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S1. CAVITY DERIVATIONS

In this section, we provide detailed derivations of all closed-form solutions for both models. We begin by setting
up the theoretical framework and providing some useful approximations before deriving solutions for our two models.
These calculations follow the general procedure laid out in Ref. 49.

A. Notation Conventions

• We define M as the number of points in the training data set, Nf as the number of input features, and Np as
the number of fit parameters/hidden features. We define the ratios αf = Nf/M and αp = Np/M .

• Unless otherwise specified, the type of symbol used for an index label (e.g., ∆ya) or as a summation index (e.g.,∑
a) implies its range. The symbols a, b, or c imply ranges over the training data points from 1 to M , the

symbols j, k, or l imply ranges over the input features from 1 to Nf , and the symbols J , K, or L imply ranges
over the fit parameters/hidden features from 1 to Np.

• The notation Ex[·], Varx[·] and Covx[·, ·] represent the mean, variance, and covariance, respectively, with respect
to one or more random variables x. A lack of subscript implies averages taken with respect to the total ensemble
distribution, i.e., taken over all possible sources of randomness. A subscript 0 implies averages taken with
respect to random variables containing one or more 0-valued indices (e.g., Xa0, X0j , W0J , or Wj0).

• We use the notation O(·) to represent standard “Big-O” notation, indicating an upper bound on the limiting
scaling behavior of a quantity with respect to the argument.

B. Theoretical Setup

For completeness, we begin by reproducing some of our theoretical setup from the main text. We consider data
points (y, ~x), each consisting of a label y and a vector ~x of Nf input features. The labels are related to the input
features via the teacher model

y(~x) = y∗(~x; ~β) + ε, (S1)

where ε is the label noise and y∗(~x; ~β) are the true labels which depend on a vector ~β of “ground truth” parameters. We
consider features and label noise that are independently and identically distributed, drawn from a normal distributions
with zero mean and variances σ2

X/Nf and σ2
ε , respectively, so that

E[xa,j ] = 0, Cov[xa,j , xb,k] =
σ2
X

Nf
δabδjk (S2)

E[εa] = 0, Cov[εa, εb] = σ2
εδab (S3)

for two data points ~xa and ~xb with label noise εa and εb.
We also restrict ourselves to a tacher model of the form

y∗(~x; ~β) =
σβσX
〈f ′〉 f

(
~x · ~β
σXσβ

)
(S4)

where the function f is an arbitrary nonlinear function and 〈f ′〉 = 1√
2π

∫∞
−∞ dhe−

h2

2 f ′(h) with prime notation used

to indicate a derivative. We assume the ground truth parameters are independent of all other random parameters
and are also normally distributed with zero mean and variance σ2

β ,

E[βk] = 0, Cov[βj , βk] = σ2
βδjk. (S5)

We consider a training set of M data points, D = {(yb, ~xb)}Mb=1. We organize each input feature vector into the
rows of an observation matrix X of size M ×Nf .

We consider a linear student model,

ŷ(~x) = ~z(~x) · ŵ, (S6)



3

where ŵ is a vector of Np fit parameters. The values of the fit parameters are determined by minimizing the loss
function

L(ŵ) =
1

2

∑
b

∆y2
b +

λ

2

∑
K

ŵ2
K , (S7)

where we have defined the residual label error as ∆ya = ya − ŷa. Taking the gradient of the loss with respect to the
fit parameters and setting it to zero results in a system of Np equations for the Np fit parameter,

0 =
∂L(ŵ)

∂ŵJ
= −

∑
b

∆ybZbJ + λŵJ . (S8)

Note that the regularization term ensures that this system of equations always has a unique solution.

C. Central Limit Approximation

Frequently in these derivations, we encounter large sums of statistically independent random variables. In the
thermodynamic limit, we utilize the central limit theorem to approximate these sums as a single random variable
defined by only a mean and a variance. Here, we derive expressions for the approximate forms of three different types
of sums that will be needed. In the following derivations N and N ′ are considered to be thermodynamically large
variables.

First, we define a length-N vector ~a of random variables aj that are normally distributed with zero mean and
variance σ2

a/N ,

E[aj ] = 0, Cov[aj , ak] =
σ2
a

N
δjk. (S9)

The first sum we approximate is the dot product ~c·~a where ~c is a length-N vector with elements cj that are independent
of ~a. In the thermodynamic limit, this sum approximates to∑

k

ckak ≈ σz, σ2 =
σ2
a

N

∑
k

c2k, (S10)

where z is a normally distributed variable with zero mean and unit variance. To derive this we simply evaluate the
mean and variance of this sum with respect to ~a,

E~a

[∑
k

ckak

]
=
∑
k

xkE~a[ak] = 0 (S11)

Var~a

[∑
k

ckak

]
=
∑
k

c2kVar~a[ak] =
σ2
a

N

∑
k

c2k. (S12)

The second sum we consider is the product ~aTA~a, where A is an N ×N matrix whose elements are independent of
~a, ∑

jk

Ajkajak ≈
σ2
a

N

∑
k

Akk. (S13)

To derive this, we evaluate the mean of this sum with respect to ~a to be

E~a

∑
jk

Ajkajak

 =
∑
jk

AjkE~a[ajak] =
σ2
a

N

∑
k

Akk. (S14)

To calculate the variance, we use Wick’s theorem to derive the fourth moment of the elements of ~a,

E[ajakalam] = σ4
a(δjkδlm + δjlδkm + δjmδkl). (S15)
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Applying this identity, we find the variance to be

Var~a

∑
jk

Ajkajak

 =
∑
jklm

AjkAlmCov~a[ajak, alam]

=
∑
jklm

AjkAlm(E~a[ajakalam]− E~a[ajak]E~a[alam])

= 2
σ4
a

N2

∑
jk

A2
jk

= 2
σ4
a

N2

∑
i

σ2
i

≈ O
(

1

N

)
.

(S16)

In the second-to-last line, we have rewritten the trace over ATA in terms of the eigenvalues σi of A. If each eigenvalue
is O(1), then the total variance is O(1/N) and can be neglected.

For the third sum, we define an additional vector ~b of length N ′ whose elements bJ are independent of ~a with zero
mean and variance σ2

b/N
′,

E[bJ ] = 0, Cov[bJ , bK ] =
σ2
b

N ′
δJK . (S17)

The third sum we approximate is the product ~aTB~b, where B is a N × N ′ rectangular matrix whose elements are

independent of both ~a and ~b, ∑
jK

BjKajbK ≈ 0. (S18)

To derive this, we take the mean with respect to both ~a and ~b,

E~a,~b

∑
jK

BjKajbK

 =
∑
jK

BjKE~a[aj ]E~b[bK ] = 0, (S19)

and also evaluate the variance to be

Var~a,~b

∑
jK

BjKajbK

 =
∑
jKlM

BjKBlMCov~a,~b[ajbK , albM ]

=
∑
jKlM

BjKBlM
(
E~a[ajal]E~b[bKbM ]− E~a[aj ]E~b[bK ]E~a[al]E~b[bM ]

)
=
σ2
aσ

2
b

NN ′

∑
jK

B2
jK

=
σ2
aσ

2
b

NN ′

∑
i

σ2
i

≈ O
(

1

N

)
.

(S20)

Analogous to the variance of the previous sum, in the second-to-last line we have decomposed B in terms of its singular
values σi. If each singular value of O(1), then the total variance is O(1/N) and can be neglected. Since the mean is
also zero, we find that all sums of this form can be ignored in the thermodynamic limit.

D. Nonlinear Function Statistics

Here, we show how the labels and hidden features can each be decomposed into linear and nonlinear components
that are statistically independent of one another. We also derive the statistical properties of the resulting nonlinear
components.
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1. Integral Identities

First, we derive some useful integral identities for the expectation values of the nonlinear functions encountered in
this work. In this section, we consider input features that are correlated, but collectively follow a multivariate normal
distribution with mean zero and covariance matrix Σ~x,

E[~x] = 0, Cov[~x, ~xT ] = Σ~x, (S21)

where the covariance is normalized so that Tr Σ~x = σ2
X . Throughout the rest this work, we usually consider indepen-

dent input features where Σ~x =
σ2
X

Nf
INf . We also define a pair of random vectors ~a and ~b, each of length Nf , whose

elements are independent of ~x with mean and variances

E[aj ] = 0, Cov[aj , ak] = σ2
aδjk

E[bj ] = 0, Cov[bj , bk] = σ2
bδjk

Cov[aj , bk] = 0.

(S22)

Defining g(h) as an arbitrary function and taking the thermodynamic limit, we will utilize the following three approx-
imate identities:

E~x

[
g

(
~x · ~a
σXσa

)]
≈ 〈g〉 (S23)

E~x

[
~xg

(
~x · ~a
σXσa

)]
≈ Σ~x~a

σXσa
〈g′〉 (S24)

E~x

[
g

(
~x · ~a
σXσa

)
g

(
~x · ~b
σXσb

)]
≈ 〈g〉2 ≈ E~x

[
g

(
~x · ~a
σXσa

)]
E~x

[
g

(
~x · ~b
σXσb

)]
, (S25)

where we have defined the integrals

〈g〉 =
1√
2π

∫
dhe−

h2

2 g(h), 〈g′〉 =
1√
2π

∫
dhe−

h2

2 g′(h). (S26)

Each of the above averages is evaluated with respect to the distribution of input features, where we define the
differential over all elements of a vector of input features ~x as,

D~x =
d~x√

(2π)Nf det Σ~x
e−

1
2
~xTΣ−1

~x
~x. (S27)

Next, we derive the identity in Eq. (S23),

E~x

[
g

(
~x · ~a
σXσa

)]
=

∫
D~xg

(
~x · ~a
σXσa

)
=

∫
D~xdhg(h)δ

(
h− ~x · ~a

σXσa

)
=

∫
D~xdh

dh̃

2π
g(h)e

ih̃
(
h− ~x·~a

σXσa

)

=

∫
dh

dh̃

2π
g(h)eih̃h

∫
d~x√

(2π)Nf det Σ~x
e
− 1

2
~xTΣ−1

~x
~x−ih̃ ~x·~a

σXσa

=

∫
dh

dh̃

2π
g(h)e

ih̃h− h̃2

2

~aTΣ~x~a

σ2
X
σ2
a .

(S28)

At this point, we approximate the sum in the exponential using the central limit theorem. With proper rescaling, we
apply Eq. (S13) to find

~aTΣ~x~a

σ2
Xσ

2
a

=
1

σ2
Xσ

2
a

∑
jk

(NfΣ~x,jk)

(
aj√
Nf

)(
ak√
Nf

)
≈ 1, (S29)
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where we have identified NfΣ~x and aj/
√
Nf with Ajk and aj , respectively, in Eq. (S10). Using this approximation,

we proceed to find

E~x

[
g

(
~x · ~a
σXσa

)]
≈
∫

dh
dh̃

2π
g(h)eih̃h−

h̃2

2

=
1√
2π

∫
dhe−

h2

2 g(h)

= 〈g〉 .

(S30)

To derive the remaining two identities in Eqs. (S24) and (S25), we follow analogous derivations. In particular,

we note that Eq. (S25) implies that the two functions g
(

~x·~a
σXσa

)
and g

(
~x·~b
σXσb

)
are statistically independent from one

another in the thermodynamic limit.

2. Label Decomposition

By defining the ground truth parameters as shown below, we are able to decompose the labels into linear and
nonlinear components,

y(~x) = ~x · ~β + δy∗NL(~x) + ε, ~β ≡ Σ−1
~x Cov~x[~x, y∗(~x)], (S31)

where δy∗NL(~x) ≡ y∗(~x) − ~x · ~β and the covariance matrix of the input features Σ~x = Cov~x[~x, ~xT ] is assumed to be
invertible.

We prove that the linear and nonlinear terms are statistically independent with respect the input features ~x as
follows:

Cov~x[~x · ~β, δy∗NL(~x)] = Cov~x[~x · ~β, y(~x)− ~x · ~β]

= ~β · Cov~x[~x, y(~x)]− ~β · Cov~x[~x, ~xT ]~β

= ~β · Σ~x~β − ~β · Σ~x~β
= 0.

(S32)

Furthermore, we can show that the ground truth parameters as defined in Eq. (S31) coincide with those of the
teacher model,

y∗(~x) =
σβσX
〈f ′〉 f

(
~x · ~β
σXσβ

)
. (S33)

To do this, we evaluate the covariance in Eq. (S31) and use the identity in Eq. (S24) to find

~β = Σ−1
~x Cov~x[~x, y∗(~x)]

= Σ−1
~x

σβσX
〈f ′〉 E~x

[
~xf

(
~x · ~β
σXσβ

)]

≈ Σ−1
~x

σβσX
〈f ′〉

Σ~x~β

σXσβ
〈f ′〉

= ~β.

(S34)

So we see that the definitions are consistent with one another.
Next, we calculate the variance of the nonlinear components of the labels δy∗NL(~x). To do this, we first calculate

the mean of the squared true labels using the identity in Eq. (S23),

E~x
[
(y∗(~x))2

]
=
σ2
βσ

2
X

〈f ′〉2
E~x

f( ~x · ~β
σXσβ

)2
 ≈ σ2

βσ
2
X

〈f2〉
〈f ′〉2

. (S35)
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Using this result and the fact that the linear and nonlinear components of the labels are independent, we find the
variance of the nonlinear components in the thermodynamic limit to be

Var~x[δy∗NL(~x)] = σ2
βσ

2
X

〈f2〉 − 〈f ′〉2

〈f ′〉2
. (S36)

Furthermore, it is clear that the nonlinear components for two independent data points ~xa and ~xb will also be
independent.

Since there are no other random variables present in the above variance, we summarize the statistical properties of
the nonlinear components of the labels for independent data points ~xa and ~xb with full ensemble averages, giving us

E[δy∗NL(~xa)] = 0, Cov[δy∗NL(~xa), δy∗NL(~xb)] = σ2
δy∗δab, (S37)

where we have defined the variance σ2
δy∗ of the nonlinear components as

σ2
δy∗ = σ2

βσ
2
X∆f, ∆f =

〈f2〉 − 〈f ′〉2

〈f ′〉2

〈f2〉 =
1√
2π

∞∫
−∞

dhe−
h2

2 f2(h), 〈f ′〉 =
1√
2π

∞∫
−∞

dhe−
h2

2 f ′(h).

(S38)

3. Hidden Feature Decomposition

Similar to the decomposition of the labels, we decompose the hidden features into linear and nonlinear components
that are statistically independent with respect to the input features by defining W as follows:

~z(~x) =
µZ√
Np

~1 +WT~x + δ~zNL(~x), W ≡ Σ−1
~x Cov~x[~x,~zT (~x)], (S39)

where we have defined the nonlinear component as δ~zNL(~x) ≡ ~z(~x)− µZ√
Np
~1−WT~x. We have also defined the mean

as µz/
√
Np~1 where ~1 is a length-Np vector of ones.

We prove that the linear and nonlinear terms are statistically independent with respect to the input features ~x as
follows:

Cov~x[WT~x, δ~zNL(~x)T ] = Cov~x[WT~x,~zT (~x)− µZ√
Nf

~1T − ~xTW ]

= WTCov~x[~x,~zT (~x)]− µZ√
Np

WTCov~x[~x, ~1T ]−WTCov~x[~x, ~xT ]W

= WTΣ~xW −WTΣ~xW

= 0.

(S40)

We also show that W as defined in Eq. (S39) coincides with that in the definition of the hidden features,

~z(~x) =
1

〈ϕ′〉
σWσX√
Np

ϕ

( √
Np

σWσX
WT~x

)
. (S41)

As in the previous section, we evaluate the covariance in Eq. (S39) and use the identity in Eq. (S24) to find

W = Σ−1
~x Cov~x[~x,~zT (~x)]

= Σ−1
~x

1

〈ϕ′〉
σWσX√
Np

E~x

[
~xϕ

( √
Np

σWσX
~xTW

)]

≈ Σ−1
~x

1

〈ϕ′〉
σWσX√
Np

√
Np

σWσX
Σ~xW 〈ϕ′〉

= W.

(S42)
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So we see that the definitions are consistent with one another.
Next, we calculate the covariance of the nonlinear components of the hidden features δ~zNL(~x) with respect to

the full ensemble distribution. To do this, we first calculate the mean of each hidden feature using the identity in
Eq. (S23),

E~x[zJ(~x)] =
1

〈ϕ′〉
σWσX√
Np

E~x

[
ϕ

( √
Np

σWσX

∑
k

WkJxk

)]
≈ σWσX√

Np

〈ϕ〉
〈ϕ′〉 , (S43)

from which we see that

µz = σWσX
〈ϕ〉
〈ϕ′〉 . (S44)

Similarly, we calculate the mean of the square of each hidden feature,

E~x
[
z2
J(~x)

]
=

1

〈ϕ′〉2
σ2
Wσ

2
X

Np
E~x

[
ϕ2

( √
Np

σWσX

∑
k

WkJxk

)]
≈ σ2

Wσ
2
X

Np

〈ϕ2〉
〈ϕ′〉2

. (S45)

Using these two results and the independence of the linear and nonlinear components of the hidden features, we
calculate the variance of the nonlinear component of each hidden feature to be

Var~x[δzNL,J(~x)] =
σ2
Wσ

2
X

Np

〈ϕ2〉 − 〈ϕ〉2 − 〈ϕ′〉2

〈ϕ′〉2
. (S46)

Finally, we calculate the mean of the product of two different hidden features J 6= K for the same input features
using the identity in Eq. (S25),

E~x[zJ(~x)zK(~x)] ≈ E~x[zJ(~x)]E~x[zK(~x)]. (S47)

We observe that different hidden features are independent in the thermodynamic limit.
Since there are no other random variables present in any of the formulas, we summarize the statistical properties of

the nonlinear components of the hidden features for independent data points ~xa and ~xb with full ensemble averages,
giving us

E[δzNL,J(~xa)] = 0, Cov[δzNL,J(~xa), δzNL,K(~xb)] =
σ2
δz

NP
δabδJK , (S48)

where we have defined the variance σ2
δz of the nonlinear components as

σ2
δz = σ2

Wσ
2
X∆ϕ, ∆ϕ =

〈ϕ2〉 − 〈ϕ〉2 − 〈ϕ′〉2

〈ϕ′〉2

〈ϕ〉 =
1√
2π

∞∫
−∞

dhe−
h2

2 ϕ(h), 〈ϕ2〉 =
1√
2π

∞∫
−∞

dhe−
h2

2 ϕ2(h), 〈ϕ′〉 =
1√
2π

∞∫
−∞

dhe−
h2

2 ϕ′(h).

(S49)

E. General Solutions

Next, we derive the forms of the general solutions reported in Eq. (18)-(21) in the results section of the main text.
First, we consider the training error. Recall this error takes the form

Etrain =
1

M

∑
b

(∆yb)
2
. (S50)

Taking the ensemble average, we express the training error as

〈Etrain〉 = 〈∆y2〉 , (S51)
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where we have defined the mean of the squared label errors as

〈∆y2〉 = E

[
1

M

∑
b

∆y2
b

]
. (S52)

Next, we consider the test error, bias and variance. To evaluate these quantities, we first decompose the predicted
label for an arbitrary test data point (y, ~x) using the hidden feature decomposition in Eq. (S39),

ŷ(~x) = ~x · β̂ +
µZ√
Np

∑
J

ŵJ + δ~zNL(~x) · ŵ, (S53)

where we have defined the estimated ground truth parameters β̂ ≡W ŵ. It is interesting to note that we can identify

a definition for these parameters analagous to those of the ground truth parameters ~β in Eq. (S31),

β̂ ≡ Σ−1
~x Cov~x[~x, ŷ(~x)]. (S54)

Because we consider data with labels that have zero mean, the label predictions should also have zero mean with
respect to ~x. Therefore, if the first and last terms in Eq. (S53) each have zero mean with respect to ~x, the second
term should evaluate to zero to ensure ŷ(~x) overall has zero mean. For linear regression, this is clearly the case since
µZ = 0, but we will later prove that

∑
J ŵJ = 0 for the random nonlinear features model. For now, we will neglect

this term for the remainder of this section.
We evaluate the test error on a data set, D′ = {(y′b, ~x′b)}M

′

b=1, sampled independently from the same distribution as
the training set. Recall that the test error is defined as

Etest =
1

M ′

∑
b

(∆y′b)
2
, (S55)

where the sum ranges from 1 to M ′. We note that the residual label error of each test data point is described by
the same distribution in the ensemble. Therefore, once we have taken the average over the test data, the test error
can be expressed as an average over a single arbitrary test data point (y, ~x). Using this fact and applying the label
decomposition in Eq. (S31) and the predicted label decomposition in Eq. (S53), we find

ED′ [Etest] = E(y,~x)

[
(y(~x)− ŷ(~x))

2
]

= E(y,~x)

[(
~x ·∆~β − δ~zNL(~x) · ŵ + δy∗NL(~x) + ε

)2
]

=
σ2
X

Nf

∑
k

∆β2
k +

σ2
δz

Np

∑
K

ŵ2
K + σ2

δy∗ + σ2
ε .

(S56)

Next, we apply the remainder of the ensemble average to find

〈Etest〉 = σ2
X 〈∆β2〉+ σ2

δz 〈ŵ2〉+ σ2
δy∗ + σ2

ε , (S57)

where we have defined the average of the squared parameter errors and squared fit parameters, respectively, as

〈∆β2〉 = E

[
1

Nf

∑
k

∆β2
k

]
, 〈ŵ2〉 = E

[
1

Np

∑
K

ŵ2
K

]
. (S58)

Next, recall that the squared bias is defined as

Bias2[ŷ(~x)] = (ED[ŷ(~x)]− y∗(~x))2. (S59)

Note that averaging over D implies averaging over only the features X and noise ~ε of the training set. In order to
compute this average correctly, we make use of the following trick: we reinterpret the squared average over D as two
separate averages over uncorrelated training data sets. Now, instead of a single regression problem trained on a single
data set D, we consider two separate regression problems each trained independently on different training sets, D1

and D2, drawn from the same distribution with the same ground truth parameters ~β. These regression problems
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will also share all other random variables including the test data point (y, ~x), W , etc. This allows us to express the
squared bias as

Bias2[ŷ(~x)] = ED1,D2
[(y(~x)− ŷ1(~x))(y(~x)− ŷ2(~x))], (S60)

where we use subscripts 1 and 2 to denote quantities that result from training on data sets D1 and D2, respectively.
From here, we average over the test data point to find

E~x
[
Bias2[ŷ(~x)]

]
= E~x,D1,D2

[(ŷ1(~x)− y∗(~x))(ŷ2(~x)− y∗(~x))]

= ED1,D2

[
σ2
X

Nf

∑
k

∆β1,k∆β2,k

]
+ ED1,D2

[
σ2
δz

Np

∑
K

ŵ1,Kŵ2,K

]
+ σ2

δy∗ .
(S61)

Next, we average over the remainder of the ensemble variables, giving us

〈Bias2[ŷ(~x)]〉 = σ2
X 〈∆β1∆β2〉+ σ2

δz 〈ŵ1ŵ2〉+ σ2
δy∗ , (S62)

where we have defined the quantities,

〈∆β1∆β2〉 = E

[
1

Nf

∑
k

∆β1,k∆β2,k

]
, 〈ŵ1ŵ2〉 = E

[
1

Np

∑
K

ŵ1,Kŵ2,K

]
. (S63)

To derive the expression for the ensemble-averaged variance, we simply make use of the bias-variance decomposition
in Eq. (17), giving us

〈Var[ŷ(~x)]〉 = 〈Etest〉 − 〈Bias2[ŷ(~x)]〉 −Noise

= σ2
X

(
〈∆β2〉 − 〈∆β1∆β2〉

)
+ σ2

δz

(
〈ŵ2〉 − 〈ŵ1ŵ2〉

)
.

(S64)

Based on these expressions, we find that the training error, test error, bias, and variance depend on five key
ensemble-averaged quantities: 〈∆y2〉, 〈∆β2〉, 〈ŵ2〉, 〈∆β1∆β2〉, and 〈ŵ1ŵ2〉.

F. Linear Regression (No Basis Functions)

In linear regression without basis functions, the hidden features are the same as the input features,

~z(~x) = ~x. (S65)

Using this definition for the hidden features, we decompose the equation for the gradient in Eq. (S8) into three sets
of equations for the fit parameters, residual label errors, and residual parameters errors,

λŵj =
∑
b

∆ybXbj + ηj

∆ya =
∑
k

∆βkXak + δy∗NL(~xa) + εa + ξa

∆βj = βj − ŵj ,

(S66)

where we have also utilized Eq. (S31) to decompose the training labels into linear and nonlinear components. We
have also added small auxiliary fields ηj and ξa to the two equations containing sums. We will use these extra fields
to define perturbations about the solutions to these equations with the intent of setting the fields to zero by the end
of the derivation.

1. Cavity Expansion

Next, we add an additional variable of each type, resulting in a total of M + 1 data points and Nf + 1 features. We
specify each new variable using an index value of 0, giving us the new unknown quantities ŵ0, ∆y0, and ∆β0. These
new variables result in the addition of an extra term in each sum, giving us the equations

λŵj =
∑
b

∆ybXbj + ηj + ∆y0X0j

∆ya =
∑
k

∆βkXak + δy∗NL(~xa) + εa + ξa + ∆β0Xa0.
(S67)
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Each new variable is also described by a new equation,

λŵ0 =
∑
b

∆ybXb0 + η0 + ∆y0X00

∆y0 =
∑
k

∆βkX0k + δy∗NL(~x0) + ε0 + ξ0 + ∆β0X00

∆β0 = β0 − ŵ0.

(S68)

As a reminder, sums always start at an index value of 1. Therefore, we explicitly specify any terms with an index
value of 0.

Now we take the thermodynamic limit in which M and Nf tend towards infinity, but their ratio αf remains fixed.
In this limit, we can interpret the extra terms in Eq. (S67) as small perturbations to the auxiliary fields since they
each contain an element of X which has mean zero and an infinitesimal variance of O(1/Nf ),

δηj = ∆y0X0j , δξa = ∆β0Xa0. (S69)

This allows us to expand each variable about its solution in the absence of the 0-indexed quantities, corresponding to
the solution for M data points and Nf features,

ŵj ≈ ŵj\0 +
∑
k

νŵjkδηk +
∑
b

χŵjbδξb

∆ya ≈ ∆ya\0 +
∑
k

ν∆y
ak δηk +

∑
b

χ∆y
ab δξb

∆βj ≈ ∆βj\0 +
∑
k

ν∆β
jk δηk +

∑
b

χ∆β
jb δξb.

(S70)

We use subscripts with \0 to refer to the unperturbed solutions for each unknown quantity; that is, the solutions in
the absence of the 0-indexed variables. We also define the susceptibility matrices as the following derivatives with
respect to the auxiliary fields:

νŵjk =
∂ŵj
∂ηk

, χŵjb =
∂ŵj
∂ξb

,

ν∆y
ak =

∂∆ya
∂ηk

, χ∆y
ab =

∂∆ya
∂ξb

,

ν∆β
jk =

∂∆βj
∂ηk

, χ∆β
jb =

∂∆βj
∂ξb

.

(S71)

It is useful to note that the susceptibilities for the residual parameter errors are related to those for the fit parameters
via a negative sign,

ν∆β
jk = −νŵjk, χ∆β

jb = −χŵjb. (S72)

Therefore, we replace all susceptibilities for the residual parameter errors with their fit parameter counterparts.
Substituting the expansions in Eq. (S70) into the equations for the 0-indexed variables, Eq. (S68), we arrive at the
following equations:

λŵ0 =
∑
a

(
∆ya\0 +

∑
k

ν∆y
ak δηk +

∑
b

χ∆y
ab δξb

)
Xa0 + η0 +X00∆y0

∆y0 =
∑
j

(
∆βj\0 −

∑
k

νŵjkδηk −
∑
b

χŵjbδξb

)
X0j + δy∗NL(~x0) + ε0 + ξ0 + ∆β0X00.

(S73)

Our next step is to simplify these equations by approximating the sums over large numbers of random variables.

2. Central Limit Approximations

Each of the sums in Eq. (S73) contains a thermodynamically large number of statistically uncorrelated terms. This
means that each sum satisfies the conditions necessary to apply the central limit theorem, allowing us to express
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each in terms of a single normally-distributed random variable described by just its mean and its variance. First, we
approximate the two sums that contain one of the unperturbed unknown quantities, ∆ya\0 or ∆βj\0. In both sums,
the unperturbed quantities are statistically independent of any elements of X with a 0-index such as Xa0 or X0j .
Using this independence, we apply the identity in Eq. (S10) to find∑

b

∆yb\0Xb0 ≈ σŵzŵ, σ2
ŵ = σ2

Xα
−1
f 〈∆y2〉 , 〈∆y2〉 =

1

M

∑
b

∆y2
b\0∑

k

∆βk\0X0k ≈ σ∆yz∆y, σ2
∆y = σ2

X 〈∆β2〉 , 〈∆β2〉 =
1

Nf

∑
k

∆β2
k\0,

(S74)

where σ2
ŵ and σ2

∆y are the total variances of the two sums and zŵ are z∆y are random variables with zero mean and
unit variance. It is straightforward to show that zŵ and z∆y are statistically independent since the two sums are
independent with respect to the zero-indexed elements of X.

Note that we have used the same notation, 〈∆y2〉 and 〈∆β2〉, for the two averages that defined previously in
Sec. S1 E even though they each lack an ensemble average. In doing so, we have made the ansatz that these sums will
converge to their ensemble averages in the thermodynamic limit. This assumption is typical of the cavity method.

Next, we approximate the sums that include either of the square susceptibility matrices, χ∆y
ab or νŵjk. Similar to

the unperturbed unknown quantities, we use the property that the susceptibilities are statistically independent of the
elements of X with 0-valued indices. Applying the identity in Eq. (S13), we find∑

ab

χ∆y
ab Xa0Xb0 ≈ σ2

Xα
−1
f χ, χ =

1

M

∑
b

χ∆y
bb∑

jk

νŵjkX0jX0k ≈ σ2
Xν, ν =

1

Nf

∑
k

νŵkk,
(S75)

where χ and ν can be interpreted as a pair of scalar susceptibilities.
The remainder of the sums contain rectangular susceptibility matrices which follow the form in Eq. (S18). Therefore,

each of these sums is expected to be small in the thermodynamic limit and can be neglected.

3. Self-consistency Equations

Applying the approximations from the previous section to Eq. (S73), we obtain the following set of self-consistency
equations for the 0-indexed variables, ŵ0, ∆y0, and ∆β0:

λŵ0 ≈ σŵzŵ + ∆β0σ
2
Xα
−1
f χ+ η0

∆y0 ≈ σ∆yz∆y −∆y0σ
2
Xν + δy∗NL(~x0) + ε0 + ξ0

∆β0 ≈ β0 − ŵ0.

(S76)

In these equations, we have also dropped terms proportional to X00 since this quantity has zero mean and a variance
which goes to zero in the thermodynamic limit. Next, we solve these three equations for the 0-indexed variables,
giving us

ŵ0 =
β0σ

2
Xα
−1
f χ+ σŵzŵ + η0

λ+ σ2
Xα
−1
f χ

∆y0 =
σ∆yz∆y + δy∗NL(~x0) + ε0 + ξ0

1 + σ2
Xν

∆β0 =
β0λ− σŵzŵ − η0

λ+ σ2
Xα
−1
f χ

.

(S77)

Note that all random variables within each of the above equations are statistically independent from one another.
Next, we make the approximation that in the thermodynamic limit, each of the unknown quantities is “self-

averaging.” In other words, we assume that an average over a set of non-0-indexed variables is equivalent to taking
an ensemble average of the single corresponding 0-indexed variable.
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This allows us to use Eq. (S77) to find a set of self-consistent equations for the scalar susceptibilities by evaluating
the appropriate derivatives with respect to the 0-indexed auxiliary fields and performing ensemble averages,

χ =
1

M

∑
b

χ∆y
bb ≈ E

[
χ∆y

00

]
= E

[
∂∆y0

∂ξ0

]
=

1

1 + σ2
Xν

ν =
1

Nf

∑
k

νŵkk ≈ E
[
νŵ00

]
= E

[
∂ŵ0

∂η0

]
=

1

λ+ σ2
Xα
−1
f χ

.

(S78)

Furthermore, we find the following self-consistent equations for the quantities, 〈ŵ2〉, 〈∆y2〉, and 〈∆β2〉 by taking the
appropriate expectation values of the 0-indexed quantities, plugging in the forms of the scalar susceptibilities, and
setting the auxiliaries fields to zero:

〈ŵ2〉 =
1

Nf

∑
k

ŵ2
k\0 ≈ E

[
ŵ2

0

]
= ν2

(
σ2
βσ

4
Xα
−2
f χ2 + σ2

Xα
−1
f 〈∆y2〉

)
〈∆y2〉 =

1

M

∑
b

∆y2
b\0 ≈ E

[
∆y2

0

]
= χ2

(
σ2
X 〈∆β2〉+ σ2

δy∗ + σ2
ε

)
〈∆β2〉 =

1

Nf

∑
k

∆β2
k\0 ≈ E

[
∆β2

0

]
= ν2

(
σ2
βλ

2 + σ2
Xα
−1
f 〈∆y2〉

)
.

(S79)

Note that we have also defined the mean squared fit parameter size 〈ŵ2〉. In addition, each of the three mean squared
quantities can be interpreted as a full ensemble average. These self-consistent equations, along with those for the
scalar susceptibilities, capture almost all behavior of our model of linear regression in the thermodynamic limit.

4. Solutions with Finite Regularization (λ ∼ O(1))

Next, we derive the solutions when the regularization parameter λ is finite. By combing the two scalar susceptibilities
in Eq. (S78), we find a quadratic equation for χ,

χ2 +
[
(αf − 1) + λ̄αf

]
χ− λ̄αf = 0, (S80)

where we have defined the dimensionless regularization parameter

λ̄ =
λ

σ2
X

. (S81)

Solving Eq. (S80), we find two solutions:

χ =
1

2

[
1− αf

(
1 + λ̄

)
±
√[

1− αf
(
1 + λ̄

)]2
+ 4αf λ̄

]
. (S82)

Using these solutions we can also find similar solutions for ν. Next, we solve Eq. (S79) to find closed-form solutions
for 〈ŵ2〉, 〈∆y2〉, and 〈∆β2〉: 〈ŵ2〉

〈∆y2〉
〈∆β2〉

 =

1 −σ2
Xα
−1
f ν2 0

0 1 −σ2
Xχ

2

0 −σ2
Xα
−1
f ν2 1

−1σ2
βσ

4
Xα
−2
f χ2ν2

(σ2
ε + σ2

δy∗)χ
2

λ̄2σ2
βσ

2
Xν

2

. (S83)

In combination with the solutions for χ and ν, these solutions are exact in the thermodynamic limit.

5. Solutions in Ridge-less Limit (λ→ 0)

In order to make the solutions in the previous section easier to interpret, we take the ridge-less limit where λ→ 0.
Based on the form of Eq. (S80), we make the ansatz that the lowest order contribution to χ is O(1) in small λ̄.
Accordingly, we expand χ in small λ̄ up to O(λ̄) as

χ ≈ χ0 + λ̄χ1. (S84)
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Substituting this approximation into the formula for χ in Eq. (S80), we find the following equation at O(1):

0 = χ2
0 + (αf − 1)χ0. (S85)

Solving this equation, we find two solutions for χ0,

χ
(1)
0 = 1− αf , χ

(2)
0 = 0. (S86)

We label each set of solutions for all quantities with a superscript (1) or (2). These two solutions correspond to the
two solutions in the exact formula for χ in Eq. (S82). Next, we collect terms in Eq. (S80) at O(λ̄),

0 = 2χ0χ1 + (αf − 1)χ1 + αf (χ0 − 1). (S87)

Solving, we obtain an equation for χ1 in terms of χ0,

χ1 =
αf (1− χ0)

2χ0 + αf − 1
. (S88)

Combining this equation with χ
(2)
0 = 0, we obtain the leading order term for solution (2),

χ
(2)
1 =

αf
αf − 1

. (S89)

Next, we solve for the two solutions for ν. By inspecting the equation for ν in terms of χ in Eq. (S78), we make
the ansatz that the lowest contribution of ν is O(1/λ),

ν ≈ 1

λ̄
ν−1 + ν0. (S90)

Substituting the solutions for χ0 and χ1 into the equation for ν, we find that the solutions for ν−1 are

ν
(1)
−1 = 0, ν

(2)
−1 =

1

σ2
X +

σ2
X

αf
χ1

=
1

σ2
X

αf − 1

αf
. (S91)

Since ν
(1)
−1 is zero, we also solve for the next order term for solution (1),

ν
(1)
0 =

1

σ2
X

αf
(1− αf )

. (S92)

For completion, we also find that we can continue with this procedure to derive

ν
(2)
0 =

1

σ2
X

1

(αf − 1)
. (S93)

We also expand each of the ensemble-averaged quantities 〈ŵ2〉, 〈∆y2〉, and 〈∆β2〉 in small λ̄. We make the ansatz
that each of these quantities is O(1) to lowest order with the next terms in the expansion at O(λ̄2):

〈ŵ2〉 ≈ 〈ŵ2〉0 + λ̄2 〈ŵ2〉2
〈∆y2〉 ≈ 〈∆y2〉0 + λ̄2 〈∆y2〉2
〈∆β2〉 ≈ 〈∆β2〉0 + λ̄2 〈∆β2〉2 .

(S94)

Solution (1): For the first set of solutions, the self-consistent equations, Eq. (S79), to lowest order, are

〈ŵ2〉(1)
0 = (ν

(1)
0 )2

[
σ2
βσ

4
Xα
−2
f (χ

(1)
0 )2 + σ2

Xα
−1
f 〈∆y2〉(1)

0

]
〈∆y2〉(1)

0 = (χ
(1)
0 )2

[
σ2
X 〈∆β2〉(1)

0 + σ2
δy∗ + σ2

ε

]
〈∆β2〉(1)

0 = (ν
(1)
0 )2σ2

Xα
−1
f 〈∆y2〉(1)

0 .

(S95)

Substituting the solutions for the susceptibilities into these equations and solving, we find

〈ŵ2〉(1)
0 = σ2

β +
1

σ2
X

(σ2
ε + σ2

δy∗)
αf

(1− αf )

〈∆y2〉(1)
0 = (σ2

ε + σ2
δy∗)(1− αf )

〈∆β2〉(1)
0 =

1

σ2
X

(σ2
ε + σ2

δy∗)
αf

(1− αf )
.

(S96)
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Solution (2): For the second set of solutions, the self-consistent equations to lowest order, are

〈ŵ2〉(2)
0 = (ν

(2)
−1)2

[
σ2
βσ

4
Xα
−2
f (χ

(2)
1 )2 + σ2

Xα
−1
f 〈∆y2〉(2)

2

]
〈∆y2〉(2)

0 = 0

〈∆β2〉(2)
0 = (ν

(2)
−1)2

[
σ2
βσ

4
X + σ2

Xα
−1
f 〈∆y2〉(2)

2

]
.

(S97)

We see that we also need the solution for 〈∆y2〉 to next lowest order,

〈∆y2〉(2)
2 = (χ

(2)
1 )2

[
σ2
X 〈∆β2〉(2)

0 + σ2
δy∗ + σ2

ε

]
. (S98)

Substituting the solutions for the susceptibilities into these equations and solving, we find

〈ŵ2〉(2)
0 = σ2

β

1

αf
+

1

σ2
X

(σ2
ε + σ2

δy∗)
1

(αf − 1)

〈∆y2〉(2)
2 = σ2

βσ
2
X

αf
(αf − 1)

+ (σ2
ε + σ2

δy∗)
α3
f

(αf − 1)3

〈∆β2〉(2)
0 = σ2

β

(αf − 1)

αf
+

1

σ2
X

(σ2
ε + σ2

δy∗)
1

(αf − 1)
.

(S99)

Combined solutions: To determine when each of the two solutions applies, we use the fact that each of the ensemble-
averaged quantities 〈ŵ2〉, 〈∆y2〉, and 〈∆β2〉 must always be positive by definition. Imposing this constraint, we find
that solution (1) only applies when αf < 1, while solution (2) only applies when αf > 1. Combining these solutions,
we arrive at the final forms for the three ensemble-averaged quantities in the λ→ 0 limit,

〈ŵ2〉 =

 σ2
β +

(σ2
ε+σ2

δy∗ )

σ2
X

αf
(1−αf ) if Nf < M

σ2
β

1
αf

+
(σ2
ε+σ2

δy∗ )

σ2
X

1
(αf−1) if Nf > M

〈∆y2〉 =

{
(σ2
ε + σ2

δy∗)(1− αf ) if Nf < M

λ2

σ4
X

[
σ2
βσ

2
X

αf
(αf−1) + (σ2

ε + σ2
δy∗)

α3
f

(αf−1)3

]
if Nf > M

〈∆β2〉 =


(σ2
ε+σ2

δy∗ )

σ2
X

αf
(1−αf ) if Nf < M

σ2
β

(αf−1)
αf

+
(σ2
ε+σ2

δy∗ )

σ2
X

1
(αf−1) if Nf > M.

(S100)

For completeness, we also report solutions for the two scalar susceptibilities,

χ =

{
1− αf if Nf < M
λ
σ2
X

αf
(αf−1) if Nf > M , ν =

{
1
σ2
X

αf
(1−αf ) if Nf < M

1
λ

(αf−1)
αf

+ 1
σ2
X

1
(αf−1) if Nf > M.

(S101)

Finally, we use these expressions to derive the training and test error according to the general solutions in Eqs. (S51)
and (S57),

〈Etrain〉 =

{
(σ2
ε + σ2

δy∗)(1− αf ) if Nf < M

λ2

σ4
X

[
σ2
βσ

2
X

αf
(αf−1) + (σ2

ε + σ2
δy∗)

α3
f

(αf−1)3

]
if Nf > M

(S102)

〈Etest〉 =

{
(σ2
ε + σ2

δy∗)
1

(1−αf ) if Nf < M

σ2
βσ

2
X

(αf−1)
αf

+ (σ2
ε + σ2

δy∗)
αf

(αf−1) if Nf > M.
(S103)

6. Bias-Variance Decomposition

Next, we derive the bias and variance. According to the general solutions in Eqs. (S62) and (S64), we only require
the quantity 〈∆β1∆β2〉 since σ2

δz = 0. To find 〈∆β1∆β2〉, we use the formula for ∆β0 in Eq. (S77) to characterize
its behavior when trained separately on two independent training sets, D1 and D2,

∆β1,0 = ν(β0λ− σŵzŵ1
)

∆β2,0 = ν(β0λ− σŵzŵ2
).

(S104)
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As a reminder, we use subscripts 1 and 2 to denote quantities that depend on one of the training sets. Note that while
the random variables zŵ1

and zŵ2
are defined separately for the two regression problems, both equations share the

same β0. Multiplying these two equations together and using the self-averaging approximation, we find an expression
for 〈∆β1∆β2〉,

〈∆β1∆β2〉 =
1

Nf

∑
k

∆β1,k∆β2, ≈ E[∆β1,0∆β2,0] = ν2
(
σ2
βλ

2 + E
[
σ2
ŵzŵ1

zŵ2

])
. (S105)

Next, we calculate the expectation value of the product zŵ1
zŵ2

and find that it evaluates to zero as a result of the
statistical independence of the two design matrices, X1 and X2,

E
[
σ2
ŵzŵ1

zŵ2

]
≈ E

[∑
ab

∆y1,a\0∆y2,b\0X1,a0X2,b0

]
=
∑
ab

E
[
∆y1,a\0∆y2,b\0

]
E[X1,a0X2,b0]

= 0.

(S106)

Substituting this solution into Eq. (S105), we find an expression for 〈∆β1∆β2〉,

〈∆β1∆β2〉 = σ2
βλ

2ν2. (S107)

Inserting the solutions for ν, we find in the λ→ 0 limit that

〈∆β1∆β2〉 =


λ2

σ2
X
σ2
β

α2
f

(1−αf )2 if Nf < M

σ2
β

(αf−1)2

α2
f

if Nf > M.
(S108)

From this, we arrive at the final expressions for the model bias and variance in the λ→ 0 limit,

〈Bias2[ŷ(~x)]〉 =

{
σ2
δy∗ if Nf < M

σ2
βσ

2
X

(αf−1)2

α2
f

+ σ2
δy∗ if Nf > M

〈Var[ŷ(~x)]〉 =

{
(σ2
ε + σ2

δy∗)
αf

(1−αf ) if Nf < M

σ2
βσ

2
X

(αf−1)

α2
f

+ (σ2
ε + σ2

δy∗)
1

(αf−1) if Nf > M.

(S109)

G. Random Nonlinear Features Model (Two-layer Nonlinear Neural Network)

In the random nonlinear features model, the student model takes the form

~z(~x) =
1

〈ϕ′〉
σWσX√
Np

ϕ

( √
Np

σWσX
WT~x

)
, (S110)

where the elements of the random transformation matrix W are identically and independently distributed, drawn
from a normal distribution with zero mean and variance σ2

W /Np,

E[WjJ ] = 0, Cov[WjJ ,WkK ] =
σ2
W

Np
δjkδJK . (S111)

We also assume that the elements of W are statistically independent of the ground truth parameters ~β, the label noise
~ε, the features X, etc.

For this model, we again decompose the equation for the gradient in Eq. (S62) for the above set of hidden features.
To perform the cavity method, our aim is to construct a set of equations that are linear in the random matrices W
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and X. This results in four different sets of linear equations,

λŵJ =
√
Mα

− 1
2

p µz 〈∆y〉+
∑
k

ûkWkJ +
∑
b

∆ybδzNL,J(~xb) + ηJ

ûj =
∑
b

∆ybXbj + ψj

∆ya = −
√
Npµz 〈ŵ〉+

∑
k

∆βkXak −
∑
K

ŵKδzNL,K(~xa) + δy∗NL(~xa) + εa + ξa

∆βj = βj −
∑
K

ŵKWjK + ζj ,

(S112)

where we have decomposed the training labels according to Eq. (S31) and the hidden features according to Eq. (S39).
We have also added a different auxiliary field to each equation and have defined the means of the residual label errors
and fit parameter, respectively, as

〈∆y〉 =
1

M

∑
b

∆yb, 〈ŵ〉 =
1

Np

∑
K

ŵK . (S113)

Furthermore, we have included an additional set of variables û = XT∆~y, which we will also have to solve for to obtain
closed form solutions.

1. Cavity Expansion

Next, we add an additional variable of each type, resulting in a total of M + 1 data points, Nf + 1 input features
and Np + 1 fit parameters/hidden features. Each additional variable is represented using an index value of 0, written
as ŵ0, û0, ∆y0, and ∆β0. After including these new unknown quantities, the four equations become

λŵJ =
√
Mα

− 1
2

p 〈∆y〉+
∑
k

ûkWkJ +
∑
b

∆ybδzNL,J(~xb) + ηJ + û0W0J + ∆y0δzNL,J(~x0)

ûj =
∑
b

∆ybXbj + ψj + ∆y0X0j

∆ya = −
√
Npµz 〈ŵ〉+

∑
k

∆βkXak −
∑
K

ŵKδzNL,K(~xa) + δy∗NL(~xa) + εa + ξa + ∆β0Xa0 − ŵ0δzNL,0(~xa)

∆βj = βj −
∑
K

ŵKWjK + ζj − ŵ0Wj0,

(S114)

with each new variable described by a new equation,

λŵ0 =
√
Mα

− 1
2

p 〈∆y〉+
∑
k

ûkWk0 +
∑
b

∆ybδzNL,0(~xb) + ηJ + û0W00 + ∆y0δzNL,0(~x0)

û0 =
∑
b

∆ybXb0 + ψ0 + ∆y0X00

∆y0 = −
√
Npµz 〈ŵ〉+

∑
k

∆βkX0k −
∑
K

ŵKδzNL,K(~x0) + δy∗NL(~x0) + ε0 + ξ0 + ∆β0X00 − ŵ0δzNL,0(~x0)

∆β0 = β0 −
∑
K

ŵKW0K + ζ0 − ŵ0W00.

(S115)

Now we take the thermodynamic limit in which M , Nf , and Np tend towards infinity, but their ratios, αf = Nf/M
and αp = Np/M , remain fixed. We interpret the extra terms in Eq. (S114) as small perturbations to the auxiliary
fields,

δηJ = û0W0J + ∆y0δzNL,J(~x0), δψj = ∆y0X0j ,

δξa = ∆β0Xa0 − ŵ0δzNL,0(~xa), δζj = −ŵ0Wj0,
(S116)
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allowing us to expand each unknown quantity about its solution in the absence of the 0-indexed variables, which
correspond to the solutions for M data points, Nf input features, and Np fit parameters,

ŵJ ≈ ŵJ\0 +
∑
K

νŵJKδηK +
∑
k

φŵJkδψk +
∑
b

χŵJbδξb +
∑
k

ωŵJkδζk

ûj ≈ ûj\0 +
∑
K

νûjKδηK +
∑
k

φûjkδψk +
∑
b

χûjbδξb +
∑
k

ωûjkδζk

∆ya ≈ ∆ya\0 +
∑
K

ν∆y
aKδηK +

∑
k

φ∆y
ak δψk +

∑
b

χ∆y
ab δξb +

∑
k

ω∆y
ak δζk

∆βj ≈ ∆βj\0 +
∑
K

ν∆β
jK δηK +

∑
k

φ∆β
jk δψk +

∑
b

χ∆β
jb δξb +

∑
k

ω∆β
jk δζk.

(S117)

We define each of the susceptibility matrices as a derivative of a variable with respect to an auxiliary fields,

νŵJK =
∂ŵJ
∂ηK

, φŵJk =
∂ŵJ
∂ψk

, χŵJb =
∂ŵJ
∂ξb

, ωŵJk =
∂ŵJ
∂ζk

,

νûjK =
∂ûj
∂ηK

, φûjk =
∂ûj
∂ψk

, χûjb =
∂ûj
∂ξb

, ωûjk =
∂ûj
∂ζk

,

ν∆y
aK =

∂∆ya
∂ηK

, φ∆y
ak =

∂∆ya
∂ψk

, χ∆y
ab =

∂∆ya
∂ξb

, ω∆y
ak =

∂∆ya
∂ζk

,

ν∆β
jK =

∂∆βj
∂ηK

, φ∆β
jk =

∂∆βj
∂ψk

, χ∆β
jb =

∂∆βj
∂ξb

, ω∆β
jk =

∂∆βj
∂ζk

.

(S118)

Next, we substitute the expansions in Eq. (S117) into the 0-indexed equations in Eq. (S115). We then aim to
approximate each of the resulting sums in these expanded equations.

2. Central Limit Approximations

We approximate each of the sums containing one of the unperturbed quantities, ŵJ\0, ûj\0, ∆ya\0, or ∆βj\0, using
the central limit theorem. Because the unperturbed quantities in each of these sums are statistically independent of
all elements of both X and W with a 0-valued index, we are able to apply the identity in Eq. (S10) to find

∑
k

ûk\0Wk0 +
∑
b

∆yb\0δzNL,0(~xb) ≈ σŵzŵ, σ2
ŵ = σ2

W

αf
αp
〈û2〉+ σ2

δzα
−1
p 〈∆y2〉∑

b

∆yb\0Xb0 ≈ σûzû, σ2
û = σ2

Xα
−1
f 〈∆y2〉∑

k

∆βk\0X0k −
∑
K

ŵK\0δzNL,K(~x0) ≈ σ∆yz∆y, σ2
∆y = σ2

X 〈∆β2〉+ σ2
δz 〈ŵ2〉∑

K

ŵK\0W0K ≈ σ∆βz∆β , σ2
∆β = σ2

W 〈ŵ2〉 ,

(S119)

where zŵ, zû, z∆y, and z∆β are all independent random variables with zero mean and unit variance. We also define
the following averages:

〈ŵ2〉 =
1

Np

∑
K

ŵ2
K\0, 〈û2〉 =

1

Nf

∑
k

û2
k\0, 〈∆y2〉 =

1

M

∑
b

∆y2
b\0, 〈∆β2〉 =

1

Nf

∑
k

∆β2
k\0. (S120)

Next, we approximate each of the sums containing a square susceptibility matrix. Using the fact that all of the
susceptibility matrices are statistically independent of all elements of both X, W , and δ~zNL(~x) with a 0-valued index,
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we apply the identity in Eq. (S13) to find

∑
jk

ωûjkWj0Wk0 ≈ σ2
W

αf
αp
ω, ω =

1

Nf

∑
k

ωûkk

∑
ab

χ∆y
ab Xa0Xb0 ≈ σ2

Xα
−1
f χ, χ =

1

M

∑
b

χ∆y
bb∑

jk

φ∆β
jk X0jX0k ≈ σ2

Xφ, φ =
1

Nf

∑
k

φ∆β
kk

∑
JK

νŵJKW0JW0K ≈ σ2
W ν, ν =

1

Np

∑
K

νŵKK .

(S121)

Similarly, we approximate the two additional sums containing the nonlinear components of hidden features,∑
JK

νŵJKδzNL,J(~x0)δzNL,K(~x0) ≈ σ2
δzν∑

ab

χ∆y
ab δzNL,0(~xa)δzNL,0(~xb) ≈ σ2

δzα
−1
p χ,

(S122)

with σδz defined in Eq. (S49).

Finally, each of the remaining sums contains a rectangular susceptibility matrix, so according to the identity in
Eq. (S18), is approximately zero in the thermodynamic limit.

3. Self-consistency Equations

Next, we substitute the expansions in Eq. (S117) into Eq. (S115) and apply the approximations from the previous
sections, resulting in a set of self-consistent equations for ŵ0, û0, ∆y0, and ∆β0,

λŵ0 ≈
√
Mα

− 1
2

p µz 〈y〉+ σŵzŵ − ŵ0

(
σ2
W

αf
αp
ω + σ2

δzα
−1
p χ

)
+ η0

û0 ≈ σûzû + ∆β0σ
2
Xα
−1
f χ+ ψ0

∆y0 ≈ −
√
Npµz 〈ŵ〉+ σ∆yz∆y + ∆y0

(
σ2
Xφ− σ2

δzν
)

+ δy∗NL(~x0) + ε0 + ξ0

∆β0 ≈ β0 − σ∆βz∆β − û0σ
2
W ν + ζ0.

(S123)

We have also made use of the fact that the terms including X00 or W00 are infinitesimally small in the thermodynamic
limit with zero mean and variances of O(1/Nf ) and O(1/Np), respectively. Solving these equations for the 0-indexed
variables, we find

ŵ0 =

√
Mα

− 1
2

p µz 〈y〉+ σŵzŵ + η0

λ+ σ2
W
αf
αp
ω + σ2

δzα
−1
p χ

û0 =
σûzû + ψ0 + σ2

Xα
−1
f χ(β0 − σ∆βz∆β + ζ0)

1 + σ2
Wσ

2
Xα
−1
f χν

∆y0 =
−
√
Npµz 〈ŵ〉+ σ∆yz∆y + δy∗NL(~x0) + ε0 + ξ0

1− σ2
Xφ+ σ2

δzν

∆β0 =
β0 − σ∆βz∆β + ζ0 − σ2

W ν
2(σûzû + ψ0)

1 + σ2
Wσ

2
Xα
−1
f χν

.

(S124)

We then derive a set of self-consistent equations for the scalar susceptibilities by taking appropriate derivatives of
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these variables with respect to the auxiliary fields,

ν =
1

Np

∑
K

νŵKK ≈ E
[
νŵ00

]
= E

[
∂ŵ0

∂η0

]
=

1

λ+ σ2
W
αf
αp
ω + σ2

δzα
−1
p χ

ω =
1

Nf

∑
k

ωûkk ≈ E
[
ωû00

]
= E

[
∂û0

∂ζ0

]
=

σ2
Xα
−1
f χ

1 + σ2
Wσ

2
Xα
−1
f χν

χ =
1

M

∑
b

χ∆y
bb ≈ E

[
χ∆y

00

]
= E

[
∂∆y0

∂ξ0

]
=

1

1− σ2
Xφ+ σ2

δzν

φ =
1

Nf

∑
k

φ∆β
kk ≈ E

[
φ∆β

00

]
= E

[
∂∆β0

∂ψ0

]
= − σ2

W ν

1 + σ2
Wσ

2
Xα
−1
f χν

.

(S125)

For convenience, we also introduce a fifth scalar susceptibility,

κ =
1

Nf

∑
k

φûkk =
1

Nf

∑
k

ω∆β
kk ≈ E

[
∂û0

∂ψ0

]
= E

[
∂∆β0

∂ζ0

]
=

1

1 + σ2
Wσ

2
Xα
−1
f χν

. (S126)

Using this formula for κ, we re-express the four other susceptibilities as

ω = σ2
Xα
−1
f χκ

φ = −σ2
W νκ

ν =
1

λ+ σ2
Wσ

2
Xα
−1
p χ(κ+ ∆ϕ)

χ =
1

1 + σ2
Wσ

2
Xν(κ+ ∆ϕ)

.

(S127)

Next, we find self-consistent equations for the averages of the fit parameter and residual label errors,

〈ŵ〉 =
1

Np

∑
K

ŵK ≈ E[ŵ0] = ν
√
Mα

− 1
2

p µz 〈∆y〉

〈∆y〉 =
1

M

∑
b

∆yb ≈ E[∆y0] = −χ
√
Npµz 〈ŵ〉 ,

(S128)

where we have set the auxiliary fields to zero. Solving these equations, it is clear that both averages are zero,

〈ŵ〉 = 0, 〈∆y〉 = 0. (S129)

Finally, we square and average each of Eq. (S124) to find self-consistent equations for the four ensemble-averaged
squared quantities (again setting the auxiliary fields to zero),

〈ŵ2〉 =
1

Np

∑
K

ŵ2
K\0 ≈ E

[
ŵ2

0

]
= ν2

(
σ2
W

αf
αp
〈û2〉+ σ2

δzα
−1
p 〈∆y2〉

)
〈û2〉 =

1

Nf

∑
k

û2
k\0 ≈ E

[
û2

0

]
= κ2σ2

Xα
−1
f 〈∆y2〉+ ω2

(
σ2
β + σ2

W 〈ŵ2〉
)

〈∆y2〉 =
1

M

∑
b

∆y2
b\0 ≈ E

[
∆y2

0

]
= χ2

(
σ2
X 〈∆β2〉+ σ2

δz 〈ŵ2〉+ σ2
δy∗ + σ2

ε

)
〈∆β2〉 =

1

Nf

∑
k

∆β2
k\0 ≈ E

[
∆β2

0

]
= κ2

(
σ2
β + σ2

W 〈ŵ2〉
)

+ φ2σ2
Xα
−1
f 〈∆y2〉 .

(S130)

4. Solution with Finite Regularization (λ ∼ O(1))

We start by solving the equations for χ and ν in Eq. (S127) for κ and setting them equal,

κ =
1− χ− σ2

Wσ
2
X∆ϕν

σ2
Wσ

2
Xχν

=
αp(1− λν)− σ2

Wσ
2
X∆ϕν

σ2
Wσ

2
Xχν

, (S131)
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giving us a relation between ν and χ,

ν =
χ+ αp − 1

λαp
. (S132)

Substituting κ from Eq. (S126) into χ from Eq. (S127), inserting the expression for ν we just found, and then
multiplying out the denominators, we find a quartic equation for χ,

0 = ∆ϕχ4 +
[
2∆ϕ(αp − 1) + αpλ̄

]
χ3 +

[
∆ϕ(αp − 1)2 + ((1 + ∆ϕ)αf + αp − 2)αpλ̄

]
χ2

+
[
((1 + ∆ϕ)αf − 1)(αp − 1) + αfαpλ̄

]
αpλ̄χ− αfα2

pλ̄
2,

(S133)

where we have defined the dminesionless regularization parameter

λ̄ =
λ

σ2
Wσ

2
X

. (S134)

Solving the quartic equation and solving for the remaining susceptibilities, we find exact solutions in the thermody-
namic limit by solving Eq. (S130),

 〈ŵ
2〉

〈û2〉
〈∆y2〉
〈∆β2〉

 =


1 −σ2

W
αf
αp
ν2 −σ2

δzα
−1
p ν2 0

−σ2
Wω

2 1 −σ2
Xα
−1
f κ2 0

−σ2
δzχ

2 0 1 −σ2
Xχ

2

−σ2
Wκ

2 0 −σ2
Xα
−1
f φ2 1


−1

0
σ2
βω

2

(σ2
ε + σ2

δy∗)χ
2

σ2
βκ

2

. (S135)

5. Solutions in Ridge-less Limit (λ→ 0)

In the ridge-less limit (λ→ 0), we make the ansatz that χ is O(1) in small λ̄,

χ ≈ χ0 + λ̄χ1. (S136)

Using this approximation, Eq. (S133) gives us the following equation at O(1):

0 = ∆ϕχ4
0 + 2∆ϕ(αp − 1)χ3

0 + ∆ϕ(αp − 1)2χ2
0. (S137)

This equation has two solutions for χ0,

χ
(1)
0 = 1− αp, χ

(2)
0 = 0, (S138)

labeled by superscript (1) and (2).
At O

(
λ̄
)
, we find the resulting equation to be uninformative after inserting either of the solutions for χ0. However,

the O
(
λ̄2
)

equation does provide unique solutions,

0 = ∆ϕ
(
4χ3

0χ2 + 6χ2
0χ

2
1

)
+ 2∆ϕ(αp − 1)(3χ2

0χ2 + 3χ0χ
2
1) + 3αpχ

2
0χ1 + ∆ϕ(αp − 1)2(2χ0χ2 + χ2

1)

+ 2((1 + ∆ϕ)αf + αp − 2)αpχ0χ1 + ((1 + ∆ϕ)αf − 1)(αp − 1)αpχ1 + αfα
2
pχ0 − αfα2

p.
(S139)

Inserting χ
(1)
0 , this equation becomes

0 = ∆ϕ(1− αp)2χ2
1 − [αp − (1 + ∆ϕ)αf ] (1− αp)αpχ1 − αfα3

p (S140)

with a pair of solutions,

χ
(1)
1 =

1

2∆ϕ
(1−αp)
αp

[
αp − (1 + ∆ϕ)αf ±

√
[αp − (1 + ∆ϕ)αf ]

2
+ 4∆ϕαfαp

]
. (S141)

Similarly, inserting the second solution χ
(2)
0 , we find

0 = ∆ϕ(αp − 1)2χ2
1 − [1− (1 + ∆ϕ)αf ](αp − 1)αpχ1 − αfα2

p (S142)
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with a second pair of solutions,

χ
(2)
1 =

1

2∆ϕ
(αp−1)
αp

[
1− (1 + ∆ϕ)αf ±

√
[1− (1 + ∆ϕ)αf ]

2
+ 4∆ϕαf

]
. (S143)

We note that the two solutions for χ1 are qualitatively similar to the exact solution for χ in the model of linear
regression, Eq. (S82). The implication is that the nonlinear nature of the activation function implicitly serves as a
type of regularization via the quantity ∆ϕ which evaluates to zero in the linear limit.

Next, we solve for the solutions to ν. First, we make the ansatz

ν ≈ 1

λ̄
ν−1 + ν0. (S144)

Using Eq. (S132) and inserting the first solution for χ, we find

ν
(1)
−1 = 0 (S145)

with the next order term

ν
(1)
0 =

1

σ2
Wσ

2
X

1

2∆ϕ(1− αp)

[
αp − (1 + ∆ϕ)αf ±

√
[αp − (1 + ∆ϕ)αf ]

2
+ 4∆ϕαfαp

]
. (S146)

Similarly, the second solution for χ gives us

ν
(2)
−1 =

1

σ2
Wσ

2
X

(αp − 1)

αp
. (S147)

For completion, we also find

ν
(2)
0 =

χ
(2)
1

αp
=

1

2∆ϕ(αp − 1)

[
1− (1 + ∆ϕ)αf ±

√
[1− (1 + ∆ϕ)αf ]

2
+ 4∆ϕαf

]
. (S148)

None of the remaining scalar susceptibilities have simple forms. Therefore, we use their representations in terms of
ν and χ. Similarly, the solutions for 〈ŵ2〉, 〈∆y2〉, 〈û2〉, and 〈∆β2〉 do not simplify significantly, but their limiting
scaling behavior in terms of λ can still be determined. Using the fact that each of these quantities must be positive,
it is straightforward to see that only two of the four solutions apply, depending on whether αp > 1 or αp < 1. The
resulting solutions for χ and ν are then

χ =


1− αp if Np < M

λ
2∆ϕσ2

Xσ
2
W

αp
(αp−1)

[
1− (1 + ∆ϕ)αf +

√
[1− (1 + ∆ϕ)αf ]

2
+ 4∆ϕαf

]
if Np > M

ν =


1

2∆ϕσ2
Xσ

2
W

1
(1−αp)

[
αp − (1 + ∆ϕ)αf +

√
[αp − (1 + ∆ϕ)αf ]

2
+ 4∆ϕαfαp

]
if Np < M

1
λ

(αp−1)
αp

+ 1
2∆ϕσ2

Xσ
2
W

1
(αp−1)

[
1− (1 + ∆ϕ)αf +

√
[1− (1 + ∆ϕ)αf ]

2
+ 4∆ϕαf

]
if Np > M

(S149)

In addition, 〈∆y2〉 is O(1) in small λ when αp < 1 and O
(
λ2
)

when αp > 1. The training and test error can be

determined by substituting these susceptibilities into the equations for 〈ŵ2〉, 〈∆y2〉, 〈û2〉, and 〈∆β2〉 in Eq. (S135)
and then using the general solutions in Eqs. (S51) and (S57).

6. Bias-Variance Decomposition

To derive expressions for the bias and variance, according the general solutions in Eqs. (S62) and (S64), we need
to calculate the covariance of the residual parameter errors 〈∆β1∆β2〉, as well as the covariance of the fit parameters
〈ŵ1ŵ2〉. As a reminder, the subscripts 1 and 2 refer to parameters resulting from fitting training sets D1 and D2 drawn
independently from the same data distribution. We apply the self-consistent equations for the 0-indexed quantities,
Eq. (S124), to the two data sets, giving us

ŵ1,0 = νσŵzŵ1

û1,0 = κσûzû1
+ ω(β0 − σ∆βz∆β1

)

∆y1,0 = χ(σ∆yz∆y1
+ δy∗NL(~x1,0) + ε1,0)

∆β1,0 = κ(β0 − σ∆βz∆β1
) + φσûzû1

(S150)
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and

ŵ2,0 = νσŵzŵ2

û2,0 = κσûzû2 + ω(β0 − σ∆βz∆β2)

∆y2,0 = χ(σ∆yz∆y2
+ δy∗NL(~x2,0) + ε2,0)

∆β2,0 = κ(β0 − σ∆βz∆β2
) + φσûzû2

.

(S151)

Multiplying these equations and using the self-averaging approximation, we find

〈ŵ1ŵ2〉 =
1

Np

∑
K

ŵ1,Kŵ2,K ≈ E[ŵ1,0ŵ2,0] = ν2E
[
σ2
ŵzŵ1

zŵ2

]
〈û1û2〉 =

1

Nf

∑
k

û1,kû2,k ≈ E[û1,0û2,0] = κ2E
[
σ2
ûzû1

zû2

]
+ ω2

(
σ2
β + E

[
σ2

∆βz∆β1
z∆β2

])
〈∆y1∆y2〉 =

1

M

∑
b

∆y1,b∆y2,b ≈ E[∆y1,0∆y2,0] = χ2E
[
σ2

∆yz∆y1
z∆y2

]
〈∆β1∆β2〉 =

1

Nf

∑
k

∆β1,k∆β2,k ≈ E[∆β1,0∆β2,0] = κ2
(
σ2
β + E

[
σ2

∆βz∆β1
z∆β2

])
+ φ2E

[
σ2
ûzû1

zû2

]
.

(S152)

Next, we calculate each of the four resulting expectation values of products of random variables. The average of
the product zŵ1

zŵ2
is

E
[
σ2
ŵzŵ1

zŵ2

]
= E

∑
j

û1,j\0Wj0 +
∑
a

∆y1,a\0δzNL,0(~x1,a)

(∑
k

û2,k\0Wk0 +
∑
b

∆y2,b\0δzNL,0(~x2,b)

)
=
∑
jk

E
[
û1,j\0û2,k\0

]
E[Wj0Wk0] +

∑
ab

E
[
∆y1,a\0∆y2,b\0

]
E[δzNL,0(~x1,a)]E[δzNL,0(~x2,b)]

=
σ2
W

Np

∑
k

E
[
û1,j\0û2,j\0

]
≈ σ2

W

αf
αp
〈û1û2〉 ,

(S153)

while the average of the product z∆β1z∆β2 results in

E
[
σ2

∆βz∆β1
z∆β2

]
= E

[∑
JK

ŵ1,J\0ŵ2,K\0W0JW0K

]
=
∑
JK

E
[
ŵ1,J\0ŵ2,K\0

]
E[W0JW0K ]

=
σ2
W

Np

∑
K

E
[
ŵ1,K\0ŵ2,K\0

]
≈ σ2

W 〈ŵ1ŵ2〉 .

(S154)

We find that the other two products average to zero due to the independence of X1 and X2, giving us

E
[
σ2
ûzû1

zû2

]
= E

[∑
ab

∆y1,a\0∆y2,b\0X1,a0X2,b0

]
=
∑
ab

E
[
∆y1,a\0∆y2,b\0

]
E[X1,a0]E[X2,b0]

= 0

(S155)
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and

E
[
σ2

∆yz∆y1
z∆y2

]
= E

∑
j

∆β1,j\0X1,0j −
∑
J

ŵ1,J\0δzNL,J(~x1,0)

(∑
k

∆β2,k\0X2,0k −
∑
K

ŵ2,K\0δzNL,K(~x2,0)

)
=
∑
jk

E
[
∆β1,j\0∆β2,k\0

]
E[X1,0j ]E[X2,0k] +

∑
JK

E
[
ŵ1,J\0ŵ2,K\0

]
E[δzNL,J(~x1,0)]E[δzNL,K(~x2,0)]

= 0.
(S156)

Substituting these results into Eq. (S152), we find the self-consistent equations

〈ŵ1ŵ2〉 = ν2σ2
W

αf
αp
〈û1û2〉

〈û1û2〉 = ω2
(
σ2
β + σ2

W 〈ŵ1ŵ2〉
)

〈∆y1∆y2〉 = 0

〈∆β1∆β2〉 = κ2
(
σ2
β + σ2

W 〈ŵ1ŵ2〉
)
.

(S157)

Solving these equations exactly in the thermodynamic limit, we find the expressions

〈ŵ1ŵ2〉 =
σ2
β

σ2
W

σ4
W
αf
αp
ω2ν2(

1− σ4
W
αf
αp
ω2ν2

)
〈û1û2〉 = σ2

β

ω2(
1− σ4

W
αf
αp
ω2ν2

)
〈∆β1∆β2〉 = σ2

β

κ2(
1− σ4

W
αf
αp
ω2ν2

) .
(S158)

S2. SPECTRAL DENSITIES OF KERNEL MATRICES

Here, we derive the spectral densities for the kernel matrix ZTZ for each model. To do this, we use the technique
laid out in Ref. 55. For any symmetric matrix A of size N ×N , the spectral density can be written in the form

ρ(x) =
1

π
lim
ε→0+

Im
1

N
TrG(x− iε), (S159)

where

G(z) = [zIN −A]
−1

(S160)

is the Green’s function.
In our case, we are interested in the case A = ZTZ. From the cavity calculations, we observe that the susceptibility

matrix

νŵ(λ) =
[
λINp + ZTZ

]−1
(S161)

is related to the Green’s function via the relation G(z) = −νŵ(−z). This allows us to the express the spectral density
in terms of ν,

ρ(x) = − 1

π
lim
ε→0+

Im ν(−x+ iε). (S162)

Therefore, all we will need to do is evaluate Eq. (S162) using the appropriate function ν(λ) for each model.
Sometimes, there will be some fraction of eigenvalues at zero. While the weight of this contribution can be directly

calculated via Eq. (S162), sometimes it is easier to instead examine the susceptibility matrix χ∆y in the limit λ→ 0,
which becomes

χ∆y = IM − Z
[
λINp + ZTZ

]−1
ZT ≈ IM − ZZ+. (S163)
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The matrix ZZ+ is a projector, so its trace is the rank of ZTZ. The trace of χ∆y is then

χ =
1

M
Trχ∆y = 1− 1

M
rank(ZTZ). (S164)

The fraction of eigenvalues at zero is then

fzero = 1− 1

Np
rank(ZTZ) =

χ+ αp − 1

αp
. (S165)

A. Linear Regression

For linear regression, the kernel is a Wishart matrix of the form A = XTX, where the elements of the matrix X are
independent and identically distributed according to a normal distribution with zero mean, the expected eigenvalue
spectrum is the Marchenko-Pastur distribution [51]. To show this, we start the self-consistency equations for the
susceptibilities for this model,

χ =
1

1 + ν̄
, ν̄ =

1

λ̄+ α−1
f χ

, (S166)

where we have non-dimensionalized ν and λ by defining

ν̄ = σ2
Xν, λ̄ =

λ

σ2
X

. (S167)

Plugging χ into ν̄ and rearranging, we find a quadratic equation for ν̄,

λ̄ν̄2 +
[(
α−1
f − 1

)
+ λ̄
]
ν̄ − 1 = 0. (S168)

Solving this equation, we find

ν(λ) =
σ2
X

(
1− α−1

f

)
− λ±

√
D(λ)

2σ2
Xλ

, (S169)

where we have defined the discriminant

D(λ) =
[
σ2
X

(
α−1
f − 1

)
+ λ
]2

+ 4σ2
Xλ. (S170)

Next, we substitute the above solution for ν into Eq. (S162) and simplify to find to find

ρ(x) =
1

2σ2
X

[
σ2
X

(
1− α−1

f

)
± Re

√
D(−x)

] 1

π
lim
ε→0+

ε

(x2 + ε2)
± Im

√
D(−x)

2πσ2
Xx

. (S171)

We see that the first term contains the definition of a delta function evaluated at zero,

δ(x) =
1

π
lim
ε→0+

ε

(x2 + ε2)
. (S172)

This allows us to evaluate the the coefficient of this delta function at zero so that the first term in the spectrum
becomes

1

2σ2
X

[
σ2
X

(
1− α−1

f

)
± Re

√
D(0)

]
δ(x) = max

(
0, 1− α−1

f

)
δ(x). (S173)

We have chosen the signs of the solutions (±) so that the spectral density at zero is always non-negative. To simplify
the second term in Eq. (S162), we need to find the interval over which D(−x) < 0. Solving D(−x) = 0,

D(−x) = x2 − 2xσ2
X

(
α−1
f + 1

)
x+ σ4

X

(
α−1
f − 1

)2

= 0, (S174)
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we find the limits of the interval to be

x± = σ2
X

(
1±

√
α−1
f

)2

. (S175)

The second term in the spectrum then becomes

± Im
√
−(x+ − x)(x− x−)

2πσ2
Xx

=

√
(x+ − x)(x− x−)

2πσ2
Xx

, (S176)

where we have again chosen the plus sign so that the spectrum is always non-negative.
The complete spectrum is then written as

ρ(x) = max
(

0, 1− α−1
f

)
δ(x) +

{
1

2πσ2
Xx

√
(xmax − x)(x− xmin) if x ∈ [xmin, xmax]

0 otherwise
(S177)

with

xmin = σ2
X

(
1−

√
α−1
f

)2

, xmax = σ2
X

(
1 +

√
α−1
f

)2

. (S178)

As expected, this is the Marchenko-Pastur distribution.

B. Random Nonlinear Features Model

Next, we derive the eigenvalue distribution for the kernel of the random nonlinear features model. Previously this
result was derived in Ref. 52. To reproduce this analytic result, we start with three of the susceptibilities from the
cavity derivation,

ν̄ =
1

λ̄+ α−1
p χ(κ+ ∆ϕ)

, χ =
1

1 + ν̄(κ+ ∆ϕ)
, κ =

1

1 + α−1
f χν̄

. (S179)

where we have non-dimensionalized ν and λ by defining

ν̄ = σ2
Wσ

2
Xν, λ̄ =

λ

σ2
Wσ

2
X

. (S180)

Solving each of the equations for χ and ν̄ for κ and then setting them equal we find

κ =
1− χ−∆ϕν̄

χν̄
=
αp(1− λ̄ν̄)−∆ϕν̄

χν̄
. (S181)

From here, we find the following relation between χ and ν̄:

χ = αpλ̄ν̄ − αp + 1. (S182)

Next, we substitute κ into original equation for ν̄, solve for χ, and then substitute this result into Eq. (S182). If we
then eliminate any denominators, we find a quartic equation for ν̄,

0 = ∆ϕ(αpλ̄ν̄)4 +
[
2∆ϕ(1− αp) + αpλ̄

]
(αpλ̄ν̄)

3

+
[
∆ϕ(1− αp)2 + αp(αf (1 + ∆ϕ)− αp + 1− αp)λ̄

]
(αpλ̄ν̄)

2

+ αp
[
(αf (1 + ∆ϕ)− αp)(1− αp) + αfαpλ̄

]
λ̄(αpλ̄ν̄)− αfα3

pλ̄
2.

(S183)

Solving this quartic equation analytically is very involved, so instead we will solve this equation numerically for
negative imaginary roots of ν(λ) with λ = −x, according to Eq. (S162). However, to find the interval over which the
spectrum is positive, we rewrite the equation in general form for αpλ̄ν̄,

0 = a4(αpλ̄ν̄)4 + a3(αpλ̄ν̄)3 + a2(αpλ̄ν̄)2 + a1(αpλ̄ν̄) + a0, (S184)
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where the coefficients are

a0 = −αfα3
pλ̄

2

a1 = αp
[
(αf (1 + ∆ϕ)− αp)(1− αp) + αfαpλ̄

]
λ̄

a2 = ∆ϕ(1− αp)2 + αp(αf (1 + ∆ϕ)− αp + 1− αp)λ̄
a3 = 2∆ϕ(1− αp) + αpλ̄

a4 = ∆ϕ.

(S185)

The discriminant for a quartic equation is expressed in terms of these coefficients as

D(z) = R2 − 4Q3 (S186)

with

R = 2a3
2 − 9a1a2a3 + 27a0a

2
3 + 27a2

1a4 − 72a0a2a4

Q = a2
2 − 3a1a3 + 12a0a4.

(S187)

To find the limiting eigenvalues, we then solve the equation D(λ) = 0 (with λ = −x) numerically for the largest and
smallest non-negative real roots.

To find the weight of the delta function component at zero, we use Eq. (S165) and the solutions for ν we found
previously this model, giving us

fzero = max
(
0, 1− α−1

p

)
. (S188)

S3. ACCURACY OF MINIMUM PRINCIPAL COMPONENT

In this section, we derive expressions for the predicted labels ŷ as a function of projections of the data points along

the minimum principal component ĥmin · ~z(~x) used to assess model accuracy in Figs. 4 and 5. We seek two different

predictions of the labels as a function of ĥmin · ~z(~x) : the labels ŷtrain that result from a finite training set and the
labels ŷtest that result from fitting to an average test set, or equivalently, the full data distribution (the limit of a
training set of size M →∞ for fixed Nf and Np).

Given a training set consisting of M data points D = {(yb, ~xb)}Mb=1 with corresponding hidden features ~za = ~z(~xa),

we start by decomposing the kernel matrix into n principal components ĥi with non-zero eigenvalues σ2
i ,

ZTZ =

n∑
i=1

σ2
i ĥiĥ

T
i . (S189)

We define the principal components so that they form an orthonormal basis of (hidden) features,

ĥi · ĥj = δij . (S190)

We define the minimum component ĥmin as the principal component with the smallest non-zero eigenvalue σ2
min.

Next, we define the empirical variance of ĥi · ~za (holding ĥi fixed) within the training set and derive its relationship
to the eigenvalue σ2

i ,

Var~x∈D

[
ĥi · ~z(~x)|ĥi

]
=

1

M

M∑
a=1

(ĥi · ~za)2

=
1

M
ĥTi Z

TZĥi

=
σ2
i

M
.

(S191)

Similarly, we define the empirical covariance of ĥi · ~za and the labels ya (again, holding ĥi fixed),

Cov~x∈D

[
ĥi · ~z(~x), y(~x)|ĥi

]
=

1

M

M∑
a=1

(ĥi · ~za)ya

=
1

M
ĥTi Z

T~y.

(S192)
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Using the expression for the predicted labels in Eq. (3) and the exact solution for the fit parameters in the ridge-less
limit in Eq. (10), we express the predicted label for an arbitrary test data point ~z′ in terms of the empirical variance
and covariance as

ŷ ≈ ~z′ · (ZTZ)+ZT~y

= ~z′ ·
n∑
i=1

1

σ2
i

ĥiĥ
T
i Z

T~y

=

n∑
i=1

Cov~x∈D

[
ĥi · ~z(~x), y(~x)|ĥi

]
Var~x∈D

[
ĥi · ~z(~x)|ĥi

] (ĥi · ~z′).

(S193)

Dropping all terms except for the one containing the minimum component, we find the expression for the predicted

labels as a function of ĥmin · ~z′ resulting from fitting the training data,

ŷtrain

(
ĥmin · ~z′

)
=

Cov~x∈D

[
ĥmin · ~z, y(~x)|ĥmin

]
Var~x∈D

[
ĥmin · ~z|ĥmin

] (
ĥmin · ~z′

)
. (S194)

To find this relationship for an average test set, we extend the empirical variance and covariance to consider an infinitely
large data set, or equivalently, average over all possible data points (y, ~x) with hidden features ~z(~x). However, we

still hold ĥmin fixed since it is a result of the training set. The resulting relationship is

ŷtest

(
ĥmin · ~z′

)
=

Cov~x

[
ĥmin · ~z(~x), y(~x)|ĥmin

]
Var~x

[
ĥmin · ~z(~x)|ĥmin

] (
ĥmin · ~z′

)
. (S195)

According to Eq. (S191), we calculate the spread of the training data points along the minimum principal component,

σ2
train = Var~x∈D

[
ĥmin · ~z(~x)|ĥmin

]
=
σ2

min

M
. (S196)

We find that it is related to the minimum eigenvalue of the kernel matrix. We also derive the true variance of data

points along ĥmin for an average test set,

σ2
test = Var~x

[
ĥmin · ~z(~x)|ĥmin

]
. (S197)

In the next few sections, we derive this variance, along with the covariance with respect an average test set, or the
full data distribution, for both models, along with expressions for ŷtest.

A. Linear Regression

In linear regression without basis functions, the input features and hidden features are identical such that Z = X.
Using the decomposition of the labels in Eq. (S31), we find

Cov~x

[
ĥmin · ~z(~x), y(~x)|ĥmin

]
=
σ2
X

Nf
ĥTmin

~β (S198)

Var~x

[
ĥmin · ~z(~x)|ĥmin

]
=
σ2
X

Nf
. (S199)

Using these results, the predicted labels for an average test set as a function of ĥmin · ~z′ are then

ŷtest

(
ĥmin · ~z′

)
= ĥTmin

~β
(
ĥmin · ~z′

)
, (S200)

while the expected spread is

σ2
test =

σ2
X

Nf
. (S201)
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B. Random Nonlinear Features Model

In the random nonlinear features model, we use the label decomposition in Eq. (S31) and the hidden feature
decomposition in Eq. (S39), to find

Cov~x

[
ĥmin · ~z(~x), y(~x|ĥmin

]
=
σ2
X

Nf
ĥTminW

T ~β (S202)

Var~x

[
ĥmin · ~z(~x)|ĥmin

]
=
σ2
X

Nf
ĥTminW

TW ĥmin + ∆ϕ
σ2
Wσ

2
X

Np
. (S203)

The predicted labels are then

ŷtest

(
ĥmin · ~z′

)
=

ĥTminW
T ~β(

ĥTminW
TW ĥmin + ∆ϕσ2

W
αf
αp

)(ĥmin · ~z′
)

(S204)

and the expected spread is

σ2
test =

σ2
X

Nf
ĥTminW

TW ĥmin + ∆ϕ
σ2
Wσ

2
X

Np
. (S205)

S4. NUMERICAL SIMULATION DETAILS

In this section, we explain our procedures for generating numerical results.

A. General Details

In all plots of training error, test error, bias, and variance, each point (or pixel for 2d plots) is averaged over 1000
independent simulations, unless located exactly at a phase transition, in which case, each point is averaged over 150000
simulations. Small error bars are shown each plot, representing the error on the mean. We also scale the error in
each plot by the variance of the labels σ2

y = σ2
βσ

2
X + σ2

δy∗ + σ2
ε . In all simulations, we use training and test sets of size

M = M ′ = 512, a signal-to-noise ratio of (σ2
βσ

2
X + σ2

δy∗)/σ
2
ε = 10, and a regularization parameter of λ = 10−6. We

also use a linear teacher model y∗(~x) = ~x ·~β (σ2
δy∗ = 0) in most cases. In Fig. 5, we use a nonlinear teacher model with

f(h) = tanh(h). In this case, we find that 〈f ′〉 = 0.6057 and 〈f2〉 = 0.3943, resulting in σ2
δy∗/σ

2
βσ

2
X = ∆f = 0.0747.

To find the solution for a particular regression problem, we solve a different (but equivalent) system of equations
depending on whether Np < M or Np > M , allowing us to reduce the size of the linear system we need to solve. If
Np < M , we solve the system of Np equations[

λINp + ZTZ
]
ŵ = ZT~y (S206)

for the Np unknown fit parameters ŵ where INp is the Np ×Np identity matrix. This equation is identical to that in
Eq. (9) in the main text.

Alternatively, if Np > M we solve a system of M equations,[
λIM + ZZT

]
â = ~y, (S207)

for the M unknowns â where IM is the M ×M identity matrix. We then convert to fit parameters via the formula
ŵ = ZT â.

B. Bias-Variance Decompositions

To efficiently calculate the ensemble-averaged bias and variance, we take inspiration from Eq. (S60). During each
simulation, we independently generate two training data sets D1 and D2. Using the results from the first training set
we calculate the training and test error. To calculate the bias, we also calculate the label predictions for both training
sets for an identical test set, ŷ1 and ŷ2, and record the residual label errors between these predictions and the true
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labels of the test set ~y∗′ and record the product (ŷ1 − ~y∗′) · (ŷ2 − ~y∗′). When averaged over many simulations, this
quantity approximates the bias. We can then subtract this quantity from the average test error to find the variance.
We follow an analogous procedure to find each contribution of the labels in Eq. (S31) to the bias and variance in
Fig. 5. This is achieved by calculating the test error, bias and variance using only a single contribution from the labels
at a time and setting the rest to zero.

C. Eigenvalue Decompositions of Kernel Matrices

For each of the numerical eigenvalue distributions for the kernel matrices presented in the main text, we choose
M = 4096. We then average over the distributions for 10 independently sampled matrices when αp = 1 or αp = 8 and
over 80 matrices when αp = 1/8. In this way, we ensure that the same number of non-zero eigenvalues is present in
the part of the histograms corresponding to the bulk of the distributions (the distribution excluding the delta function
at zero). For M < Np we calculate the eigenvalues of ZTZ, while for M > Np we instead calculate the eigenvalues
of ZZT since this matrix is smaller and contains the same non-zero eigenvalues. In the later case, we then manally
append an additional Np −M zero-valued eigenvalues to the distribution.

D. Spread Along Mimimum Principal Components

For each the scatter plots in Figs. 4 and 5, we consider training and test sets of size M = M ′ = 200, with all
other parameters specified in Sec. S4 A. We then calculate the principal component corresponding to the minimum
eigenvalue numerically and use this to plot the relationship learned by the model for the training set, as detailed in
Sec. S3. For the test set, we show the relationship for an average test set rather than the specific test shown, again
using the formulas detailed in Sec. S3. We note that these formulas still require the minimum principal component
calculated for the training set.

In Fig. 4, the spread of the the training set compared to a test set as a function of αp is calculated using 100
simulations for each point. For each simulation, we record the ratio σtrain/σtest (see Sec. S3) and then average this
quantity across simulations for each αp.

S5. COMPLETE NUMERICAL RESULTS

In this section, we provide complete comparisons between the analytic and numerical results when lacking from the
main text. For linear regression, comparisons to numerical results for the training error, test error, bias ,and variance
are depicted in Fig. 2 in the main text.

For the random nonlinear features model, Fig. S1 provides comparisons to numerical results for the training error,
test error, bias, and variance.

S6. NON-STANDARD BIAS-VARIANCE DECOMPOSITIONS

In Fig. S2, we show numerical results for the alternative definitions of bias described in Sec. VF for the random
nonlinear features model. In the fixed design setting, the bias and variance are defined as

Biasfd[ŷ(~x)] = E~ε[ŷ(~x)]− y∗(~x)

Varfd[ŷ(~x)] = E~ε[ŷ(~x)2]− E~ε[ŷ(~x)]2.
(S208)

Alternatively, in the ensemble setting, the bias and variance are defined as

Biasens[ŷ(~x)] = EX,~ε,W [ŷ(~x)]− y∗(~x)

Varens[ŷ(~x)] = EX,~ε,W [ŷ(~x)2]− EX,~ε,W [ŷ(~x)]2.
(S209)

We plot all four quantities with comparisons to the standard counterparts at fixed αf in Figs. S2(a) and (b). We also
show the full behavior as a function of both αp and αf for the four quantities in Figs. S2(c)-(f).
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FIG. S1. Comparison of analytic and numerical results for the random nonlinear features model: Training
error and bias-variance decomposition. (Top Row) Analytic solutions and (Bottom Row) numerical results are shown as
a function of αp = Np/M and αf = Nf/M . Plotted are the ensemble-averaged (a) training error, (b) test error, (c) squared
bias, and (d) variance. In each panel, a black dashed line marks the boundary between the under- and over-parameterized
regimes at αp = 1.
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100

Parameters/Data αp

10−1

100

101

F
ea

tu
re

s/
D

at
a
α
f

(e)

Fixed Design 〈Varfd[ŷ]〉
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FIG. S2. Numerical comparison of the bias-variance decompositions using three different definitions. The (a)
squared bias and (b) variance for the standard setting (black circles), fixed-design setting (blue squares) and ensemble setting
(red diamonds) are shown for fixed αf = 1/2. Results are also shown as a function of αp = Np/M and αf = Nf/M for the (c)
squared fixed design bias, (d) squared ensemble bias, (e) fixed design variance, and (f) ensemble variance. In each panel, a
black dashed line marks the boundary between the under- and over-parameterized regimes at αp = 1.


	Supplemental Material: Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
	Contents
	Cavity Derivations
	Notation Conventions
	Theoretical Setup
	Central Limit Approximation
	Nonlinear Function Statistics
	Integral Identities
	Label Decomposition
	Hidden Feature Decomposition

	General Solutions
	Linear Regression (No Basis Functions)
	Cavity Expansion
	Central Limit Approximations
	Self-consistency Equations
	Solutions with Finite Regularization (1)
	Solutions in Ridge-less Limit (0)
	Bias-Variance Decomposition

	Random Nonlinear Features Model (Two-layer Nonlinear Neural Network)
	Cavity Expansion
	Central Limit Approximations
	Self-consistency Equations
	Solution with Finite Regularization (1)
	Solutions in Ridge-less Limit (0)
	Bias-Variance Decomposition


	Spectral Densities of Kernel Matrices
	Linear Regression
	Random Nonlinear Features Model

	Accuracy of Minimum Principal Component
	Linear Regression
	Random Nonlinear Features Model

	Numerical Simulation Details
	General Details
	Bias-Variance Decompositions
	Eigenvalue Decompositions of Kernel Matrices
	Spread Along Mimimum Principal Components

	Complete Numerical Results
	Non-standard Bias-Variance Decompositions


