at steady state. For
the example in Fig. 2, the vertices on the boundary of the
shaded region correspond to values of R� where two species
coexist at steady state, and edges correspond to values of
R� where one species competitively excludes all others. This
basic argument also explains why, generically, the number of
surviving species must be less than the number of surviving
resources, S� � M�, because at most M� planes can intersect
in M� dimensions without fine-tuning.

The arrangements of the intersections between the ZNGIs
which fall in the intersection of all the closed half-spaces enu-
merate the possible coexisting species in various ecosystems,
and the dimensions of the intersections correspond dually to
the number of coexisting species. The species that coexist in
a particular ecosystem depend on the resource supply vector
K. At steady state, for a nondepleted resource α Eq. (1) states
that

Kα − R�
α =

∑
i,N�

i >0

ciαN�
i . (3)

Geometrically, the left-hand side corresponds to the vector
from the steady-state resource values to the resource carrying
capacities. By definition, N�

i > 0, so the right-hand side de-

fines a “coexistence cone” with basis given by the consumer
resource preferences (Fig. 2(b) and Ref. [1] for extended dis-
cussion). As shown in the figure, this equation also implies
that K must lie within the coexistence cones.

The coexistence cones tile the resource-abundance phase
space and classify each K by the species whose coexistence
it supports. The number of species that coexist is the rank of
the coexistence cone, and the apex of the coexistence cone is
the intersection of all ZNGIs corresponding to the surviving
species. In general, if S� species survive and coexist, then
the coexistence cone has rank S�, and the intersection of the
surviving species’ ZNGIs has dimension M − S�. An inter-
active Mathematica notebook illustrating this basic picture
can be found on the corresponding GitHub repository (see
Appendix A 4).

C. Geometry in space of consumer preferences

We now provide an alternative geometric picture of
ecosystems that works directly in the space of “consumer
preferences.” The virtue of working in the space of consumer
preferences is that it allows one to directly link species coex-
istence to species traits, which are often easier to observe and
characterize from data. On a technical level, the geometry in
the consumer preference space is mathematically dual to the
geometry in resource space and hence contains the same infor-
mation (see below) [35]. However, the qualitative ecological
intuitions it provides are quite distinct and meaningful from
those discussed in the last section.

To formulate this new geometric picture we introduce
“scaled consumption vectors” Ci for each species:

Ci = (w1ci1/mi . . . wαciα/mi . . . wMciM/mi )T.

(4)

Notice the elements of Ci are the original consumer prefer-
ences for surviving species divided by mi where resources are
weighted by energetic content wα . In terms of these scaled
consumer resources, the steady-state condition gi(R�) � 0
from Eq. (2) can be rewritten as

Ci · R� − 1 � 0, (5)

with strict equality for the indices corresponding to the S�

surviving species. Geometrically, this equation states that the
ZNGI for each a species i is perpendicular to Ci and passes
through the point Ci/‖Ci‖2. This can be easily verified by
observing that R� = Ci/‖Ci‖2 is a solution to Eq. (5).

This inversive relationship between the ZNGIs and the
consumption vectors allows us to analyze many coexistence
properties using the rescaled consumption vectors alone with-
out explicit reference to steady-state resource abundances. In
the main text, we limit ourselves to discussing the results and
interpretations that follow from this observation and relegate
technical details to Appendix B 1.

The central geometric object in our picture is a convex
polytope formed by the scaled consumption preferences Ci

which we call the positive convex hull (PCH) of consumption
vectors. The PCH is constructed by forming the convex hull
of all scaled consumption vectors, Ci, and these consumption
vectors projected onto all combinations of coordinate axes. It
is necessary to include these projections to account for the
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FIG. 3. Relationship between coexistence cones and the posi-
tive convex hull (PCH) formed by rescaled consumption vectors.
Left: Coexistence cones are highlighted in relation to the ZNGIs
for competitive species. If the vector of carrying capacities, K, be-
longs to cone α, the species i = 1, i = 5 can coexist; if K belongs
to cone β, then species i = 1, i = 4 can coexist; otherwise, only
i = 5, i = 1, i = 4 can survive separately. Right: The positive convex
hull (PCH) of rescaled consumption vectors Ci has faces that are
dual to the arrangement of the coexistence cones. Each possible
ecologically stable combination of surviving species is represented
by a face of the PCH.

possibility that resources may be depleted; one may think of
these projected vectors as consumption vectors for species
that are forbidden from consuming some potentially depleted
resources. Figure 3 depicts the PCH corresponding to the
ecosystem analyzed in Fig. 2. The figure also provides an
illustration of the geometric duality between the PCH and
the convex polytope formed by the ZNGIs in resource space
corresponding to the infeasible region (i.e., the region where
growth rates for all species are negative). This duality follows
directly from Eq. (5) and has a number of powerful implica-
tions (see Appendix B 1). Chief among these is that a face of
dimension M − d of the infeasible region polytope formed by
the ZNGIs is in direct correspondence to a face of dimension d
of the PCH. We use the usual definition that a face is an inter-
section of a boundary of the polytope with a hyperplane; a face
is not necessarily maximal-rank and can be a single vertex.

In Appendix B, under the same very mild assumptions
where competitive exclusion holds, we show that:

(i) Each face of the PCH corresponds directly to a set of
species that can coexist at steady state (Fig. 3).

(ii) A face of the PCH has vertices Ci1 , . . . , CiS� if and
only if there exists a choice of the resource supply vector K
for which precisely the species i = i1, . . . , iS� coexist. (Fig. 4)

(iii) Transitions between different steady-state behaviors
as the resource supply vector K is varied (Fig. 2) are captured
by the geometry of the PCH, with allowed transitions corre-
sponding to neighboring faces (Figs. 4 and 5).

These three properties of the PCH allow us to enumer-
ate, using only species attributes, possible ecologically stable
steady states and transitions between them as the supplied
resources are varied. The information about steady states and
coexistence contained in the ZNGIs is exactly that contained
in the PCH as they are dual objects. The chief advantage
provided by this dual picture is that it provides intuition for
coexistence and niche differentiation in terms of species traits.
Additionally, the PCH construction lends itself well to com-

putational geometry, especially in high dimensions as there
are systematic and efficient algorithms for enumerating faces
of a convex hull of a set of points [36]. We now discuss the
implications of this geometric picture in greater detail.

D. Enumerating possible steady states and transitions

Each face of the PCH is in direct correspondence to a
possible set of species that can coexist. This allows us to
easily enumerate all possible ecologically stable steady states
by listing all faces of the PCH and their neighbors. A simple
example of this can be seen by comparing Figs. 2 and 3 which
give two different geometric pictures for the same ecosystem
with S = 5 species and M = 2 resources. Notice, there exists
no choice of K where species 2 and 3 survive at steady state.
Both of these species are always competitively excluded from
the ecosystem. In the PCH, this is reflected in the fact that the
corresponding scaled consumption vectors fall on the interior
of the PCH and hence are not part of any face. Furthermore,
when K is varied in Fig. 2, the resulting transitions are pre-
cisely captured by the geometry of the PCH in Fig. 3: from
a steady state where species 5 survives, to coexistence of
species 1 and 5, to a steady state with only species 1, to
coexistence with species 1 and 4, and finally a steady state
where only species 4 survives. Here, we use the term “tran-
sition” to refer to a change in the set of species that coexist
at uninvadable steady state as the resource supply vector K
is varied either continuously or discretely while species may
re-invade continuously. These possible transitions are inde-
pendent of how K is varied because for any choice of K, there
is a unique uninvadable steady state independent of initial
conditions [34]. If reinvasion did not occur, then the geom-
etry of the PCH would change such that scaled consumption
vectors for extinct species are removed from the construction;
nonetheless, possibly coexisting communities would still be
represented by faces of the PCH.

More generally, the faces of the PCH are arranged in a lat-
tice by subset inclusion, so we can find all possible transitions
between coexisting species by descending through the face
lattice and enumerating the species whose scaled consumption
vectors are the vertices of the faces. An example illustrating
these transitions in a more complex ecosystem with M = 3
resources and S = 20 species is shown in Fig. 4 and the cor-
responding interactive Mathematica notebooks. The left side
of each panel in the figure shows the geometry in resource
abundance space and the location of the supplied resource
vector K, while the right-hand side shows the dual geometry
in terms of the PCH. Notice that the faces of the PCH capture
possible steady states, and transitions between different steady
states can only occur if faces are neighbors; the lattice of all
faces and transitions is shown in Fig. 5.

E. Coexistence and competition

The geometry of the PCH can also be used to ask and
answer interesting ecological questions. For example, how
does changing species traits such as consumer preferences,
ciα , or fitnesses, mi, affect what species can coexist? How
does adding a fitter invasive species affect biodiversity? To
illustrate this, we once again consider the simple ecosystem
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FIG. 4. Positive convex hull (PCH) formed by rescaled consumption vectors for an ecosystem with M = 3 resources and S = 20 species. In
each panel, the left plot shows the infeasible region polytope formed by the ZNGI, the resource supply vector K, and the associated coexistence
cone. The top plot shows the species populations Ni as a function of time. The right plot depicts the PCH; the face corresponding to the steady
state for the choice of K is indicated by large green dots. Small dots indicate consumption vectors, Ci, that lie in the interior of the PCH and
correspond to species that go extinct for all choices of K. The directed graph shows possible transitions between these steady states as K is
varied when no reinvasion occurs. A value of K is chosen arbitrarily in each pane such the species which survive demonstrate each face of the
PCH. The panes are organized to reflect the face lattice of the PCH. (Also see the interactive Mathematica notebook.)

of S = 5 species and M = 2 resources considered in Figs. 2
and 3 and ask how increasing the fitness (i.e., decreasing the
death rate m2) of species 2 changes possible ecological steady
states. Figure 6 shows the PCH and resource dynamics for this
system as the fitness of species 2 is increased.

Notice, initially the rescaled consumption vector for
species 2, C2, lies within the PCH indicating that species 2

FIG. 5. Enumerating steady states and transitions using the PCH.
All possible steady states and allowed transitions (without reinva-
sion) for the ecosystem in Fig. 4 can be enumerated by considering
the geometry of the faces on the PCH.

always goes extinct for all choices of the resource supply
vector K. Furthermore, since species 1 and 5 lie on a common
face of the PCH, we know that there exists a choice of K
where species 1 and 5 coexist. The bottom panel shows the
species abundances as a function of time for one such choice
of K.

As we increase the fitness of species 2 by decreasing m2,
the scaled species consumption vector C2 = w2c2/m2 grows
larger. Notice that the new PCH has faces with vertices of
species 2 and 5 and species 2 and 1, but no face corresponding
to species 1 and 5 as in the original PCH. For this reason,
species 1 and 5 can no longer coexist. The simulations of
species abundance as a function of time confirm this pre-
diction. Further, increasing the fitness of species 2 results in
the competitive exclusion of species 1 and 5 and coexistence
of species 2 and 4. Finally, when species 2 is fit enough, it
excludes all other species in the ecosystem.

This simple example helps illustrate how the PCH can be
used to gain an intuitive understanding of how introducing a
fitter species can change ecological steady states and biodiver-
sity. If the fitness of the invasive species is the same order of
magnitude as those of existing species, then its introduction
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FIG. 6. Positive convex hull (PCH) of rescaled consumer preferences predicts coexistence properties when species fitness is modified.
Panels show PCH (top) and species abundances as a function of time for fixed resource supply vector K (bottom) as the fitness of species
2 is increased by decreasing the parameter m2 for the ecosystem analyzed in Figs. 2 and 3. Increasing the fitness of species 2 interrupts the
coexistence of species 1 and 5, followed by different levels of competitive exclusion.

will not result in large scale extinction so long as it is suffi-
ciently distinct from existing species and does not have some
special advantage in its consumption preferences. Instead, the
species will be able to carve out a distinct niche. However,
as the magnitude of the rescaled consumer preference vec-
tor grows, there will be massive extinctions. The transitions
between these two regimes can be encoded simply in the
geometry of the PCH. Additionally, the relative orientation
of faces on the PCH can be used to understand how similar
communities are to each other and the degree of competition
between species. Faces that are nearly parallel to each other
indicate that the corresponding species are similar and will
compete strongly and can survive in similar environments.
While these results can also be derived without the PCH by
using the infeasible region, the PCH provides many intuitions
directly in terms of species’ attributes. Finally, while here
we have restricted our considerations to a low-dimensional
setting with two resources, we expect new and interesting
properties to emerge in high-dimensional settings with many
resources since high-dimensional convex geometry is much
more complex than its low-dimensional analog.

F. Alternative consumer resource models

In the previous section, we restricted our analysis to
MacArthur’s original consumer resource model. However, the
basic geometric picture discussed above also holds for other
popular variants of consumer resource models, including the
Tilman’s consumer resource model (TCRM),

dRα

dt
= (Kα − Rα ) −

S∑
i=1

ciαNi,

dNi

dt
= Ni

(
M∑

α=1

wαciαRα − mi

)
, (6)

and the consumer resource model with externally supplied
resources [eCRM, Eq. (7)],

dRα

dt
= (κα − Rα ) −

S∑
i=1

ciαNiRα,

dNi

dt
= Ni

(
M∑

α=1

wαciαRα − mi

)
. (7)

The underlying reason for this is that our geometric construc-
tion is derived from analyzing the sign of gi(R�) for each
species and the form of gi is identical for the eCRM, TCRM,
and MCRM. The faces of the convex polytope formed from
the rescaled consumption vectors still enumerate subsets of
species that can stably coexist in each of these models. For
the eCRM, this construction is nearly identical to the MCRM;
while the positions of the coexistence cones are different,
their structure and the PCH of rescaled consumption vectors
are identical. The correspondence between stably coexisting
species in the eCRM and faces of the PCH is shown in
Figs. 9 and 10. For the TCRM, the appropriate convex poly-
tope constructed from rescaled consumption vectors must be
slightly modified because resource abundances can become
nonphysically negative; for discussion and visualization, see
Appendix C 2.

G. Extension to models with nonlinear species growth-rates

The geometric construction presented in the last section ex-
ploits that fact that the growth rate of a species gi(R) is a
linear function of the resource abundances. Here, we show
that many of the geometric intuitions still hold even in more
complex models where gi(R) is a nonlinear function. To do
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so we consider a general consumer resource model of the
form

dNi

dt
= Nigi(R), (8)

dRα

dt
= hα (R) −

∑
i

Niqiα (R), (9)

where the qiα (R) are impact vectors that encode how species
change resource abundances. We further restrict our consider-
ations to the case where

qiα (R) = ai(R)bα (R)
∂gi

∂Rα

(10)

holds, with ai(R) and bα (R) arbitrary functions. Such a
form can be motivated by noting that this choice reflects
the idealized case where species consume resources directly
proportional to the marginal utility they derive. It was also
shown in Ref. [34] that for such a choice, interactions between
species are always symmetric and there is a unique invadable
fixed point. The uniqueness of an invadable fixed point when
this condition holds is important because it implies that the
PCH is well-defined and transitions between different steady
states are invariant to the initial conditions, as discussed in
Sec. III.

For this more general nonlinear case, many properties of
the relationship between the PCH and coexistence are pre-
served, but unlike in the linear case, the consumption vectors
Ci(R�) now depend on the steady-state resource abundances,
R�. Expanding the species’ growth rates about R = R� to
linear order gives

gi(R) ≈
M∑

β=1

∂gi

∂Rβ

∣∣∣∣
R=R�

(Rβ − R�
β ) + gi(R�). (11)

Defining the αth component of Ci(R�) to be

[Ci(R�)]α =
∂gi

∂Rα

∣∣
R=R�∑M

β=1
∂gi

∂Rβ

∣∣
R=R�R�

β − gi(R�)
, (12)

to linear order gi(R�) � 0 is equivalent to

Ci(R�) · R� − 1 � 0. (13)

As shown in Fig. 7, the consumption vectors now depend
on the steady-state concentration R�, and both the PCH and
its faces deform as R� changes as parameters are varied.
However, the PCH still contains a considerable amount of
information about possible steady states and transitions. Given
steady-state resource and species abundances R� and N�

i , the
consumption vectors corresponding to the surviving species
still span a face of the PCH. In addition, we have found
the PCH generally also captures the local steady-state struc-
ture including local transitions in steady-state behavior as a
function of model parameter. The reason for this is that the
structure of the PCH varies smoothly with R�, so transitions
between stably coexisting subsets of species are represented
by adjacent faces on the PCH (see the interactive demon-
strations (Appendix A 4) to further understand utility and
limitations).

FIG. 7. Positive convex hull (PCH) construction for a CRM with
a nonlinear growth rate. Each row corresponds to a value of R�; the
left panels show K, R�, ZNGIs, coexistence cones; the right panels
show the PCH construction and surviving species for the given R�.
For a nonlinear growth rate, gi(R), the PCH’s form depends on R�.
This figure corresponds to the model from Eqs. (14) and (15).

One crucial difference is that in the nonlinear case not all
faces present on a specific realization of the PCH (i.e., a PCH
corresponding to a particular choice of parameters) necessar-
ily represent realizable steady states. This is because as R�

and N�
i change, new faces can form and disappear. Since the

PCH depends on linearizing the growth rate, it does not have
any global information about nonlinear effects. Information
about these nonlinear effects is captured fully by looking to
the infeasible region as described in Sec. II B. However, with
a moderate number of resources, the infeasible region in high-
dimensions is difficult to visualize and compute, especially
for nonlinear growth rates. Because the PCH can be computed
efficiently using convex hull algorithms, it is a useful tool for
understanding the local structure of transitions between steady
states in high-dimensional systems, even when growth rates
may be nonlinear.

In Fig. 7, we demonstrate how the PCH extends to the
nonlinear case by considering a consumer resource model
where species growth saturates as a function of resource con-
centrations (also called a Type II functional response in the
ecological literature),

dRα

dt
= τ−1(Kα − Rα ) −

S∑
i=1

NiRα

eikiαμiα

(kiα + Rα )2
, (14)

gi(R) = ei

M∑
α=1

μiαRα

kiα + Rα

− mi, (15)

with M = 2 resources and S = 5 species [37]. In the figure,
one sees that as K changes, the resulting steady-state resource
abundances R� also change, as do the generalized consump-
tion vectors Ci(R∗) and the resulting PCH. Since R� depends
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smoothly on the parameters, both Ci(R∗) and the PCH also
smoothly change as parameters are varied. For this reason, at
least locally, the PCH remains an important source of intuition
for possible ecological behaviors.

H. Limitations of geometric construction

We end by briefly commenting on some important limi-
tations of our geometric construction. In general, we expect
that our geometric construction is valid whenever we can use
ideas from contemporary niche theory like ZGNIs and coex-
istence cones to describe the underlying ecology [1–3]. The
underlying reason for this is that the geometry in the space of
consumer preferences is mathematically dual to the geometry
in resource abundance space. The validity of both geometric
constructions require that the consumption vectors (i.e., how
resources affect growth rate) and the impact vectors (i.e., how
species deplete resources) be closely related to each other.
This statement can be made more precise using the recently
discovered relationship between consumer resource models
and constrained optimization [33,34]. We expect the geo-
metric pictures to hold when such a mapping to constrained
optimization exists, namely that the effective species-species
interactions are symmetric [34].

Another limitation of our construction is that it assumes
that there are no hard geometric constraints on consumer-
resource preferences. One prominent example of such hard
constraints are metabolic tradeoffs that fix the consumer pref-
erence vectors to all have the same magnitude [20]. Such
constraints result in the violation of competitive exclusion
and require evolutionary fine-tuning of preferences [19,32].
In this limit, our geometric picture begins to break down
because the very tightly spaced faces become essentially
parallel and species belonging to multiple faces can co-
exist (see Appendix B). In essence, we can no longer
think of our geometry as a convex shape but instead
must treat it as a smooth sphere. As soon as some con-
straints are relaxed very slightly—perhaps by some disordered
perturbation—the geometric principles become valid again
with a very large number of faces which are very small,
tightly packed, and nearly parallel. This indicates that the
species present in a community are very sensitive to the
supply point and transitions between communities happen
readily.

III. DISCUSSION

In this work, we have introduced a new geometric frame-
work for understanding niche theory based on the species
consumer resource preferences. Our work complements ex-
isting geometric intuitions by emphasizing the important role
played by consumer preferences in shaping species coexis-
tence and niche differentiation. One appealing aspect of the
work is that it works in trait space, something that is often
easier to observe and measure than resource abundances [38].
Despite the simplicity of our picture, it can be used to make
a series of powerful predictions including which species can
coexist and how species coexistence patterns can transition as
the resource supply vector is varied. We hope that our geomet-

ric framework can be used to help design new experiments and
analyze empirical directions.

The geometric picture developed here may extend to other
contexts to provide new insights. In this manuscript, we have
largely focused on small ecosystems with a few resources
and species. It will be interesting to ask how this picture
generalizes to large ecosystems where methods from ran-
dom matrix theory and statistical physics can be used to
make powerful predictions [39]. Doing so will require un-
derstanding convex hulls of randomly distributed points and
represents an interesting mathematical problem [40]. Another
direction to explore is how this analysis can be extended
to consider ecosystems with multiple trophic layers [41]
and to microbial ecosystems where metabolic cross-feeding
plays a central role [13,42,43]. Additionally, we may be
able to extend this picture to understand temporal niches,
which may play an important role in shaping microbial
ecosystems [42,44].
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APPENDIX A: DETAILS OF MODELS
ANALYZED IN FIGURES

1. Two resource model

In all figures with two resources (M = 2), the MCRM
differential equations are simulated with five species (S = 5)
and the following parameters:

[ciα] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.7185 0.202

0.2675 0.464

0.2325 0.812

0.599 0.577

0.4875 0.273

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A1)

mi = 1, i = 1, . . . , 5, (A2)

wα = 1, α = 1, 2. (A3)

The values of ciα were chosen by hand to make features
of the PCH clear. The various choices of Kα were also
chosen by hand to highlight various coexistence cones;
in Fig. 2, KA = (0.53, 2.48), KB = (1.48, 2.82), KC =
(1.92, 1.74), KD = (2.88, 1.18), KE = (2.85, 0.50); in
Fig. 6, K = (1.21, 2.82). These values can be modified
by-hand using a click-and-drag interface in the interactive
Mathematica demonstration. In the numerical solutions to
the differential equations, the initial conditions used are:
Ni(t = 0) = 0.5 and Rα (t = 0) = Kα . In plots of the PCH and
consumption vectors, the horizontal and vertical axes range
from 0 to 1; in plots of coexistence cones and the infeasible
region, the horizontal and vertical axes range from 0 to 3.
The vertical axes of plots of species population dynamics are
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scaled so that the curve fills the entire plot; simulations are
run and plotted until t = 100. For further details on the plots
and numerical solutions including code or to modify plotting
parameters, see the interactive demonstration.

2. Three resource model

In all figures with three resources (M = 3) the MCRM
differential equations are simulated with twenty (S = 20)
species and the following parameters:

[ciα] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.416 0.023 0.17

1.652 0.923 0.198

0.329 0.874 0.8

0.135 0.565 0.741

0.226 0.173 1.109

0.069 0.616 1.262

0.424 0.777 1.394

0.17 0.401 0.716

1.074 1.041 0.643

1.038 1.666 0.555

0.184 0.926 1.029

0.588 2.077 0.163

1.466 0.881 0.144

1.221 0.38 1.211

0.888 0.891 0.016

0.024 0.077 0.535

1.131 0.534 0.465

0.797 1.337 1.49

0.914 0.988 0.716

0.295 1.071 0.531

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A4)

mi = 1, i = 1, . . . , 20, (A5)

wα = 1, α = 1, 2, 3. (A6)

The values of ciα were drawn as random variables |X |, where
X is a unit normal random variable. The various choices of
Kα were chosen by hand to highlight various coexistence
cones; in Fig. 4, upper left: K = (0.64, 1.49, 0.64), upper
right: K = (0.94, 1.00, 0.55), center: K = (0.81, 1.04, 0.57),
bottom: K = (0.66, 0.84, 0.92); in Fig. 10, upper left: κ =
(0.58, 1.87, 0.53), upper right: κ = (1.41, 1.02, 0.53), center:
κ = (0.94, 1.21, 0.69), bottom: κ = (1.10, 1.13, 1.01). These
values can be modified using a drag-and-drop interface in
the interactive Mathematica demonstrations. In the numerical
solutions, the initial conditions used are Ni(t = 0) = 0.01 and
Rα = Kα . In plots of the PCH and consumption vectors, the
all axes range from 0 to 3; in plots of coexistence cones and
the infeasible region, the horizontal and vertical axes range
from 0 to 2. The consumption vectors that are labeled A, B,
C, and D correspond to species i = 18, i = 10, i = 12, i = 2
in the above matrix, respectively. The vertical axes of plots of
species population dynamics are scaled so that the curve fills
the entire plot; simulations are plotted until t = 40.

3. Model with nonlinear growth rate

Figure 7 is constructed using the CRM,

dRα

dt
= τ−1(Kα − Rα ) −

S∑
i=1

NiRα

eikiαμiα

(kiα + Rα )2
, (A7)

dNi

dt
= Nigi(R), (A8)

which has nonlinear growth rate,

gi(R) = ei

M∑
α=1

μiαRα

kiα + Rα

− mi. (A9)

In the figure, there are M = 2 resources and S = 5 species
with parameters,

[μiα] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 0.5

0.5 2

1.5 1.5

0.9 0.7

0.7 0.9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, [kiα] =

⎡
⎢⎢⎢⎢⎢⎢⎣

2.03 0.54

0.54 2.05

1.43 1.58

0.96 0.77

0.63 0.81

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A10)

[mi] = [
1 1 1.1 1 1

]
, τ = 1, (A11)

ei = 1, i = 1, . . . , 5. (A12)

4. Interactive demonstrations

Link to Mathematica notebooks on GitHub [45].

APPENDIX B: TECHNICAL DETAILS
OF GEOMETRIC CONSTRUCTION

1. Resource depletion/defining the positive convex hull

Let {Ci}n
i=1 ∈ RM be a set of points with components

Ci = (Ci1 . . . Ciα . . . CiM )T which are all nonnega-
tive: Ciα � 0. If A ⊆ {1, . . . , M} is a subset of resources, then
let PA project a vector Ci onto the coordinate axes α ∈ A;
that is, PA(Ci ) has the entries of Ci but with Ciα′ = 0 for
entries with indices α′ /∈ A. The positive convex hull (PCH)
is the convex hull of ∪i∈{1,...,S} ∪A∈2{1,...,M} PA(Ci ), the union
of PA(Ci ) over all possible subsets A of {1, . . . , M} and all
species i ∈ {1, . . . , S}. The PCH is the convex hull of a total of
S × 2M points in RM , including the origin. The PCH occurs in
this work because the concepts presented should be consistent
when any subset of resources is removed/depleted from the
ecosystem. For an example of this consistency under projec-
tion, see Fig. 8. The additional points created by projection
PA(Ci ) could be interpreted to represent specialist species that
are consumed only by a subset, A, of resources. The addition
of these specialist species allows Eq. (3) to hold even when
resources are depleted.

2. Deriving properties of the PCH

We will show that the consumption vectors that form ver-
tices of a common face of the positive convex hull correspond
directly to a set of ecologically stable coexisting species.
Specifically, we will use the definition that if R� are the
steady-state resource abundances then a species i can survive
if Ci · R� = 1.
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FIG. 8. Construction of the positive convex hull of consumption
vectors with three resources. Upper left: the positive convex hull of
rescaled consumption vectors, represented by large blue dots. The
projection of the rescaled consumption vectors onto the coordinate
planes and axes are displayed with differently colored smaller dots.
Different view perspectives labeled A, B, C are shown with small eye
cartoons. Upper right, lower left, lower right: The PCH along with
the projected rescaled consumption vectors are shown from the dif-
ferent labeled view perspectives, emphasizing that the construction
of the PCH is preserved under projection onto coordinate planes.

When we form the positive convex hull (PCH) of
{C1, . . . , CS}, every point x in the positive orthant of RM

is contained in the conic hull of a face of the PCH. If
C1, . . . , Ck, . . . , Cd are the vertices of the minimal face
whose conic hull contains x, then there are βk > 0 so that x =∑d

k=1 βkCk; note that Ck may include consumption vectors

FIG. 9. Relationship between coexistence cones, the PCH
formed by rescaled consumption vectors, and stably coexisting
species in the consumer resource model with Externally supplied re-
sources (eCRM). Left: Coexistence cones and ZNGIs are highlighted
in the resource-abundance phase space. Notice that the coexistence
cones have the same structure but are in different positions compared
to Fig. 3 Center: PCH formed by rescaled consumption vectors; the
faces of this PCH enumerate stably coexisting species. (cf., Fig. 3).
Right: Population dynamics of all sets of stably coexisting species;
each plot corresponds to a different choice of supply rates, κα .

that have been projected onto a subset of axes, as in Ap-
pendix B 1. If x is in the interior of the PCH, then

∑d
k=1 βk <

1; if x is on the boundary of the PCH, then
∑d

k=1 βk = 1; and
if x is outside the PCH, then

∑d
k=1 βk > 1.

Let j = 1, . . . , S∗ index the surviving species, so C j ·
R� = 1 for all choices of j. If x = ∑

j γ jC j with γ j � 0
and

∑
j γ j = 1 (i.e., x is a convex combination of C j),

then (
∑

j γ jC j ) · R� = ∑
j γ j = 1. Now, let x = ∑d

k=1 βkCk

where βk > 0 are the minimal face conic hull coordinates like
before; because Ci · R� � 1 for all species i, if x is in the inte-
rior of the PCH, then x · R� = ∑

k βkCk · R� � ∑
k βk < 1.

Therefore, x · R� = 1 implies that x is on the boundary or
outside the PCH; convex combinations of points in a convex
set cannot be outside the convex set, so x must be on the
boundary of the PCH. If all convex combinations of vertices of
a convex polytope are on the boundary of the convex polytope,
then the vertices belong to a common face of the convex
polytope.

Conversely, if there is a face with vertices indexed by j,
then we can find a choice of R� (although it may not be
unique if the number of surviving species is less than M)
so that C j · R� = 1 for all j and Ck · R� < 1 for k 	= j. We
can guarantee there is a choice of R� so that C j · R� = 1
because in RM , there is always an intersection of at most
M hyperplanes which are not parallel. We then know that
R� satisfies Ck · R� < 1 for k 	= j because, following similar
logic from before, if Ck · R� � 1, then we should be able to
form any nontrivial convex combination of Ck and C j , and it
will on the boundary or outside the PCH; however, no non-
trivial convex combinations of vertices that do not belong to a
common face can lie on the boundary of the PCH, so we have
a contradiction. The carrying-capacities K = R� + ∑

j c j will
then lead to all species j surviving.

In this argument, we assumed that there are no Ci that lie
on a face of which it is not vertex. Equivalently, we assumed
that there are no faces that contain a subface of the same
rank. We could also say that there are no parallel faces. If
this assumption is dropped, then the statement “all convex
combinations of vertices of a common face belong to just
one face” no longer holds; some convex combinations could
belong to any of the various subfaces. This means that all Ci

that belong to the face which contains all other subfaces—
whether the Ci are vertices are not—represent species that
can coexist. In cases like these, it is possible that the number
of surviving species is greater than the number of resources.
However, in the generic case (for example, when ‖Ci‖ is
a random variable with nonzero variance), no faces of the
PCH are parallel and no Ci belong to the interior of any
face of the PCH so the correspondence between vertices of
faces of the PCH and species that can coexist we just showed
holds.

APPENDIX C: ANALYSIS OF ALTERNATIVE CONSUMER
RESOURCE MODELS

1. Geometric interpretation of consumer resource models
with externally supplied resources

When considering the externally supplied resources model,
the differential equation for resource dynamics can be
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FIG. 10. Positive convex hull (PCH) formed by rescaled consumption vectors for an ecosystem with M = 3 resources with dynamics given
by the consumer resource model with externally supplied resources (eCRM). The structure and layout of this figure is identical to that of Fig. 4,
but the dynamics and coexistence cones shown are those of the eCRM model [Eq. (7)].

written as

dRα

dt
= Rα

(
1

Rα

(κα − Rα ) −
S∑

i=1

Niciα

)
, (C1)

for nondepleted resources α, allowing for an equation similar
to Eq. (3):

κα − R�
α =

∑
i,Ni>0

NiR
�
αciα. (C2)

This equation defines the coexistence cones. The structure of
coexisting species, identically to the MCRM, is determined
by the sign of gi(R�) for each species. As the form of gi is the
same for the eCRM and MCRM and as κα being nonnegative
implies Rα is nonnegative, the structure of coexistence in the
eCRM is identical to that of the MCRM. That is, coexistence
can be enumerated by the faces of the PCH of rescaled con-
sumption vectors, just as in the MCRM.

2. Geometric interpretation of the Tilman consumer
resource model

For the TCRM, resource abundances can become nonphys-
ically negative and instead of the subsets of stably coexisting
species being enumerated by the faces of positive convex hull,
the subsets of stably coexisting species are now enumerated

by the faces of the convex hull of {Ci}S
i=1 ∪ {0}, the union of

all consumption vectors and the zero vector. This can be seen
by noting that one reason the PCH was introduced is because
in the MCRM, resources were required to have nonnegative

FIG. 11. Convex polytope enumerating coexisting species for the
Tilman consumer resource model. Left: resource-abundance phase
space, with K, R�, and the trajectory R(t ) plotted as in Fig. 2;
here, however, negative values of resource abundances are shown.
The species population dynamics are additionally inset. Right: The
relevant convex polytope which is the convex hull of {Ci}S

i=1 ∪ {0}
has faces which enumerate the possible sets of species that can
coexist. The face corresponding to the coexisting species shown in
the left figure is highlighted in green.
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abundances and could be depleted, but we wanted Eq. (3) to
hold to make geometric arguments about coexistence cones.
In the TCRM, this equation always holds even if resources are
depleted because there is no overall factor of Rα in the TCRM
equation for resources [e.g., Eq. (6)], so it is not necessary
to add additional points corresponding to depleted resources

when forming the appropriate convex polytope. The deriva-
tion of the properties of this convex polytope is essentially
identical to the derivation of the properties of the PCH for the
MCRM. See Fig. 11 for a visualization of the relevant con-
vex polytope and a case where resource abundances become
negative.
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A. Sanchez-Gorostiaga, D. Segrè, P. Mehta, and A. Sanchez,
Science 361, 469 (2018).

[14] R. Marsland III, W. Cui, J. Goldford, A. Sanchez, K. Korolev,
and P. Mehta, PLoS Comput. Biol. 15, e1006793 (2019).

[15] L. Niehaus, I. Boland, M. Liu, K. Chen, D. Fu, C. Henckel,
K. Chaung, S. E. Miranda, S. Dyckman, M. Crum et al., Nat.
Commun. 10, 2052 (2019).

[16] M. E. Muscarella and J. P. O’Dwyer, Theor. Ecol. 13, 503
(2020).

[17] D. Bajic and A. Sanchez, Curr. Opin. Biotechnol. 62, 123
(2020).

[18] K. Gowda, D. Ping, M. Mani, and S. Kuehn, Cell 185, 530
(2022).

[19] R. D’Andrea, T. Gibbs, and J. P. O’Dwyer, PLoS Comput. Biol.
16, e1008102 (2020).

[20] A. Posfai, T. Taillefumier, and N. S. Wingreen, Phys. Rev. Lett.
118, 028103 (2017).

[21] Z. Li, B. Liu, S. H.-J. Li, C. G. King, Z. Gitai, and N. S.
Wingreen, PLoS Comput. Biol. 16, e1008156 (2020).

[22] B. H. Good, S. Martis, and O. Hallatschek, Proc. Natl. Acad.
Sci. USA 115, E10407 (2018).

[23] R. Caetano, Y. Ispolatov, and M. Doebeli, Elife 10, e67764
(2021).

[24] M. Tikhonov, S. Kachru, and D. S. Fisher, Proc. Natl. Acad.
Sci. USA 117, 8934 (2020).

[25] A. Goyal, L. S. Bittleston, G. E. Leventhal, L. Lu, and O. X.
Cordero, Elife 11, e74987 (2022).

[26] C.-Y. Chang, J. C. Vila, M. Bender, R. Li, M. C. Mankowski, M.
Bassette, J. Borden, S. Golfier, P. G. L. Sanchez, R. Waymack
et al., Nat. Ecol. Evol. 5, 1011 (2021).

[27] L. Xie, A. E. Yuan, and W. Shou, PLoS Biol. 17, e3000295
(2019).

[28] A. Sanchez, D. Bajic, J. Diaz-Colunga, A. Skwara, J. C. Vila,
and S. Kuehn, Cell Sys. 14, 122 (2022).

[29] M. A. Leibold, Am. Nat. 147, 784 (1996).
[30] R. Levins, Am. Sci. 54, 421 (1966).
[31] D. Tilman, in Resource Competition and Community Structure

(MPB), Vol. 17 (Princeton University Press, Princeton, NJ,
2020).

[32] L. Pacciani-Mori, A. Giometto, S. Suweis, and A. Maritan,
PLoS Comput. Biol. 16, e1007896 (2020).

[33] P. Mehta, W. Cui, C.-H. Wang, and R. Marsland III, Phys. Rev.
E 99, 052111 (2019).

[34] R. Marsland III, W. Cui, and P. Mehta, Am. Nat. 196, 291
(2020).

[35] G. Blekherman, P. A. Parrilo, and R. R. Thomas, Semidef-
inite Optimization and Convex Algebraic Geometry (SIAM,
Philadelphia, PA, 2012).

[36] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, ACM Trans.
Math. Softw. 22, 469 (1996).

[37] The form of the species growth and resource impact rates
differ (the denominators are linear and quadratic, respec-
tively) so that the appropriate symmetry condition Eq. (10) is
satisfied.

[38] B. J. McGill, B. J. Enquist, E. Weiher, and M. Westoby, Trends
Ecol. Evol. 21, 178 (2006).

[39] S. Allesina and S. Tang, Popul. Ecol. 57, 63 (2015).
[40] A. E. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-

Jaegermann, Adv. Math. 195, 491 (2005).
[41] J. E. Duffy, B. J. Cardinale, K. E. France, P. B. McIntyre, E.

Thébault, and M. Loreau, Ecol. Lett. 10, 522 (2007).
[42] K. Amarnath, A. V. Narla, S. Pontrelli, J. Dong, T. Caglar, B. R.

Taylor, J. Schwartzman, U. Sauer, O. X. Cordero, and T. Hwa,
bioRxiv (2021).

[43] M. Dal Bello, H. Lee, A. Goyal, and J. Gore, Nat. Ecol. Evol.
5, 1424 (2021).

[44] Y. Fridman, Z. Wang, S. Maslov, and A. Goyal, PLoS Comput.
Biol. 18, e1010244 (2022).

[45] https://github.com/Emergent-Behaviors-in-Biology/
Geometry-of-Coexistence.

044409-12

https://doi.org/10.1086/282505
https://doi.org/10.1086/283553
https://doi.org/10.1073/pnas.64.4.1369
https://doi.org/10.1086/282676
https://doi.org/10.1016/0040-5809(70)90039-0
https://doi.org/10.1016/0040-5809(90)90025-Q
https://doi.org/10.1103/PhysRevLett.118.048103
https://doi.org/10.1103/PhysRevLett.125.048101
https://doi.org/10.1103/PhysRevE.104.034416
https://doi.org/10.1126/science.aat1168
https://doi.org/10.1371/journal.pcbi.1006793
https://doi.org/10.1038/s41467-019-10062-x
https://doi.org/10.1007/s12080-020-00466-7
https://doi.org/10.1016/j.copbio.2019.09.003
https://doi.org/10.1016/j.cell.2021.12.036
https://doi.org/10.1371/journal.pcbi.1008102
https://doi.org/10.1103/PhysRevLett.118.028103
https://doi.org/10.1371/journal.pcbi.1008156
https://doi.org/10.1073/pnas.1807530115
https://doi.org/10.7554/eLife.67764
https://doi.org/10.1073/pnas.1915537117
https://doi.org/10.7554/eLife.74987
https://doi.org/10.1038/s41559-021-01457-5
https://doi.org/10.1371/journal.pbio.3000295
https://doi.org/10.1016/j.cels.2022.12.011
https://doi.org/10.1086/285879
https://www.jstor.org/stable/27836590
https://doi.org/10.1371/journal.pcbi.1007896
https://doi.org/10.1103/PhysRevE.99.052111
https://doi.org/10.1086/710093
https://doi.org/10.1145/235815.235821
https://doi.org/10.1016/j.tree.2006.02.002
https://doi.org/10.1007/s10144-014-0471-0
https://doi.org/10.1016/j.aim.2004.08.004
https://doi.org/10.1111/j.1461-0248.2007.01037.x
https://doi.org/10.1101/2021.06.24.449802
https://doi.org/10.1038/s41559-021-01535-8
https://doi.org/10.1371/journal.pcbi.1010244
https://github.com/Emergent-Behaviors-in-Biology/Geometry-of-Coexistence

