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The bias-variance trade-off is a central concept in supervised learning. In classical statistics, increasing the
complexity of a model (e.g., number of parameters) reduces bias but also increases variance. Until recently, it
was commonly believed that optimal performance is achieved at intermediate model complexities which strike
a balance between bias and variance. Modern deep learning methods flout this dogma, achieving state-of-the-art
performance using “overparameterized models” where the number of fit parameters is large enough to perfectly
fit the training data. As a result, understanding bias and variance in overparameterized models has emerged
as a fundamental problem in machine learning. Here, we use methods from statistical physics to derive analytic
expressions for bias and variance in two minimal models of overparameterization (linear regression and two-layer
neural networks with nonlinear data distributions), allowing us to disentangle properties stemming from the
model architecture and random sampling of data. In both models, increasing the number of fit parameters leads
to a phase transition where the training error goes to zero and the test error diverges as a result of the variance
(while the bias remains finite). Beyond this threshold, the test error of the two-layer neural network decreases
due to a monotonic decrease in both the bias and variance as opposed to the classical bias-variance trade-off. We
also show that in contrast with classical intuition, overparameterized models can overfit even in the absence of
noise and exhibit bias even if the student and teacher models match. We synthesize these results to construct a
holistic understanding of generalization error and the bias-variance trade-off in overparameterized models and
relate our results to random matrix theory.
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I. INTRODUCTION

Machine learning (ML) is one of the most exciting and
fastest-growing areas of modern research and application.
Over the last decade, we have witnessed incredible progress in
our ability to learn statistical relationships from large data sets
and make accurate predictions. Modern ML techniques have
now made it possible to automate tasks such as speech recog-
nition, language translation, and visual object recognition,
with wide-ranging implications for fields such as genomics,
physics, and even mathematics. These techniques—in partic-
ular the deep learning methods that underlie many of the most
prominent recent advancements—are especially successful at
tasks that can be recast as supervised learning problems [1].
In supervised learning, the goal is to learn statistical relation-
ships from labeled data (e.g., a collection of pictures labeled
as containing a cat or not containing a cat). Common examples
of supervised learning tasks include classification and regres-
sion.

A fundamental concept in supervised learning is the
bias-variance trade-off. In general, the out-of-sample, general-
ization, or test error, of a statistical model can be decomposed
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into three sources: bias (errors resulting from erroneous as-
sumptions which can hamper a statistical model’s ability to
fully express the patterns hidden in the data), variance (errors
arising from oversensitivity to the particular choice of training
set), and noise. This bias-variance decomposition provides
a natural intuition for understanding how complex a model
must be in order to make accurate predictions on unseen data.
As model complexity (e.g., the number of fit parameters) in-
creases, bias decreases as a result of the model becoming more
expressive and better able to capture complicated statistical
relationships in the underlying data distribution. However, a
more complex model may also exhibit higher variance as it be-
gins to overfit, becoming less constrained and therefore more
sensitive to the quirks of the training set (e.g., noise) that do
not generalize to other data sets. This trade-off is reflected in
the generalization error in the form of a classical “U-shaped”
curve: the test error first decreases with model complexity
until it reaches a minimum before increasing dramatically as
the model overfits the training data. For this reason, it was
commonly believed until recently that optimal performance is
achieved at intermediate model complexities which strike a
balance between bias (underfitting) and variance (overfitting).

Modern deep learning methods defy this understanding,
achieving state-of-the-art performance using “overparame-
terized models” where the number of fit parameters is so
large—often orders of magnitude larger than the number of
data points [2]—that one would expect a model’s accuracy to
be overwhelmed by overfitting. In fact, empirical experiments
show that convolutional networks commonly used in image
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FIG. 1. Double-descent phenomenon. [(a) and (b)] Examples of the average training error (blue squares) and test error (black circles) for
two different models calculated via numerical simulations. In both models, the test error diverges when the training error reaches zero at the
interpolation threshold, located where the number of parameters Np matches the number of points in the training data set M (indicated by a
black dashed vertical line). (a) In linear regression without basis functions, the number of features in the data Nf matches the number of fit
parameters Np. (b) The random nonlinear features model (two-layer neural network where the parameters of the middle layer are random but
fixed) decouples the number of features Nf and the number of fit parameters Np by incorporating an additional “hidden layer” and transforms
the data using a nonlinear activation function (e.g., ReLU), resulting in the canonical double-descent behavior. (c) Schematic of the model
architecture for the random nonlinear features model. Numerical results are shown for a linear teacher model y(�x) = �x · �β + ε, a signal-to-noise
ratio of σ 2

β σ 2
X /σ 2

ε = 10, and a small regularization parameter of λ = 10−6. The y axes have been scaled by the variance of the training set labels
σ 2

y = σ 2
β σ 2

X + σ 2
ε . Each point is averaged over at least 1000 independent simulations trained on M = 512 data points with small error bars

indicating the error on the mean. In (b), there are less features than data points Nf = M/4. See Sec. II for precise definitions and Sec. S4 of
Ref. [5] for additional simulation details.

classification are so overly expressive that they can easily fit
training data with randomized labels, or even images gener-
ated from random noise, with almost perfect accuracy [3].
Despite the apparent risks of overfitting, these models seem
to perform at least as well as, if not better than, traditional
statistical models. As a result, modern best practices in deep
learning recommend using highly overparameterized models
that are expressive enough to achieve zero error on the training
data [4].

Clearly, the classical picture provided by the bias-variance
trade-off is incomplete. Classical statistics largely focuses
on underparameterized models which are simple enough
that they have a nonzero training error. In contrast, modern
deep learning methods push model complexity past the in-
terpolation threshold, the point at which the training error
reaches zero [6–10]. In the classical picture, approaching the
interpolation threshold coincides with a large increase, or
even divergence, in the test error via the variance. However,
numerical experiments suggest that the predictive perfor-
mance of overparameterized models is better described by
“double-descent” curves which extend the classic U-shape
past the interpolation threshold to account for overparameter-
ized models with zero training error [6,11,12]. Surprisingly, if
model complexity is increased past the interpolation thresh-
old, the test error once again decreases, often resulting in
overparameterized models with even better out-of-sample
performance than their underparameterized counterparts [see
Fig. 1(b)].

This double-descent behavior stands in stark contrast
with the classical statistical intuition based on the bias-
variance trade-off; both bias and variance appear to decrease
past the interpolation threshold. Therefore understanding
this phenomenon requires generalizing the bias-variance de-
composition to overparameterized models. More broadly,
explaining the unexpected success of overparameterized

models represents a fundamental problem in ML and modern
statistics.

A. Relation to previous work

In recent years, many attempts have been made to un-
derstand the origins of this double-descent behavior via
numerical and/or analytical approaches. While much of this
work has relied on well constructed numerical experiments
on complex deep learning models [3,6,8,13], many theoretical
studies have focused on a much simpler setting: the so-called
“lazy training” regime. Previously, it was observed that in the
limit of an infinitely wide network, the learning process ap-
pears to mimic that of an approximate kernel method in which
the kernel used by the model to express the data—the neural
tangent kernel (NTK)—remains fixed [14,15]. This stands in
contrast to the so-called “feature training” regime in which
the kernel evolves over time as the model learns the most
informative way to express the relationships in the data [16].

Making use of the observation that the kernel remains ap-
proximately fixed in the lazy regime, many analytical studies
have derived training and test errors for neural networks where
the top layer is trained, but the middle layer(s) remained fixed,
effectively reducing these models to linearized versions of re-
gression or classification with various types of nontrivial basis
functions [17–44]. Furthermore, some of these studies have
considered nonlinear data distributions [28,40]. Importantly,
such studies have typically combined a fixed-kernel approach
with specific choices of loss functions (e.g., mean-squared
error) to guarantee convexity, while the loss landscapes of
neural networks in practical settings are often highly noncon-
vex [45]. Despite being limited to the lazy regime and convex
loss landscapes, the closed-form solutions for the training and
test error obtained for these models exhibit the double-descent
phenomenon, demonstrating that many of the key features of
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more complex deep learning architectures can arise in much
simpler settings.

A smaller subset of these studies have also attempted to
extend these calculations to compute the bias-variance decom-
position [17,19,25–27,30,31,34,38,40,42,44]. However, this
literature is rife with qualitative and quantitative disagree-
ments, and as a result, a consensus has not formed regarding
many of the basic properties of bias and variance in over-
parameterized models. Underlying these disagreements is the
ubiquitous use of nonstandard and varying definitions of bias
and variance (see Sec. V F for an in-depth discussion).

For example, some studies consider a fixed design ma-
trix for the training data set in the definitions of bias and
variance, but not for the test set, resulting in an effective
mismatch in their data distributions [17,19,27,30,31,34,40].
As a result, these studies do not even reproduce the classical
bias-variance trade-off expected in the underparameterized
regime. Meanwhile, other studies do not distinguish between
sources of randomness stemming from the model architecture
(e.g., due to initialization) and sampling of the training data
set, inadvertently leading these analyses to derive the bias of
ensemble models rather than the models actually under inves-
tigation [17,25,26,31,38,44]. Consequently, these studies have
found that in the absence of regularization, the bias reaches
a minimum at the interpolation threshold and then remains
constant into the overparameterized regime.

In fact, of these studies, closed-form expressions using
the standard definitions of bias and variance have only been
obtained for the simple case of linear regression without basis
functions and a linear data distribution [42]. While this set-
ting captures some qualitative aspects of the double-descent
phenomenon [see Fig. 1(a)], it requires a one-to-one corre-
spondence between features in the data and fit parameters and
a perfect match between the data distribution and model ar-
chitecture, making it difficult to understand, if and how these
results generalize to more complicated statistical models.

In line with previous studies, in this work, we also focus on
the lazy regime with a convex loss landscape, considering two
different linear models that emulate many properties of more
complicated neural network architectures (see next section).
However, our approach differs in that we utilize the traditional
definitions of bias and variance, allowing us to clear up much
of the confusion surrounding the bias-variance decomposition
in overparameterized models. In this way, we connect modern
deep learning to the statistical literature of the last century
and in doing so, gain proper intuition for the origins of the
double-descent phenomenon.

B. Overview of approach

In this work, we use methods from statistical physics to
derive analytic results for bias and variance in the overparam-
eterized regime for two minimal model architectures. These
models, whose behavior is depicted in Fig. 1, are linear regres-
sion (ridge regression without basis functions and in the limit
where the regularization parameter goes to zero—often called
“ridge-less regression” in the statistics and ML literature)
and the random nonlinear features model (a two-layer neural
network with an arbitrary nonlinear activation function where
the top layer is trained and parameters for the intermediate

layer are chosen to be random but fixed). We generate the data
used to train both models using a nonlinear “teacher model”
where the labels are related to the features through a nonlinear
function (usually with additive noise). Using similar termi-
nology, we often refer to the details of a model’s architecture
as the “student model.” Crucially, the differences between the
two models we consider allow us to disentangle the effects of
model architecture on bias and variance versus effects arising
from randomly sampling the underlying data distribution.

Linear regression is one of the simplest models in which
the test error diverges at the interpolation threshold but then
decreases in the overparameterized regime [Fig. 1(a)]. Be-
cause this model uses the features in the data directly without
modification (i.e., it lacks a hidden layer), it provides evidence
that the process of randomly sampling the data itself plays an
integral part in the double-descent phenomena. The random
nonlinear features model [Figs. 1(b) and 1(c)] provides insight
into the effects of filtering the features through an additional
transformation, in effect, changing the way the model views
the data. This disconnect between features and their repre-
sentations in the model is crucial for understanding bias and
variance in more complex overparameterized models.

To treat these models analytically, we make use of the
“zero-temperature cavity method” which has a long history in
the physics of disordered systems and statistical learning the-
ory [46–48]. In particular, our calculations follow the style of
Ref. [49] and assume that the solutions can be described using
a replica-symmetric ansatz, which we confirm numerically.
Our analytic results are exact in the thermodynamic limit
where the number of data points M, the number of features in
the data Nf , and the number of fit parameters (hidden features)
Np all tend towards infinity. Crucially, when taking this limit,
the ratios between these three quantities are assumed to be
fixed and finite, allowing us to ask how varying these ratios
and other model properties (such as linear versus nonlinear
activation functions) affect generalization. We confirm that all
our analytic expressions agree extremely well with numerical
results, even for relatively small system sizes (Nf , Np, M ∼
10–1000).

C. Summary of major results

Before proceeding further, we briefly summarize our major
results.

(1) We derive analytic expressions for the test (generaliza-
tion) error, training error, bias, and variance for both models
using the zero-temperature cavity method.

(2) We show that both models exhibit a phase transition
at an interpolation threshold to an interpolation regime where
the training error is zero.

(3) In the underparameterized regime, we find that the
variance diverges as it approaches the interpolation thresh-
old, leading to extremely large generalization error, while the
bias either remains constant (linear regression) or decreases
monotonically in a classical bias-variance trade-off (random
nonlinear features model).

(4) In the overparameterized regime, we find that the test
error either decreases nonmonotonically due to a decrease in
variance and an increase in bias (linear regression) or de-
creases monotonically due to a monotonic decrease in both
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variance and bias, even in the absence of regularization (ran-
dom nonlinear features model).

(5) We show that bias in overparameterized models has two
sources: error resulting from mismatches between the student
and teacher models (i.e., the model is incapable of fully cap-
turing the full data distribution) and incomplete sampling of
the data’s feature space. We show that as a result of the latter
case, one can have nonzero bias even if the student and teacher
models are identical. We also show that bias decreases in the
interpolation regime only if the number of features in the data
remains fixed.

(6) We show that biased models can overfit even in the
absence of noise. In other words, biased models can interpret
signal as noise.

(7) We show that the zero-temperature susceptibilities that
appear in our cavity calculations measure the sensitivity of
a fitted model to small perturbations. We discuss how these
susceptibilities can be used to identify phase transitions and
are each related to different aspects of the double-descent
phenomena.

(8) We combine these observations to provide a compre-
hensive intuitive explanation of the double-descent curves
for test error observed in overparameterized models, making
connections to random matrix theory. In particular, we dis-
cuss how diverging test error stems from small eigenvalues
in the Hessian, corresponding to poorly sampled directions
in the space of input features for linear regression or the
space of hidden features for the random nonlinear features
model.

(9) We discuss why using the standard definitions of
bias and variance are necessary to properly connect the
double-descent phenomenon to the classical bias-variance
trade-off.

D. Organization of paper

In Sec. II, we start by providing the theoretical setup for
both models and briefly summarize the methods we use to
derive analytic expressions. In Sec. III, we provide precise
definitions of bias and variance, taking great care to distin-
guish between different sources of randomness. In Sec. IV,
we report our analytic results and compare them to numerical
simulations. In Sec. V, we use these analytic expressions to
understand how bias and variance generalize to overparame-
terized models and also discuss the roles of the susceptibilities
that arise as part of our cavity calculations. Finally, in Sec. VI,
we conclude and discuss the implications of our results for
modern ML methods.

II. THEORETICAL SETUP

A. Supervised learning task

In this work, we consider data points (y, �x), each consisting
of a continuous label y paired with a set of Nf continuous
features �x. To distinguish the features in the data from those
in the model, we refer to �x as the “input features.” We frame
the supervised learning task as follows: using the relationships
learned from a training data set, construct a model to accu-
rately predict the labels y of new data points based on their
input features �x.

B. Data distribution (teacher model)

We assume that the relationship between the input features
and labels (the data distribution or teacher model) can be
expressed as

y(�x) = y∗(�x; �β) + ε, (1)

where ε is the label noise and y∗(�x; �β) is an unknown function
representing the “true” labels. This function takes the features
as arguments and combines them with a set of Nf “ground
truth” parameters �β which characterize the correlations be-
tween the features and labels.

We draw the input features for each data point indepen-
dently and identically from a normal distribution with zero
mean and variance σ 2

X /Nf . Normalizing the variance by Nf en-
sures that the magnitude of each feature vector is independent
of the number of features and that a proper thermodynamic
limit exists. Note that in this work, we consider features that
do not contain noise. We also choose each element of the
ground truth parameters �β and the label noise ε to be inde-
pendent of the input features and mutually independent from
one another, drawn from normal distributions with zero mean
and variances σ 2

β and σ 2
ε , respectively.

In this work, we restrict ourselves to a teacher model of the
form

y∗(�x; �β) = σβσX

〈 f ′〉 f

(
�x · �β
σX σβ

)
, (2)

where the function f is an arbitrary nonlinear function and

〈 f ′〉 = 1√
2π

∫ ∞
−∞ dhe− h2

2 f ′(h) is a normalization constant cho-
sen for convenience with prime notation used to indicate a
derivative (see Sec. S1D of Ref. [5]). We place a factor of
1/(σX σβ ) inside the function f so that its argument has unit
variance, while the prefactor σβσX ensures that y∗ reduces
to a linear teacher model y∗(�x) = �x · �β when f (h) = h. Fur-
thermore, we assume both the labels and input features are
centered so that f has zero mean with respect to its argument.
While the results we report hold for a general f of this form,
all figures show numerical simulations for a linear teacher
model unless otherwise specified.

C. Model architectures (student models)

We consider two different student models that we discuss
in detail below: linear regression and the random nonlinear
features model. A schematic of the network architecture for
the latter model is depicted in Fig. 1(c). Both student models
take the general form

ŷ(�x) = �z(�x) · ŵ, (3)

where ŵ is a vector of fit parameters and �z(�x) is a vector of
“hidden” features which each may depend on a combination
of the input features �x. The hidden features �z are effectively
the representations of the data points from the perspective of
the model.

Since we only fit the top layer of the network in both
models, the number of fit parameters Np equals the number
of hidden features, and Eq. (3) is equivalent to a linear model
with basis functions. Despite its simplicity, we will show
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that this model reproduces much of the interesting behaviors
observed in more complicated neural networks.

1. Linear regression

For linear regression without basis functions [Fig. 1(a)],
the representations of the features from the perspective of
the model are simply the input features themselves so that
�z(�x) = �x. In other words, the hidden and input features are
identical, leading to exactly one fit parameter for each feature,
Np = Nf .

2. Random nonlinear features model

In the random nonlinear features model [Figs. 1(b) and
1(c)], the hidden features for each data point are related to
the input features via a random matrix W of size Nf × Np and
a nonlinear activation function ϕ,

�z(�x) = 1

〈ϕ′〉
σW σX√

Np
ϕ

( √
Np

σW σX
W T �x

)
, (4)

where ϕ acts separately on each element of its input and

〈ϕ′〉 = 1√
2π

∫ ∞
−∞ dhe− h2

2 ϕ′(h) is a normalization constant cho-
sen for convenience (see Sec. S1D of Ref. [5]). We take each
element of W to be independent and identically distributed,
drawn from a normal distribution with zero mean and variance
σ 2

W /Np. The normalization by Np is chosen so that the magni-
tude of each hidden feature vector only depends on the ratio of
the number of input features to parameters which we always
take to be finite. We place a factor of

√
Np/(σW σX ) inside the

activation function so that its argument has approximately unit
variance, and a second pre-factor of σW σX /

√
Np in front of ϕ

to ensure that �z reduces to a linear model �z(�x) = W T �x when
the activation function is linear [i.e., ϕ(h) = h]. We note that
while this model is technically a linear model with a specific
choice of basis functions, it is equivalent to a two-layer neural
network where the weights of the middle layer are chosen
to be random and only the top layer is trained. Although
our analytic results hold for an arbitrary nonlinear activation
function ϕ, all figures show results for ReLU activation where
ϕ(h) = max(0, h).

D. Fitting procedure

We train each model on a training data set consisting of M
data points, D = {(ya, �xa)}M

a=1. For convenience, we organize
the vectors of input features in the training set into an observa-
tion matrix X of size M × Nf and define the length-M vectors
of training labels �y, training label noise �ε, and label predic-
tions for the training set ŷ. We also organize the vectors of
hidden features evaluated on the input features of the training
set, {�z(�xa)}M

a=1, into the rows of a hidden feature matrix Z of
size M × Np.

Given a set of training data D, we solve for the optimal
values of the fit parameters ŵ by minimizing the standard loss
function used for ridge regression,

L(ŵ;D) = 1

2
‖��y‖2 + λ

2
‖ŵ‖2, (5)

where the notation ‖ · ‖ indicates an L2 norm and ��y = �y − ŷ
is the vector of residual label errors for the training set. The
first term is simply the mean squared error between the true
labels and their predicted values, while the second term im-
poses standard L2 regularization with regularization parameter
λ. We will often work in the “ridge-less limit” where we take
the limit λ → 0.

E. Model evaluation

To evaluate each model’s prediction accuracy, we measure
the training and test (generalization) errors. We define the
training error as the mean squared residual label error of the
training data,

Etrain = 1

M
‖��y‖2

. (6)

We define the interpolation threshold as the model complexity
at which the training error becomes exactly zero (in the ther-
modynamic and ridge-less limits). Analogously, we define the
test error as the mean squared error evaluated on a test data set,
D′ = {(y′

a, �x′
a)}M ′

a=1, composed of M ′ new data points drawn
independently from the same data distribution as the training
data,

Etest = 1

M ′ ‖��y′‖2
, (7)

where ��y′ = �y′ − ŷ′ is a length-M ′ vector of residual label
errors between the vector of labels �y′ and their predicted
values ŷ′ for the test set.

F. Exact solutions

To solve for unique optimal solution, we set the gradient
with respect to the fit parameters to zero, giving us a set of Np

equations with Np unknowns,

0 = ∂L(ŵ)

∂ŵ
= −ZT ��y + λŵ. (8)

Solving this set of equations results in a unique solution for
the fit parameters,

ŵ = [
λINp + ZT Z

]−1
ZT �y. (9)

For simplicity, we also take the ridge-less limit where λ

is infinitesimally small (λ → 0). While our calculations do
provide exact solutions for finite λ, the solutions in the limits
of small λ are much more insightful. In this limit, Eqs. (9) and
(3) approximate to

ŵ ≈ Z+�y, ŷ(�x) ≈ �z(�x) · Z+�y, (10)

where + denotes a Moore-Penrose inverse or pseudoinverse.

G. Hessian matrix

We note that the solution for the fit parameters in Eq. (9)
depends on the matrix ZT Z , which we refer to in the ridge-
less limit as the Hessian matrix. The matrix ZT Z/M can be
interpreted as an empirical covariance matrix of the hidden
features sampled by the training set when the hidden features
are centered. The authors of Ref. [50] showed that for ridge
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regression, the divergence of the test error at the interpolation
threshold can be naturally understood in terms of the spec-
trum of the Hessian. Inspired by this observation, we also
explore the relationship between the eigenvalues of the Hes-
sian and the double-descent phenomenon in our more general
setting.

To do so, we reproduce the known eigenvalue distribution
for the Hessian for both models. We note that in linear re-
gression (no basis functions), the Hessian is simply a Wishart
matrix whose eigenvalues follow the Marchenko-Pastur distri-
bution [51]. The eigenvalue spectrum for the Hessian for the
random nonlinear features model was explored in Ref. [52].
For both models, we provide an alternative derivation of these
spectra using the zero-temperature cavity method, allowing us
to directly relate the eigenvalues of the Hessian matrix to the
double-descent phenomenon.

H. Derivation of closed-form solutions

While the expressions in the previous section are quite
general, they hide much of the complexity of the problem
and are difficult to analyze carefully. For this reason, we make
use of the zero-temperature cavity method to find closed-form
solutions for all quantities of interest. The zero-temperature
cavity method has a long history in the physics of disordered
systems and statistical learning theory and has been used to
analyze the Hopfield model [53] and more recently, com-
pressed sensing [20,54]. The cavity method is an alternative
to the more commonly used replica method or analyses based
on random matrix theory.

Like the replica method, finding closed-form solutions
requires some additional assumptions. In particular, we as-
sume that the solutions satisfy a replica symmetric ansatz
(an assumption we confirm numerically by showing remark-
able agreement between our analytic results and simulations).
Furthermore, we work in the thermodynamic limit, where
Nf , M, Np → ∞ and keep terms to leading order in these
quantities. Our results are exact under these assumptions.

To apply the zero-temperature cavity method, we start
by defining the ratio of the number of input features to
training data points α f = Nf /M and the ratio of fit param-
eters to training data points αp = Np/M. Next, we take the
thermodynamic limit Nf , M, Np → ∞, while keeping the ra-
tios α f and αp finite. The essence of the cavity method
is to expand the solutions of Eq. (8) with M + 1 data
points, Nf + 1 features and Np + 1 parameters about the
solutions where one quantity of each type has been re-
moved: (M + 1, Nf + 1, Np + 1) → (M, Nf , Np). These two
solutions are then related using generalized susceptibilities.
The result is a set of algebraic self-consistency equations that
can be solved for the distributions of the removed quantities.
The central limit theorem then allows us to approximate any
quantity defined as a sum over a large number of random vari-
ables (e.g., the training and test errors) using just distributions
for the removed quantities. Furthermore, using the procedure
described in Ref. [55], we use the susceptibilities resulting
from the cavity method to reproduce the known closed-form
solutions for the eigenvalues spectra of the Hessian matrices
for both models. We refer the reader to Ref. [5] for further
details on these calculations.

III. BIAS-VARIANCE DECOMPOSITION

The bias-variance decomposition separates test error into
components stemming from three distinct sources: bias, vari-
ance, and noise. Informally, bias captures a model’s tendency
to underfit, reflecting the erroneous assumptions made by a
model that limit its ability to fully express the relationships
underlying the data. On the other hand, variance captures
a model’s tendency to overfit, capturing characteristics of
the training set that are not a reflection of the data’s true
relationships, but rather a by-product of random sampling
(e.g., noise). As a result, a model with high variance may
not generalize well to other data sets drawn from the same
data distribution. Noise simply refers to an irreducible error
inherent in generating a set of test data (i.e., the label noise in
the test set).

Formally, bias represents the extent to which the label
predictions ŷ(�x) differs from the true function underlying the
data distribution y∗(�x) when evaluated on an arbitrary test data
point �x and averaged over all possible training sets D [56,57],

Bias[ŷ(�x)] = ED[ŷ(�x)] − y∗(�x). (11)

Likewise, variance formally measures the extent to which
solutions of ŷ(�x) for individual training sets D vary around
the average [56,57],

Var[ŷ(�x)] = ED
[
ŷ2(�x)

] − ED[ŷ(�x)]2
. (12)

Finally, the noise is simply the mean squared label noise
associated with an arbitrary test data point �x,

Noise = E[ε2] = σ 2
ε . (13)

The standard bias-variance decomposition relates these three
quantities to the test error (averaged over all possible training
sets D). In addition, we must take into account the fact that the
test error is evaluated on M ′ test data points, while the bias and
variance only consider a single test point. Since each test point
is drawn from the same distribution, averaging the test error
over all possible test sets D′ is equivalent to averaging the
bias and variance over the point �x. This gives us the canonical
bias-variance decomposition [56,57],

ED′,D[Etest] = E�x[Bias2[ŷ(�x)]] + E�x[Var[ŷ(�x)]] + σ 2
ε . (14)

In this work, we also consider other sources of randomness
(e.g., �β and W ). To incorporate these random variables, we
define the more general ensemble-averaged squared bias and
variance, respectively, as

〈Bias2[ŷ]〉 = E�β,W,�x[Bias[ŷ(�x)]2]

= E�β,W,�x[(EX,�ε[ŷ(�x)] − y∗(�x))2], (15)

〈Var[ŷ]〉 = E�β,W,�x[Var[ŷ(�x)]]

= E�β,W,�x[EX,�ε[ŷ2(�x)] − EX,�ε[ŷ(�x)]2], (16)

where we have explicitly included all random variables con-
sidered in this work. All analytic expressions we report are
ensemble-averaged (denoted by angle brackets 〈·〉) and utilize
the ensemble-averaged bias-variance decomposition of the
test error,

〈Etest〉 = 〈Bias2[ŷ]〉 + 〈Var[ŷ]〉 + σ 2
ε . (17)
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By fixing any parameters that do not pertain to the random
sampling process of the test or training data (in this case, �β
and W ), this formula properly reduces to the canonical bias-
variance decomposition in Eq. (14).

IV. RESULTS

In this section, we provide analytic results for the training
error, test error, bias, and variance, along with partial com-
parisons to numerical results. We limit ourselves to simply
discussing major features of our closed-form solutions, defer-
ring a discussion of the implications of these results to the
next section. Analytic derivations and complete comparisons
to numerical results are left to Ref. [5].

A. General solutions

We first report the forms of the solutions for arbitrary
student and teacher models. We find that the training error,
test error, bias, and variance take the general forms

〈Etrain〉 = 〈�y2〉, (18)

〈Etest〉 = σ 2
X 〈�β2〉 + σ 2

δz〈ŵ〉2 + σ 2
δy∗ + σ 2

ε , (19)

〈Bias2[ŷ]〉 = σ 2
X 〈�β1�β2〉 + σ 2

δz〈ŵ1ŵ2〉 + σ 2
δy∗ , (20)

〈Var[ŷ]〉 = σ 2
X [〈�β2〉 − 〈�β1�β2〉] + σ 2

δz[〈ŵ2〉 − 〈ŵ1ŵ2〉],
(21)

which depend on five key ensemble-averaged quantities:
〈�y2〉, 〈ŵ2〉, 〈�β2〉, 〈ŵ1ŵ2〉, and 〈�β1�β2〉 (see Sec. S1E
of Ref. [5] for detailed derivation). The first two quantities
are the average of the squared training label errors 〈�y2〉
and the average of the squared fit parameters 〈ŵ2〉. The third
quantity 〈�β2〉 measures a model’s accuracy in identifying
the ground truth parameters �β. To see this, we note that an
estimate of the ground truth parameters for each model can
be constructed from the fit parameters via the expression
β̂ ≡ W ŵ, with residual parameter errors ��β ≡ �β − β̂. Given
these definitions, 〈�β2〉 is then the average of the squared
residual parameter errors. Finally, the quantities 〈ŵ1ŵ2〉 and
〈�β1�β2〉 measure the average covariances of a pair fit pa-
rameters or residual parameter errors, respectively, that have
the same index but derive from models trained on different
training sets drawn independently from the same data distri-
bution.

In addition to these five ensemble averages, the above
expressions also depend on the quantities σ 2

δy∗ and σ 2
δz which

characterize the degree of nonlinearity of the labels and hid-
den features, respectively. To define these quantities, we note
that the nonlinear labels and hidden features considered in this
work can each be decomposed into linear and nonlinear parts.

First, we decompose the true labels in Eq. (2) into two
components that are statistically independent with respect to
the distribution of input features, allowing us to express the
teacher model as

y(�x) = �x · �β + δyNL(�x) + ε. (22)

The first term �x · �β captures the linear correlations between
the input features �x and the true labels y∗ via the ground

truth parameter �β, while the second term δy∗
NL(�x) captures the

nonlinear behavior of y∗ [defined as δy∗
NL(�x) ≡ y∗(�x) − �x · �β].

The nonlinear component has zero mean (since the labels are
centered with zero mean) and we define its variance as σ 2

δy∗ .
Previously, this decomposition was implemented by noting
that δy∗

NL(�x) behaves like an independent Gaussian process
[28,40]. Here, we note that this approximation follows nat-
urally in the thermodynamic limit from the relationship �β =
�−1

�x Cov�x[�x, y∗(�x)] where ��x ≡ Cov�x[�x, �xT ] is the covariance
matrix of the input features (see Sec. S1D of Ref. [5]).

We also decompose the hidden features in Eq. (4) into
three statistically independent components with respect to the
distribution of input features,

�z(�x) = μz√
Np

�1 + W T �x + δ�zNL(�x). (23)

The first term μZ/
√

Np�1 is the mean of each hidden fea-

ture where �1 is a length-Np vector of ones. Analogously to
the label decomposition, the second term W T �x captures the
linear correlations between the input features �x and the hid-
den features �z(�x) via the matrix of parameters W , while the
third term δ�zNL(�x) captures the remaining nonlinear behav-
ior of �z(�x) [defined as δ�zNL(�x) ≡ �z(�x) − μz�1/

√
Np − W T �x].

The nonlinear component has zero mean and we define its
total variance as σ 2

δz. Like the nonlinear teacher model, it
was previously observed that the nonlinear component of the
hidden features behaves like an independent Gaussian pro-
cess [58], and this decomposition has since been used as a
common trick to obtain closed-form solutions for nonlinear
models. Here, we again note that this approximation follows
naturally in the thermodynamic limit from the relationship
W = �−1

�x Cov�x[�x, �z(�x)T ] (see Sec. S1D of Ref. [5]).
We find the variance of the nonlinear components of the

labels and hidden features, respectively, to be

σ 2
δy∗ = σ 2

βσ 2
X � f , � f = 〈 f 2〉 − 〈 f ′〉2

〈 f ′〉2
, (24)

σ 2
δz = σ 2

W σ 2
X �ϕ, �ϕ = 〈ϕ2〉 − 〈ϕ〉2 − 〈ϕ′〉2

〈ϕ′〉2
, (25)

where the quantities 〈 f 2〉, 〈 f ′〉, 〈ϕ2〉, 〈ϕ〉, and 〈ϕ′〉 are integrals
of the form

〈g〉 = 1√
2π

∫ ∞

−∞
dhe− 1

2 h2
g(h) (26)

with derivatives indicated via prime notation [e.g.,
f ′ = df (h)/dh]. The differences � f and �ϕ measure
the ratio of the variances of each nonlinear component to
its linear counterparts and go to zero in the linear limit. For
ReLU activation, ϕ(h) = max(h, 0), we find 〈ϕ2〉 = 1/2,
〈ϕ〉 = 1/

√
2π , and 〈ϕ′〉 = 1/2, resulting in �ϕ = 1 − 2/π .

We derive Eqs. (19)–(21) by decomposing the labels and
hidden features of the test data (see Sec. S1E in Ref. [5]). As
a result, we can identify what elements of the test data lead to
each term in these expressions. We observe that terms propor-
tional to σ 2

X capture error arising from the linear components
of the test data’s labels and hidden features. More precisely,
these terms measure error due to the mismatch between the
linear components of the test labels and a model’s predictions
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based solely on the linear components of the test data’s hidden
features �x · �β = �x · �β − �x · W ŵ. In contrast, terms propor-
tional to σ 2

δy∗ and σ 2
δz represent errors due to the nonlinear

components of the test data’s labels and hidden features, re-
spectively. Since the model is linear in the fit parameters, it
cannot fully capture nonlinear relationships in the test data
that deviate from those observed in the training set.

Finally, we note that the decomposition of the labels in
Eq. (22) suggests that each key quantity, along with total train
error, test error, bias, and variance, decompose into contribu-
tions from the different parts of the training labels. Since each
term is statistically independent, the contribution of each is
proportional to its respective variance, allowing us to simply
read off the sources of each type of error from our analytic
results. In particular, the linear and nonlinear components of

the labels give rise to terms proportional to σ 2
βσ 2

X and σ 2
δy∗ ,

respectively, while the label noise gives rise to terms propor-
tional to σ 2

ε .

B. Linear regression

Here, we present results for linear regression (no basis
functions). Generally, our solutions are most naturally ex-
pressed in terms of α f = Nf /M, the ratio of input features to
training data points, and αp = Np/M, the ratio of fit parame-
ters to training data points. However, in this case, the input and
hidden features coincide (Nf = Np), so all expressions depend
only on α f . The ensemble-averaged training error, test error,
bias, and variance for linear regression are

〈Etrain〉 =
{(

σ 2
ε + σ 2

δy∗
)
(1 − α f )

0

if Nf < M

if Nf > M
, (27)

〈Etest〉 =
⎧⎨
⎩

(
σ 2

ε + σ 2
δy∗

)
1

(1−α f )

σ 2
βσ 2

X
(α f −1)

α f
+ (

σ 2
ε + σ 2

δy∗
) α f

(α f −1)

if Nf < M

if Nf > M
, (28)

〈Bias2[ŷ]〉 =
⎧⎨
⎩

σ 2
δy∗

σ 2
βσ 2

X
(α f −1)2

α2
f

+ σ 2
δy∗

if Nf < M

if Nf > M
, (29)

〈Var[ŷ]〉 =
⎧⎨
⎩

(
σ 2

ε + σ 2
δy∗

) α f

(1−α f )

σ 2
βσ 2

X
(α f −1)

α2
f

+ (
σ 2

ε + σ 2
δy∗

)
1

(α f −1)

if Nf < M

if Nf > M
. (30)

In writing these expressions, we have taken the ridge-less
limit, λ → 0 (when a quantity is reported as zero, leading
terms of order λ2 are reported in Sec. S1F of the Ref. [5]).

In Fig. 2(a), we plot the expressions for the training and
test error in Eqs. (27) and (28) with comparisons to numerical
results for a linear teacher model σ 2

δy∗ = 0. We find that the
model’s behavior falls into two broad regimes, depending on
whether α f > 1 or α f < 1 (or equivalently, αp > 1 or αp <

1). In Fig. 2(a), we observe that below α f = 1, the training
error is finite, decreasing monotonically as α f increases until
reaching zero at α f = 1. Beyond this threshold, the addition
of extra features/parameters has no effect and the training
error remains pinned at zero. Thus, α f = 1 corresponds to
the interpolation threshold, separating the regions where the
model has zero and nonzero training error, i.e., the under and
overparameterized regimes. At the interpolation threshold, the
test error diverges [Fig. 2(a)], indicative of a phase transition
based on the divergence of the corresponding susceptibili-
ties in the cavity equations (see Sec. V E and Sec. S1F of
Ref. [5]).

The bias and variance, reported in Eqs. (29) and (30), are
plotted in Fig. 2(b). When α f � 1, the bias is zero for a
linear teacher model. This can be understood by noting that
the teacher and student models match in this case and there
are more data points than parameters (i.e., we are working
in a regime where intuitions for classical statistics apply).
In this regime, the variance increases monotonically as α f

is increased, diverging at the interpolation threshold as the

model succumbs to overfitting. However, when α f > 1, the
variance exhibits the opposite behavior, decreasing monotoni-
cally as α f is increased. The bias, on the other hand, increases
monotonically towards the limit σ 2

βσ 2
X + σ 2

δy∗ as α f goes to
infinity. Consequently, the test error in the overparameterized
regime is characterized by a surprising “inverted bias-variance
trade-off” where the bias increases with model complexity
while the variance decreases.

In the solutions for the training error, test error, and vari-
ance, we observe that the error due to the nonlinear label
components (proportional to σ 2

δy∗ ) always appears as an addi-
tive component to the errors stemming from the label noise
(proportional to σ 2

ε ). However, unlike the label noise, the
nonlinear label variance σ 2

δy∗ also appears in the bias as an
additional constant irreducible term that arises as a result of
attempting to fit a nonlinear data distribution with a model
that is linear in the fit parameters.

Finally, in Fig. 2(c), we report the minimum nonzero
eigenvalue σ 2

min of the Hessian matrix ZT Z , with examples
of the full eigenvalue spectrum shown in Figs. 2(i)–2(iii).
Since ZT Z = X T X for our model of linear regression, the
eigenvalue spectrum is simply the Marchenko-Pastur distri-
bution (see Sec. S2A of Ref. [5] for derivation). Importantly,
we find the interpolation threshold α f = 1 coincides with the
point at which σ 2

min goes to zero. In the underparameterized
regime, there is a finite gap in the eigenvalue spectrum, with
no small eigenvalues. In the overparameterized, there is also
a finite gap, but instead between the bulk of the spectrum
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FIG. 2. Linear regression (no basis functions). Analytic solutions for the ensemble-averaged (a) training error (blue squares) and test error
(black circles), and (b) bias-variance decomposition of test error with contributions from the squared bias (blue squares), variance (red squares),
and test set label noise (green triangles), plotted as a function of α f = Nf /M (or equivalently, αp = Np/M). Analytic solutions are indicated as
dashed lines with numerical results shown as points with small error bars indicating the error on the mean. In each panel, a black dashed vertical
line marks the interpolation threshold α f = 1. (c) Analytic solution for the minimum eigenvalue σ 2

min of the Hessian matrix ZT Z . Examples
of the eigenvalue distributions are shown (i) in the underparameterized regime with α f = 1/8, (ii) at the interpolation threshold, α f = 1, and
(iii) in the overparameterized regime with α f = 8. Analytic solutions for the distributions are depicted as black dashed curves with numerical
results shown as blue histograms. See Sec. S4 of Ref. [5] for additional simulation details.

and a buildup of eigenvalues at exactly zero. We discuss the
implications of these findings later in Sec. V B.

C. Random nonlinear features model

Unlike the solutions for linear regression, the analytic ex-
pressions for the random nonlinear features model are not
so simple, so we defer these expressions to the Appendix.
In Fig. 3(a) and 3(b), we plot the training error, test error,
bias, and variance as a function of αp = Np/M for fixed
α f < 1 (more data points M than input features Nf ), while
in Figs. 3(c)–3(f), we plot all quantities as a function of
both αp and α f . In all plots, we depict the special case of a
linear teacher model σ 2

δy∗ = 0 and ReLU activation ϕ(h) =
max(h, 0). Analogously to linear regression, the nonlinear
model has two distinct regimes separated by the line αp = 1.
In Fig. 3(c), we find that the training error is finite when
αp < 1 and goes to zero when αp � 1, marking the boundary
αp = 1 as the interpolation threshold. Figure 3(d) shows that
the test error diverges at each point along this boundary and no
longer diverges when α f = 1 as in the linear case [Fig. 2(a)].
However, we do still find that the divergence in the test error
is associated with a phase transition indicated by diverging
susceptibilities (see Sec. V E and Appendix).

In addition, the test error only displays a small qualitative
difference between the regimes where α f < 1 and α f > 1. We
find that the test error only shows a canonical double-descent
behavior when α f < 1 [Fig. 3(d)]. As in linear regression,
the variance [Fig. 3(f)], accounts for the divergence of the
test error at the phase boundaries, while the bias [Fig. 3(e)]

remains finite, decreasing monotonically for all αp. However,
unlike linear regression, the bias of the nonlinear model never
reaches zero, even for a linear teacher model. Furthermore, the
closed-form solutions show that the nonlinear components of
the labels σ 2

δy∗ contribute in the same way as in the two linear
models, adding a small constant irreducible bias [Eq. (20)],
along with an additive component to the label noise (see
Appendix).

Finally, in Fig. 3(g), we report the minimum nonzero
eigenvalue σ 2

min of the Hessian matrix ZT Z as a function of
both αp and α f (see Sec. S2B of Ref. [5] for derivation of
analytic results). We find that σ 2

min approaches zero along the
entire interpolation boundary αp = 1. In Figs. 3(i)–3(iii), we
show examples of the full eigenvalue spectrum for α f < 1
for the under and overparameterized regimes, along with the
interpolation threshold. We find that the spectrum in the un-
derparameterized regime displays a finite gap that goes to
zero near the interpolation threshold. In the overparameterized
regime, we find that although the gap between the buildup
of eigenvalues at zero and the nonzero eigenvalues is much
smaller, it is still finite. Interestingly, we also find that addi-
tional gaps can appear in the eigenvalue distribution between
sets of finite-valued eigenvalues, which likely reflects the fact
that ReLU activation functions result in a large fraction of
zero-valued entries in Z .

V. UNDERSTANDING BIAS AND VARIANCE IN
OVERPARAMETERIZED MODELS

Having presented our analytic results, we now discuss the
implications of our calculations for understanding bias and
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FIG. 3. Random nonlinear features model (two-layer neural network). Analytic solutions for the ensemble-averaged (a) training error (blue
squares) and test error (black circles) and (b) bias-variance decomposition of test error with contributions from the squared bias (blue squares),
variance (red squares), and test set label noise (green triangles), plotted as a function of αp = Np/M for fixed α f = Nf /M = 1/4. Analytic
solutions are indicated as dashed lines with numerical results shown as points. Analytic solutions as a function of both αp and α f are also
shown for the ensemble-averaged (c) training error, (d) test error, (e) squared bias, and (f) variance. In all panels, a black dashed line marks the
boundary between the under and overparameterized regimes at αp = 1. (g) Analytic solution for the minimum eigenvalue σ 2

min of the Hessian
matrix ZT Z . Examples of the eigenvalue distributions are shown (i) in the underparameterized regime with αp = 1/8, (ii) at the interpolation
threshold, αp = 1, and (iii) in the overparameterized regime with αp = 8, all for αp = 1/4. Analytic solutions for the distributions are shown
as blacked dashed curves with numerical results shown as blue histograms. See Sec. S4 of Ref. [5] for additional simulation details.

variance in a more general setting. Our discussion emphasizes
the qualitatively new phenomena that are present in overpa-
rameterized models.

A. Two sources of bias: imperfect models and incomplete
exploration of features

Traditionally, bias is viewed as a symptom of a model
making incorrect assumptions about the data distribution (a
mismatch between the teacher and student models). However,
our calculations show that this description of the origin of
bias is incomplete. A striking feature of our results is that
overparameterized models can be biased even if our statistical
models are expressive enough to fully capture all relationships

underlying the data. In fact, linear regression shows us that
one can have a nonzero bias even if the student and teacher
models are identical [e.g., f (h) = h]. Even when the student
and teacher model are the same, the bias is nonzero if there are
more input features Nf than data points M [see α f > 1 region
of Fig. 2(b)].

To better understand this phenomenon, it is helpful to think
of the input features as spanning an Nf -dimensional space.
The training data can be embedded in this Nf -dimensional
input feature space by considering the eigenvectors, or prin-
cipal components, of the empirical covariance matrix of input
features X T X/M, with X defined as the M × Nf design matrix
whose rows correspond to training data points and columns
to input features (see Sec. II). When there are more data
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points than input features (M > Nf ), the training data will
typically span the entire Nf -dimensional input feature space
(i.e., the principal components of X T X generically span all of
input feature space). In contrast, when there are fewer training
data points than input features (M < Nf ), the training data
will typically span only a fraction of the entire input feature
space (i.e., the principal components will span a subspace of
the full Nf -dimensional input feature space). For this reason,
when M < Nf the model is “blind” to data that varies along
these unsampled directions. Consequently, any predictions the
model makes about these directions will reflect assumptions
implicitly or explicitly built into the model rather than rela-
tionships learned from the training data set. This can result in
a nonzero bias even when the teacher and student models are
identical.

In the random nonlinear features model, the nonlinear ac-
tivation function makes it impossible to perfectly represent
the input features via the hidden features, even for a linear
teacher model. While increasing the number of hidden fea-
tures does reduce bias, the nonlinear model is never able to
perfectly capture the linear nature of the data distribution and
is always biased. Similarly, neither model is able to express
the nonlinear components of the labels for a nonlinear teacher
model, resulting in a constant, irreducible bias in both cases.

Finally, we wish to point out that, unlike some previous
studies, we find that the bias never diverges [17,19,40], includ-
ing at the interpolation transition, nor does it reach a minimum
at the transition, remaining constant into the overparameter-
ized regime in the ridge-less limit [17,25,26,38]. Instead, we
find that the bias remains finite and decreases monotonically,
even in the absence of regularization.

B. Variance: overfitting stems from poorly sampled direction in
space of feature

Variance measures the tendency of a model to overfit, or
attribute too much significance to, aspects of the training data
that do not generalize to other data sets. Even when all data is
drawn from the same distribution, the predictions of a trained
model can vary depending on the details of each particular
training set. More specifically, a model may exhibit high
variance when a direction in feature space is present in the
training data, but not sampled well enough to reflect its true
nature in the underlying data distribution. When presented
with new data that has a significant contribution along this
undersampled direction, the model is forced to extrapolate
(often incorrectly) based on the little information it can glean
from the training set.

In linear regression, the empirical variance along each
principal direction is explicitly measured by its associated
eigenvalue in the empirical covariance matrix X T X/M. Gen-
erally, a model’s variance will be dominated by the most
poorly sampled principal direction, or minimum component
ĥmin, corresponding to the smallest nonzero eigenvalue σ 2

min

of X T X . The projection of an arbitrary data point �x onto ĥmin

can be found by taking a dot product, ĥmin · �x. The observed
variance of ĥmin · �x for a given training set is σ 2

train = σ 2
min/M.

For comparison, we define the true, or expected, variance of
ĥmin · �x for an average test set as σ 2

test, representing data points
drawn from the full data distribution (see Sec. S3 of Ref. [5]).

The first row of Fig. 4 shows how observing a small
variance along a particular direction sampled by the training
data can lead to overfitting in linear regression. In Fig. 4(a),
we plot the average ratio σtrain/σtest as a function of α f for
simulated data. In Figs. 4(a-i)–4(a-iii), we then plot the labels
y versus ĥmin · �x for the training set (orange points) and an
equally-sized test data set (blue points), representative of the
full data distribution. In each panel, the relationship between
the labels and ĥmin · �x as predicted by the model based on the
training set is depicted as an orange line. For comparison, we
also show the expected relationship for an average test set as
a blue line, representing the true relationship underlying the
data (see Sec. S3 of Ref. [5] for explicit formulas).

In Fig. 4(a-i), we see that when the model is underpa-
rameterized (Nf < M), the spread of the training set along
the minimum component is comparable to that of the test set
(σtrain/σtest = 0.7). Because there are more data points than
input features, many of the data points are likely to contain
significant contributions from each direction, including the
minimum component, corresponding to a finite gap in the cor-
responding eigenvalue distribution depicted in Fig. 2(c-i). As a
result, the training set will provide the model with an accurate
representation of the data distribution along this direction in
feature space. In this case, we see that the model is able to
closely approximate the true relationship in the data even in
the presence of noise.

However, at the interpolation threshold when the number
of input features equals the number of data points (Nf = M),
Fig. 4(a-ii) shows that the spread of the training data points
along the minimum component is very narrow compared to
the test data (σtrain/σtest ≈ 0.006), while in Fig. 2(c-ii), we
observe that the gap in the eigenvalue distribution disappears.
In this case, the training set contains a very small, but insuffi-
cient, amount of information about the data distribution along
this direction. This poor sampling causes the model to overfit
the noise of the training set, resulting in a slope that is much
larger than that of the true relationship. When presented with
a new data point with a significant contribution along ĥmin, the
model will be forced to extrapolate beyond the narrow range
of ĥmin · �x observed in the training set. This extrapolation will
hamper the model’s ability to generalize, leading to inaccurate
predictions that are highly dependent on the precise details of
the noise sampled by the training set.

Surprisingly, we find in Fig. 4(a-iii) that further increasing
the number of features so that the model becomes overpa-
rameterized (Nf > M) actually increases the spread in the
training data along the minimum component (σtrain/σtest ≈
1.9), reducing the effects of overfitting. When there are more
features than data points, each data point is likely to ex-
plore a never-before-seen combination of features. Naively,
one would expect this to leave many of the directions poorly
sampled. However, because the norm of each data point is ap-
proximately the same in the thermodynamic limit, the fact that
each data point is different means that all are likely to make
independent contributions of different sizes to the sampled di-
rections, including ĥmin. Even if this means only a single data
point contributes to a particular component, this contribution
must be of significant size for the data point to be independent
of the rest. So while some directions are not represented in
the training set at all, the ones that are present are typically
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FIG. 4. Poorly sampled directions in space of features lead to overfitting. Demonstrations of this phenomenon are shown for (a) linear
regression and (b) the random nonlinear features model. Columns (i), (ii), and (iii) correspond to models which are underparameterized, exactly
at the interpolation threshold, or overparameterized, respectively. In each example, the relationship between the labels and the projection of
their associated input or hidden features onto the minimum principal component ĥmin of ZT Z is depicted for a set of training data (orange
squares) and a test set (blue circles). Orange lines indicate the relationship learned by a model from the training set, while the expected
relationship for an average test set is shown as a blue line. In the left-most column, the spread (standard deviation) of an average training set
along the x axis, σ 2

train = σ 2
min/M, is plotted relative to the spread that would be expected for an average test set, σ 2

test , for simulated data as a
function of αp. Smaller values are associated with lower prediction accuracy on out-of-sample data, coinciding with small eigenvalues in ZT Z .
All results are shown for a linear teacher model. See Ref. [5] for analytic derivations of learned and expected relationships and spreads along
minimum principal components (Sec. S3), along with additional details of numerical simulations (Sec. S4).

well-represented by at least one—if not many—data points,
providing a sufficient amount of signal (or spread) to reveal
relationships in the underlying distribution. Consequently, the
model is able to learn the true relationship between the la-
bels and features, just as in the underparameterized case. We
observe this phenomenon directly in the eigenvalue distribu-
tion in Fig. 2(c-iii), with a buildup of eigenvalues at exactly
zero corresponding to unsampled directions accompanied by
a finite gap separating these eigenvalues from the rest of the
distribution. This is the underlying reason that the variance
decreases with model complexity beyond the interpolation
threshold. A similar observation was made in Ref. [18] in the
context of ridge regression using methods from random matrix
theory.

In the second row of Fig. 4, we demonstrate that the same
patterns also lead to overfitting in the random nonlinear fea-
tures model, indicating that the intuition gained from linear
regression translates directly to more complex settings. In this
case, the model can be interpreted as indirectly sampling the
data distribution via the empirical covariance matrix of hid-
den features ZT Z/M. We calculate the minimum component
ĥmin as the principal component of ZT Z with the smallest

eigenvalue. In Figs. 4(b-i)–4(b-iii), we plot the labels y versus
the projection of each data point’s hidden features �z onto
this minimum component ĥmin · �z, with the ratio σtrain/σtest

shown in Fig. 4(b). In contrast to linear regression, we see
that overfitting results from poorly sampling—or observing
very limited spread along – a direction in the space of hidden
features rather than input features. In the random nonlinear
features model, overfitting is most pronounced when the num-
ber of hidden features matches the number of data points at
the interpolation threshold (Np = M), where the gap in the
eigenvalue distribution at zero disappears [Fig. 3(g-ii)].

C. Biased models can interpret signal as noise

Typically, variance is attributed to overfitting inconsisten-
cies in the labels due to noise in the training set. Indeed, we
observe that the contribution to the variance due to noise is
nonzero in each model. Surprisingly, we also find that overfit-
ting can occur in the absence of noise when a model is biased.
In each model, we observe a direct correspondence between
each source of bias and a source of variance. In other words,
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FIG. 5. Biased models can interpret signal as noise. (a) The total bias (black circles) with contributions from the linear label components
(blue squares) and nonlinear label components (red diamonds), and the (b) the total variance (black circles) with contributions from the
linear label components (blue squares), nonlinear label components (red diamonds), and the label noise (green triangles) are shown for linear
regression with a nonlinear teacher model f (h) = tanh(h) [see Eq. (2)]. Analytic solutions are indicated as dashed lines with numerical results
shown as points. Contributions from the linear label components, nonlinear label components, and label noise are found by identifying terms in
the analytic solutions proportional to σ 2

β σ 2
X , σ 2

δy∗ , and σ 2
ε , respectively. Each source of bias acts as effective noise, giving rise to a corresponding

source of variance. The effects of this phenomenon on the relationships learned by a linear regression model are depicted at the interpolation
threshold for an unbiased model with linear data, f (h) = h, (c) with noise and (d) without noise, and for a biased model with nonlinear data,
f (h) = tanh(h), (e) with noise and (f) without noise. In each example, the relationship between the labels and the projection of their associated
input features onto the minimum principal component ĥmin of X T X is depicted for a set of training data (orange squares) and a test set (blue
circles). Orange lines indicate the relationship learned by a model from the training set, while the expected relationship for an average test set
is shown as a blue line. See Ref. [5] for analytic derivations of learned and expected relationships (Sec. S3), along with additional details of
numerical simulations (Sec. S4).

in the absence of noise, the variance is zero only when the bias
is zero.

To illustrate this, in Figs. 5(a) and 5(b), we plot the con-
tributions to the bias and variance, respectively, from the
different statistically independent components of the labels in
Eq. (22) for our model of linear regression with a nonlinear
teacher model of the form f (h) = tanh(h) [see Eq. (2)]. In
this case, note that our model can never fully represent the true
data distribution and hence will always be biased. We find that
both contributions to the bias from the linear (blue) and non-
linear (red) components of the training labels, proportional to
σ 2

βσ 2
X and σ 2

δy∗ , respectively, in Eq. (29) (see Sec. IV A), have
a corresponding contribution to the variance for all values of
α f in Eq. (30). This suggests the following interpretation: a
model with nonzero bias gives rise to variance by interpreting
part of the training set’s signal y∗ as noise. In other words, a
model which cannot fully express the relationships underlying
the data distribution may inadvertently treat this unexpressed
signal as noise.

We demonstrate this phenomena in Figs. 5(c)–5(f) using
our model of linear regression trained at the interpolation
threshold (Nf = M), where the only contribution to the bias
stems from the nonlinear components of the training labels. In
each panel, we plot the labels as a function of the projection

of each data point’s input features onto the minimum principal
component ĥmin · �x for a set of training data (orange) and a
set of test data (blue). We then compare the resulting model
(orange line) to the expected relationship for an average test
set (blue line), representing the underlying relationship in the
data distribution.

To confirm that bias is necessary for this phenomenon,
Figs. 5(c) and 5(d) show simulations for a linear teacher model
f (h) = h with and without label noise. In this case, the student
and teacher models match and the model is unbiased. As
expected, we find that with label noise, the model overfits the
training data and the resulting slope does not accurately reflect
the true relationship underlying the data, while without label
noise, the model is able to avoid overfitting and provides a
good approximation of the true relationship

In Figs. 5(e) and 5(f), we performed the same simula-
tions for a nonlinear teacher model f (h) = tanh(h) with and
without label noise. In this case, the student and teacher
models do not match and the model is always biased. With
label noise, the model overfits the training data. However,
even in the absence of label noise, the model still overfits
the training data. Collectively, our simulations indicate that
even if the label noise is zero, any finite amount of bias can
result in overfitting, especially if the training set severely
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undersamples the data along a particular direction in feature
space.

We find that this observation holds for both models for
every observed source of bias, including contributions stem-
ming from the linear and nonlinear components of the labels
(proportional to σ 2

βσ 2
X and σ 2

δy∗ , respectively) and the linear
and nonlinear components of the hidden features in the test
data [proportional to σ 2

X and σ 2
δz, respectively, in Eqs. (20)

and (21)]. As a result, in the absence of label noise, the test
error can only diverge at an interpolation threshold when
a model is biased. Finally, we note that this behavior also
manifests in contributions to the training error in the underpa-
rameterized regime for each model, with each source of bias
corresponding to an additional source of training error below
the interpolation threshold.

D. Interpolating is not the same as overfitting

Our results make clear that interpolation (zero training
error) occurs independently from overfitting (poor generaliza-
tion) in overparameterized models. Interpolation occurs when
the number of independent directions in the space of hidden
features (or equivalently, input features in linear regression)
sampled by the training set is sufficient to account for the vari-
ations in the labels. In both models, the interpolation threshold
is located where the number of principal components (mea-
sured via the rank of ZT Z) matches the number of data points.
On the other hand, the test error diverges as a result of the
variance diverging at the interpolation threshold. These larges
variances result from poor sampling along directions in ZT Z
(small eigenvalues), resulting in very little spread of data
along these directions in the training set relative to the full
distribution.

In underparameterized models, interpolation and overfit-
ting coincide. Increasing the number of fit parameters results
in a greater number of sampled directions in the space of fea-
tures, but makes it more likely to poorly sample any particular
direction, resulting in large variance. The result is that the
interpolation threshold always coincides with a divergence in
the test error. In contrast, interpolation and overfitting occur
independently in overparameterized models. Once the inter-
polation threshold is reached, further increasing the number
of fit parameters cannot improve the training error since it is
already at a minimum. However, increasing the model com-
plexity can reduce the effects of overfitting and decrease the
variance by allowing for better sampling along the directions
captured by the training set (Fig. 4). For this reason, increasing
model complexity past the interpolation threshold can actually
result in an increase in model performance without succumb-
ing to overfitting.

E. Susceptibilities measure sensitivity to perturbations

Here, we discuss the roles of the susceptibilities that natu-
rally arise as part of our cavity calculations. In many physical
systems, susceptibilities are quantities of interest that measure
the effects on a system due to small perturbations. In par-
ticular, the susceptibilities in our models each characterize a
different type of perturbation and in doing so, a different as-
pect of the double-descent phenomenon. Setting the gradient

FIG. 6. Susceptibilities for random nonlinear features model.
Analytic solutions for three key susceptibilities as a function of αp =
Np/M and α f = Nf /M. [(a) and (b)] The susceptibility ν measures
the sensitivity of the fit parameters to small perturbations in the
gradient. In the small λ limit, ν ≈ λ−1ν−1 + ν0. (a) The coefficient
ν−1 characterizes overparameterization, equal to the the fraction of
fit parameters in excess of that needed to achieve zero training error,
(b) while ν0 characterizes overfitting, diverging at the interpolation
threshold when ZT Z has a small eigenvalue. (c) The susceptibility χ

measures the sensitivity of the residual label errors of the training set
to small perturbations in the label noise. As a result, χ characterizes
interpolation, equal to the fraction of data points that would need to
be removed from the training set to achieve zero training error. (d)
The susceptibility κ measures the sensitivity of the residual parame-
ter errors to small perturbations in the ground truth parameters. We
observe that κ decreases as a model becomes less biased, indicating
that the model is better able to express the relationships underlying
the data.

equation in Eq. (8) equal to a small nonzero field �η, such that
∂L/∂ŵ = �η, each of the key susceptibilities in our derivations
can be expressed as the trace of a corresponding susceptibility
matrix,

ν = 1

Np
Tr

∂ŵ
∂�η , χ = 1

M
Tr

∂��y
∂�ε , κ = 1

Nf
Tr

∂��β
∂ �β

. (31)

In Fig. 6, we plot each of these quantities as a function of
αp and α f for the random nonlinear features model (see Ap-
pendix for analytic expressions).

The susceptibility ν measures perturbations to the fit pa-
rameters ŵ due to small changes in the gradient �η. In the small
λ limit, we make the approximation ν ≈ λ−1ν−1 + ν0 and find
that the coefficient of each term has a different interpretation.
The first coefficient ν−1, shown in Fig. 6(a), characterizes
overparameterization, counting the fraction of fit parameters
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in excess of that needed to achieve zero training error. Since
these degrees of freedom are effectively unconstrained in the
small λ limit, this term diverges as λ approaches zero. The sec-
ond coefficient ν0, shown in Fig. 6(b), characterizes overfitting
and diverges at the interpolation threshold in concert with the
variance when ZT Z has a small eigenvalue. We note that ν is
actually the trace of the inverse Hessian of the loss function
in Eq. (5), or is equivalently the Green’s function, and can be
used to extract the eigenvalue spectrum of the Hessian matrix
[55].

The second susceptibility χ , shown in Fig. 6(c), measures
the sensitivity of the residual label errors of the training set
��y to small changes in the label noise �ε. We observe that
χ goes to zero at the interpolation threshold and remains
zero in the interpolation regime. Accordingly, χ characterizes
interpolation by measuring the fractions of data points that
would need to be removed from the training set to achieve
zero training error.

Finally, κ , shown in Fig. 6(d), measures the sensitivity
of the residual parameter errors ��β to small changes in the
underlying ground truth parameters �β. We observe that κ

decreases as the model becomes less biased, indicating that
the model is better able to express the relationships underlying
the data (the relationship of κ to the bias is explored in more
detail Ref. [59]).

F. Nonstandard bias-variance decompositions lead to incorrect
interpretations of double-descent

The analytical results for bias and variance for the random
nonlinear features model extend the classical understanding of
generalization into a modern setting. While the model exhibits
a classical bias-variance trade-off in the underparameterized
regime, in the overparameterized regime the test error de-
creases monotonically due to a monotonic reduction in both
bias and variance, even in the absence of regularization. In
other words, the benefits of overparameterization are twofold:
it can reduce the likelihood of overfitting the training data,
while simultaneously improving a model’s ability to capture
trends hidden in the data.

The alternative and varying interpretations of the double-
descent phenomenon found in previous studies are a direct
result of the use of nonstandard bias-variance decompositions,
highlighting the importance of using the historical definitions
when using these quantities to interpret double-descent. Much
of this confusion can be attributed to the precise definition of
what we call the sampling average in our definitions for bias
and variance, which captures the randomness associated with
sampling the training data D. Previous studies have deviated
from these standard definitions in two ways (see Sec. S6 of
Ref. [5] for numerical comparisons of these alternatives with
the standard definitions).

The first is the so-called fixed-design setting in which
the design matrix X is not included in the sampling average
[17,19,27,30,31,34,40]. By holding the design matrix fixed
for the training set, but not the test set, an effective mismatch
arises between their respective data distributions, introducing
an additional source of bias. As a result, one finds that the
bias of the random nonlinear features model diverges at the
transition, suggesting the model does not display a classical

bias-variance trade-off in the underparameterized regime, de-
spite exhibiting a U-shaped test error [17,19,40].

In the second nonstandard formulation, the random initial-
ization of the hidden layer is included as part of the sampling
average [17,25,26,31,38,44]. Consequently, the bias in this
setting can be interpreted as measuring the bias of an en-
semble model, ŷens(�x) = EW [ŷ(�x)], composed of an average
over all possible models with different matrices W , rather than
the actual model under consideration. In this setting, the bias
misses a contribution that would normally be incurred due to
the reality that the model only utilizes a single instance of the
matrix W , rather than averaging over the entire ensemble. In
this setting, one finds that the bias of the random nonlinear
features model decreases to a minimum at the interpolation
threshold and then remains constant into the overparameter-
ized regime—paradoxically suggesting that the ability of a
model to express complex relationships stops increasing once
one reaches the interpolation transition [17,25,26,38].

In contrast to these two scenarios, we find that the bias of
the nonlinear random features model monotonically decreases
with the number of parameters in both the under and overpa-
rameterized regimes, suggesting that adding parameters while
holding the number of input features fixed always increases
the ability a model to capture trends in the data. This means
that while there is a trade-off between bias and variance in
the underparameterized regime, this trade-off disappears in
the overparameterized regime where both bias and variance
decrease as one adds fit parameters.

VI. CONCLUSIONS

Understanding how the bias-variance trade-off manifests
in overparameterized models where the number of fit param-
eters far exceeds the number of data points is a fundamental
problem in modern statistics and machine learning. Here, we
have used the zero-temperature cavity method, a technique
from statistical physics, to derive exact analytic expressions
for the training error, test error, bias, and variance in the
thermodynamic limit for two minimal model architectures:
linear regression (no basis functions) and the random nonlin-
ear features model (a two-layer neural network with nonlinear
activation functions where only the top layer is trained). These
analytic expressions, when combined with numerical simu-
lations, help explain one of the most puzzling features of
modern ML methods: the ability to generalize well while
simultaneously achieving zero error on the training data.

We observe this phenomenon of “memorizing without
overfitting” in both models. Importantly, our results show that
this ability to generalize is not unique to modern ML methods
such as those employed in deep learning; both models we
consider here are convex. We also note that we do not employ
commonly used methods such as stochastic gradient descent
to train our models. Instead, we use a straightforward regular-
ization procedure based on an L2 penalty and even work in the
limit where the strength of the regularization is sent to zero.
This shows that the ability to generalize while achieving zero
training error, sometimes referred to as interpolation, seems to
be a generic property of even the simplest overparameterized
models such as linear regression and does not require any
special training, regularization, or initialization methods.
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Our results show that in stark contrast with the kinds of
models considered in classical statistics, the variance of over-
parameterized models reaches a maximum at the interpolation
threshold (the model complexity at which one can achieve
zero error on the training data set) and then surprisingly de-
creasing with model complexity beyond this threshold, giving
rise to the double-descent phenomenon. These large variances
at the interpolation threshold are directly tied to the exis-
tence of small eigenvalues in the Hessian matrix, which can
be interpreted as a symptom of poor sampling of the data
distribution by the training set when viewed by the model
through the hidden features. In addition, overparameterized
models can introduce new sources of bias. Bias can arise not
only from a mismatch between the model and the underlying
data distribution, but also from training data sets that span
only a subset of the data’s feature space. Overparameterized
models with bias can also mistake signal for noise, resulting
in a nonzero variance even in the absence of noise. This shows
that the properties overparameterized models are governed
by a subtle interplay between model architecture and random
sampling of the data distribution via the training data set.

We note that our models are limited in two significant
ways: (i) we focus on the “lazy regime” in which the ker-
nel remains fixed during optimization and (ii) we consider
convex loss landscapes containing unique solutions. In con-
trast, deep learning models in practical settings often exhibit
highly nonconvex loss landscapes and exist in the “feature
regime” where their kernels evolve to better express the data.
Many questions remain regarding the relationship between
these two properties: how do neural networks learn “good”
sets of features via their kernels and how do such choices
relate to different local minima in the overall loss landscape?
Recent work suggests that in this more complex setting,
generalization error may be improved by looking for wider,
more representative minima in the landscape [60–62]. Un-
derstanding bias, variance, and generalization in the context
of nonconvex fitting functions and the relationship of these
quantities to the width and local entropy of minima represents
an important future area of investigation.

One possible direction for exploring these ideas may be
to exploit the relationship between wide neural nets and
Gaussian processes [14,15,63] and explore how the spectrum
changes with the properties of various minima. Alternatively,
one could apply our analytical approach to study fixed kernel
methods in nonconvex settings. For example, the perceptron
exhibits a nonconvex loss landscape by including negative
constraint cutoffs and can be solved analytically by utilizing
a Replica Symmetry Breaking ansatz [64]. In principle, it
should be possible to extend these calculations to compute

the bias-variance decomposition, eigenvalue spectrum, and
susceptibilities with and without basis functions.

Finally, our analysis suggests that our conclusions may be
tested directly in practical settings in two ways. First, it would
be instructive to compute the eigenvalue spectra of the Hes-
sian of deep learning models. It is known that the eigenvalue
spectra of neural networks in the overparameterized regime
exhibit a gap with a large number of eigenvalues clustered
around zero and the rest located in a nonzero bulk [65]. How-
ever, there has not been a comprehensive study of how the
spectrum evolves as one advances through the interpolation
threshold. Second, it would be interesting to compute the
relevant susceptibilities, such as those in Eq. (31). While we
do not expect the susceptibilities of deep learning models to
quantitatively match those computed here, we do expect them
to follow the qualitative behavior exhibited in Fig. 6. These
susceptibilities could be computed by utilizing their matrix
forms (e.g., ν is the trace of the inverse Hessian), or by calcu-
lating the linear response directly via efficient differentiation
techniques originally developed for computing gradients for
metalearning [66]. Examining such susceptibilities may also
prove useful in understanding the nature of deep learning
models in the feature regime and nonconvex loss landscapes.
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APPENDIX: ANALYTIC EXPRESSIONS FOR RANDOM
NONLINEAR FEATURES MODEL

For the random nonlinear features model, the solutions for
the five averages used to express the solutions in Eqs. (18)–
(21) are in turn related to a set of five scalar susceptibilities
that are a natural result of the cavity method, ν, χ , κ , ω, and
φ. Each of these susceptibilities is defined as the ensemble
average of the trace of a different susceptibility matrix which
measures the responses of quantities such as the residual label
error, residual parameter error, fit parameter values, etc., to
small perturbations (see Sec. V E). Collectively, the ensemble-
averaged quantities satisfy the equations

⎛
⎜⎜⎜⎜⎝

〈ŵ2〉
〈û2〉

〈�y2〉
〈�β2〉

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 −σ 2
W

α f

αp
ν2 −σ 2

δzα
−1
p ν2 0

−σ 2
W ω2 1 −σ 2

X α−1
f κ2 0

−σ 2
δzχ

2 0 1 −σ 2
X χ2

−σ 2
W κ2 0 −σ 2
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⎞
⎟⎟⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎜⎝

0

σ 2
βω2(

σ 2
ε + σ 2

δy∗
)
χ2

σ 2
β κ2

⎞
⎟⎟⎟⎟⎠, (A1)

〈ŵ1ŵ2〉 = σ 2
β

σ 2
W

σ 4
W

α f

αp
ω2ν2(

1 − σ 4
W

α f

αp
ω2ν2

) , 〈�β1�β2〉 = σ 2
β

κ2(
1 − σ 4

W
α f

αp
ω2ν2

) . (A2)
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The quantity 〈û2〉 is the mean squared average of the length-Nf vector quantity û = X T ��y obtained as a byproduct of the cavity
derivation. The solutions for linear regression can be formulated similarly in terms of a pair of scalar susceptibilities that are
analogous to χ and ν (see Sec. S1F of Ref. [5]).

In each model, a subset of the scalar susceptibilities diverges wherever two different sets of solutions meet, indicating the
existence of a second-order phase transition. For the random nonlinear features model, these susceptibilities are (to leading order
in small λ)

χ =
{

1 − αp

λ

2σ 2
δz

αp

(αp−1) [1 − (1 + �ϕ)α f + √
[1 − (1 + �ϕ)α f ]2 + 4�ϕα f ]

if Np < M

if Np > M
, (A3)

ν =
⎧⎨
⎩

1
2σ 2

δz

1
(1−αp) [αp − (1 + �ϕ)α f + √

[αp − (1 + �ϕ)α f ]2 + 4�ϕα f αp]

1
λ

(αp−1)
αp

+ 1
2σ 2

δz

1
(αp−1) [1 − (1 + �ϕ)α f + √

[1 − (1 + �ϕ)α f ]2 + 4�ϕα f ]

if Np < M

if Np > M
, (A4)

κ = 1

1 + σ 2
X σ 2

W α−1
f χν

, ω = σ 2
X α−1

f χκ, φ = −σ 2
W νκ. (A5)

We plot these analytic forms for χ , ν and κ in Fig. 6.
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